diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index 32c3fa726c295..697d63e8ecb37 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -55,7 +55,6 @@ "HuberRegressor", "IncrementalPCA", "Isomap", - "IsotonicRegression", "IterativeImputer", "KBinsDiscretizer", "KNNImputer", diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py index 6e5e92d409ca3..291a09dabf94e 100644 --- a/sklearn/isotonic.py +++ b/sklearn/isotonic.py @@ -189,6 +189,14 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator): increasing_ : bool Inferred value for ``increasing``. + See Also + -------- + sklearn.linear_model.LinearRegression : Ordinary least squares Linear + Regression. + sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that + is a non-parametric model accepting monotonicity constraints. + isotonic_regression : Function to solve the isotonic regression model. + Notes ----- Ties are broken using the secondary method from de Leeuw, 1977. @@ -348,7 +356,7 @@ def fit(self, X, y, sample_weight=None): return self def transform(self, T): - """Transform new data by linear interpolation + """Transform new data by linear interpolation. Parameters ---------- @@ -361,7 +369,7 @@ def transform(self, T): Returns ------- y_pred : ndarray of shape (n_samples,) - The transformed data + The transformed data. """ if hasattr(self, "X_thresholds_"):