diff --git a/sklearn/datasets/_samples_generator.py b/sklearn/datasets/_samples_generator.py index 4c66489f3ca54..22205e6732833 100644 --- a/sklearn/datasets/_samples_generator.py +++ b/sklearn/datasets/_samples_generator.py @@ -1411,7 +1411,7 @@ def make_sparse_spd_matrix( norm_diag : bool, default=False Whether to normalize the output matrix to make the leading diagonal - elements all 1 + elements all 1. smallest_coef : float, default=0.1 The value of the smallest coefficient between 0 and 1. @@ -1429,15 +1429,15 @@ def make_sparse_spd_matrix( prec : sparse matrix of shape (dim, dim) The generated matrix. + See Also + -------- + make_spd_matrix : Generate a random symmetric, positive-definite matrix. + Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. - - See Also - -------- - make_spd_matrix """ random_state = check_random_state(random_state) diff --git a/sklearn/tests/test_docstrings.py b/sklearn/tests/test_docstrings.py index 7c1409b4b3f02..0d53251adc9a5 100644 --- a/sklearn/tests/test_docstrings.py +++ b/sklearn/tests/test_docstrings.py @@ -36,7 +36,6 @@ "sklearn.datasets._samples_generator.make_multilabel_classification", "sklearn.datasets._samples_generator.make_regression", "sklearn.datasets._samples_generator.make_sparse_coded_signal", - "sklearn.datasets._samples_generator.make_sparse_spd_matrix", "sklearn.datasets._samples_generator.make_spd_matrix", "sklearn.datasets._species_distributions.fetch_species_distributions", "sklearn.datasets._svmlight_format_io.dump_svmlight_file",