diff --git a/sklearn/covariance/_graph_lasso.py b/sklearn/covariance/_graph_lasso.py index 7e54d13906afe..564d3d21dc681 100644 --- a/sklearn/covariance/_graph_lasso.py +++ b/sklearn/covariance/_graph_lasso.py @@ -737,29 +737,6 @@ class GraphicalLassoCV(BaseGraphicalLasso): .. versionadded:: 1.0 - split(k)_score : ndarray of shape (n_alphas,) - Log-likelihood score on left-out data across (k)th fold. - - .. deprecated:: 1.0 - `split(k)_score` is deprecated in 1.0 and will be removed in 1.2. - Use `split(k)_test_score` instead. - - mean_score : ndarray of shape (n_alphas,) - Mean of scores over the folds. - - .. deprecated:: 1.0 - `mean_score` is deprecated in 1.0 and will be removed in 1.2. - Use `mean_test_score` instead. - - std_score : ndarray of shape (n_alphas,) - Standard deviation of scores over the folds. - - .. deprecated:: 1.0 - `std_score` is deprecated in 1.0 and will be removed in 1.2. - Use `std_test_score` instead. - - .. versionadded:: 0.24 - n_iter_ : int Number of iterations run for the optimal alpha. diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py index b674c065628c7..2518f071697cd 100644 --- a/sklearn/linear_model/_base.py +++ b/sklearn/linear_model/_base.py @@ -76,15 +76,6 @@ def _deprecate_normalize(normalize, estimator_name): Notes ----- - This function should be updated in 1.2 depending on the value of - `normalize`: - - True, warning: `normalize` was deprecated in 1.2 and will be removed in - 1.4. Suggest to use pipeline instead. - - False, `normalize` was deprecated in 1.2 and it will be removed in 1.4. - Leave normalize to its default value. - - `deprecated` - this should only be possible with default == False as from - 1.2 `normalize` in all the linear models should be either removed or the - default should be set to False. This function should be completely removed in 1.4. """ diff --git a/sklearn/linear_model/tests/test_sgd.py b/sklearn/linear_model/tests/test_sgd.py index 689d477ae17a2..fa34671a35d0f 100644 --- a/sklearn/linear_model/tests/test_sgd.py +++ b/sklearn/linear_model/tests/test_sgd.py @@ -707,8 +707,6 @@ def test_set_coef_multiclass(klass): clf = klass().fit(X2, Y2, intercept_init=np.zeros((3,))) -# TODO: Remove filterwarnings in v1.2. -@pytest.mark.filterwarnings("ignore:.*squared_loss.*:FutureWarning") @pytest.mark.parametrize("klass", [SGDClassifier, SparseSGDClassifier]) def test_sgd_predict_proba_method_access(klass): # Checks that SGDClassifier predict_proba and predict_log_proba methods diff --git a/sklearn/tests/test_base.py b/sklearn/tests/test_base.py index 250b2302d9a21..6e17721046e9b 100644 --- a/sklearn/tests/test_base.py +++ b/sklearn/tests/test_base.py @@ -647,8 +647,7 @@ def transform(self, X): warnings.simplefilter("error", UserWarning) trans.transform(X) - # TODO: Convert to a error in 1.2 - # fit on dataframe with feature names that are mixed warns: + # fit on dataframe with feature names that are mixed raises an error: df_mixed = pd.DataFrame(X_np, columns=["a", "b", 1, 2]) trans = NoOpTransformer() msg = re.escape( @@ -658,7 +657,7 @@ def transform(self, X): with pytest.raises(TypeError, match=msg): trans.fit(df_mixed) - # transform on feature names that are mixed also warns: + # transform on feature names that are mixed also raises: with pytest.raises(TypeError, match=msg): trans.transform(df_mixed) diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index a5d91715cb56e..96a6da6a7e2c8 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -463,8 +463,6 @@ def test_check_param_validation(estimator): check_param_validation(name, estimator) -# TODO: remove this filter in 1.2 -@pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize( "Estimator", [ diff --git a/sklearn/tests/test_docstring_parameters.py b/sklearn/tests/test_docstring_parameters.py index 5c7fee4160e1c..1631ac3537ed9 100644 --- a/sklearn/tests/test_docstring_parameters.py +++ b/sklearn/tests/test_docstring_parameters.py @@ -234,10 +234,9 @@ def test_fit_docstring_attributes(name, Estimator): ): # default="auto" raises an error with the shape of `X` est.set_params(n_components=2) - - # FIXME: TO BE REMOVED for 1.2 (avoid FutureWarning) - if Estimator.__name__ == "TSNE": - est.set_params(learning_rate=200.0, init="random", perplexity=2) + elif Estimator.__name__ == "TSNE": + # default raises an error, perplexity must be less than n_samples + est.set_params(perplexity=2) # FIXME: TO BE REMOVED for 1.3 (avoid FutureWarning) if Estimator.__name__ == "SequentialFeatureSelector":