diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py index b98cf08925910..0d196ee2d23eb 100644 --- a/sklearn/linear_model/_coordinate_descent.py +++ b/sklearn/linear_model/_coordinate_descent.py @@ -1276,9 +1276,7 @@ class Lasso(ElasticNet): reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to `1 / (2C)` in other linear models such as :class:`~sklearn.linear_model.LogisticRegression` or - :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are - assumed to be specific to the targets. Hence they must correspond in - number. + :class:`~sklearn.svm.LinearSVC`. The precise stopping criteria based on `tol` are the following: First, check that that maximum coordinate update, i.e. :math:`\\max_j |w_j^{new} - w_j^{old}|`