diff --git a/doc/modules/linear_model.rst b/doc/modules/linear_model.rst index 2a06bc5d1ff91..b3f84498feca6 100644 --- a/doc/modules/linear_model.rst +++ b/doc/modules/linear_model.rst @@ -869,6 +869,10 @@ model, the probabilities describing the possible outcomes of a single trial are modeled using a `logistic function `_. +For a visual example of how :class:`LogisticRegression` models a +classification problem using the logistic curve, see: +:ref:`sphx_glr_auto_examples_linear_model_plot_logistic.py`. + This implementation can fit binary, One-vs-Rest, or multinomial logistic regression with optional :math:`\ell_1`, :math:`\ell_2` or Elastic-Net regularization. diff --git a/sklearn/linear_model/_logistic.py b/sklearn/linear_model/_logistic.py index e4e12d1435d41..4352a7fb44320 100644 --- a/sklearn/linear_model/_logistic.py +++ b/sklearn/linear_model/_logistic.py @@ -1105,6 +1105,10 @@ class LogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstimator): For a comparison of the LogisticRegression with other classifiers see: :ref:`sphx_glr_auto_examples_classification_plot_classification_probability.py`. + + For a visual example of how :class:`LogisticRegression` models a + classification problem using the logistic curve, see: + :ref:`sphx_glr_auto_examples_linear_model_plot_logistic.py`. """ _parameter_constraints: dict = {