diff --git a/sklearn/covariance/_empirical_covariance.py b/sklearn/covariance/_empirical_covariance.py index 7c4db63b4e363..ddad7f575190f 100644 --- a/sklearn/covariance/_empirical_covariance.py +++ b/sklearn/covariance/_empirical_covariance.py @@ -135,7 +135,7 @@ class EmpiricalCovariance(BaseEstimator): Estimated location, i.e. the estimated mean. covariance_ : ndarray of shape (n_features, n_features) - Estimated covariance matrix + Estimated covariance matrix. precision_ : ndarray of shape (n_features, n_features) Estimated pseudo-inverse matrix. @@ -343,6 +343,9 @@ def error_norm(self, comp_cov, norm="frobenius", scaling=True, squared=True): def mahalanobis(self, X): """Compute the squared Mahalanobis distances of given observations. + For a detailed example of how outlying data affects the Mahalanobis distance, + see :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py`. + Parameters ---------- X : array-like of shape (n_samples, n_features)