diff --git a/sklearn/linear_model/passive_aggressive.py b/sklearn/linear_model/passive_aggressive.py index 183049e4fdb55..a82b1c12ffdb6 100644 --- a/sklearn/linear_model/passive_aggressive.py +++ b/sklearn/linear_model/passive_aggressive.py @@ -105,6 +105,25 @@ class PassiveAggressiveClassifier(BaseSGDClassifier): The actual number of iterations to reach the stopping criterion. For multiclass fits, it is the maximum over every binary fit. + Examples + -------- + >>> from sklearn.linear_model import PassiveAggressiveClassifier + >>> from sklearn.datasets import make_classification + >>> + >>> X, y = make_classification(n_features=4, random_state=0) + >>> clf = PassiveAggressiveClassifier(random_state=0) + >>> clf.fit(X, y) + PassiveAggressiveClassifier(C=1.0, average=False, class_weight=None, + fit_intercept=True, loss='hinge', max_iter=5, n_iter=None, + n_jobs=1, random_state=0, shuffle=True, tol=None, verbose=0, + warm_start=False) + >>> print(clf.coef_) + [[ 0.49324685 1.0552176 1.49519589 1.33798314]] + >>> print(clf.intercept_) + [ 2.18438388] + >>> print(clf.predict([[0, 0, 0, 0]])) + [1] + See also -------- @@ -291,6 +310,25 @@ class PassiveAggressiveRegressor(BaseSGDRegressor): n_iter_ : int The actual number of iterations to reach the stopping criterion. + Examples + -------- + >>> from sklearn.linear_model import PassiveAggressiveRegressor + >>> from sklearn.datasets import make_regression + >>> + >>> X, y = make_regression(n_features=4, random_state=0) + >>> regr = PassiveAggressiveRegressor(random_state=0) + >>> regr.fit(X, y) + PassiveAggressiveRegressor(C=1.0, average=False, epsilon=0.1, + fit_intercept=True, loss='epsilon_insensitive', max_iter=5, + n_iter=None, random_state=0, shuffle=True, tol=None, + verbose=0, warm_start=False) + >>> print(regr.coef_) + [ 20.48736655 34.18818427 67.59122734 87.94731329] + >>> print(regr.intercept_) + [-0.02306214] + >>> print(regr.predict([[0, 0, 0, 0]])) + [-0.02306214] + See also --------