diff --git a/dev/_sources/auto_examples/inspection/plot_permutation_importance.rst.txt b/dev/_sources/auto_examples/inspection/plot_permutation_importance.rst.txt index 46001bf1492c8..82b6d6dd5e3d9 100644 --- a/dev/_sources/auto_examples/inspection/plot_permutation_importance.rst.txt +++ b/dev/_sources/auto_examples/inspection/plot_permutation_importance.rst.txt @@ -48,6 +48,7 @@ can mitigate those limitations. print(__doc__) import matplotlib.pyplot as plt + import matplotlib.ticker as mticker import numpy as np from sklearn.datasets import fetch_openml @@ -222,6 +223,7 @@ importances: y_ticks = np.arange(0, len(feature_names)) fig, ax = plt.subplots() ax.barh(y_ticks, tree_feature_importances[sorted_idx]) + ax.yaxis.set_major_locator(mticker.FixedLocator(feature_names[sorted_idx])) ax.set_yticklabels(feature_names[sorted_idx]) ax.set_yticks(y_ticks) ax.set_title("Random Forest Feature Importances (MDI)")