Virtual Machine Commands: sudo apt update sudo apt install python3-pip sudo apt install virtualenv mkdir mlflow cd mlflow pipenv install mlflow pipenv install awscli pipenv install boto3 pipenv shell aws configure
git init
4. DVC
(Data Version Control)
Split Jupyter Notebook into Python Scripts (Modular Approach):
-
data_ingestion.py
-
data_preprocessing.py
-
feature_engineering.py
-
model_building.py
-
model_evaluation.py
-
Output metrics.json
Create dvc.yaml
(configuration file)
git init
& dvc init
, dvc repro
(this will execute dvc.yaml
) , dvc dag
, dvc metrics show
See here MLflow Repo
docker build -t username/app: latest docker run -p 8080:8080 username/app: latest docker run -d -p 8080:8080 username/app: latest
docker login docker push username/app: latest