Thanks to visit codestin.com
Credit goes to github.com

Skip to content

spha-code/MLOps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 

Repository files navigation

MLOPs End-to-End Pipeline

Machine Learning Dev Ops Guideline

1a. AWS - EC2 - 1b. AWS - SageMaker - 1c. AWS - S3- 1c. AWS - ECR

or

1d. GCP Google Cloud Platform (Vertex AI)

2. Ubuntu Linux setup

3. Git

git init

4. DVC (Data Version Control)

Split Jupyter Notebook into Python Scripts (Modular Approach):

  1. data_ingestion.py

  2. data_preprocessing.py

  3. feature_engineering.py

  4. model_building.py

  5. model_evaluation.py

  6. Output metrics.json

Create dvc.yaml (configuration file)

git init & dvc init , dvc repro (this will execute dvc.yaml) , dvc dag , dvc metrics show

5. Experiment Tracking

MLflow Metrics

MLflow & Dagshub

See here MLflow Repo

6. Docker

Dockerfile

About

Machine Learning Dev Ops Guideline

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published