|
| 1 | +# Plot of the Lorenz Attractor based on Edward Lorenz's 1963 "Deterministic |
| 2 | +# Nonperiodic Flow" publication. |
| 3 | +# http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2 |
| 4 | +# |
| 5 | +# Note: Because this is a simple non-linear ODE, it would be more easily |
| 6 | +# done using SciPy's ode solver, but this approach depends only |
| 7 | +# upon NumPy. |
| 8 | + |
| 9 | +import numpy as np |
| 10 | +import matplotlib.pyplot as plt |
| 11 | +from mpl_toolkits.mplot3d import Axes3D |
| 12 | + |
| 13 | + |
| 14 | +def lorenz(x, y, z, s=10, r=28, b=2.667) : |
| 15 | + x_dot = s*(y - x) |
| 16 | + y_dot = r*x - y - x*z |
| 17 | + z_dot = x*y - b*z |
| 18 | + return x_dot, y_dot, z_dot |
| 19 | + |
| 20 | + |
| 21 | +dt = 0.01 |
| 22 | +stepCnt = 10000 |
| 23 | + |
| 24 | +# Need one more for the initial values |
| 25 | +xs = np.empty((stepCnt + 1,)) |
| 26 | +ys = np.empty((stepCnt + 1,)) |
| 27 | +zs = np.empty((stepCnt + 1,)) |
| 28 | + |
| 29 | +# Setting initial values |
| 30 | +xs[0], ys[0], zs[0] = (0., 1., 1.05) |
| 31 | + |
| 32 | +# Stepping through "time". |
| 33 | +for i in xrange(stepCnt) : |
| 34 | + # Derivatives of the X, Y, Z state |
| 35 | + x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) |
| 36 | + xs[i + 1] = xs[i] + (x_dot * dt) |
| 37 | + ys[i + 1] = ys[i] + (y_dot * dt) |
| 38 | + zs[i + 1] = zs[i] + (z_dot * dt) |
| 39 | + |
| 40 | +fig = plt.figure() |
| 41 | +ax = fig.gca(projection='3d') |
| 42 | + |
| 43 | +ax.plot(xs, ys, zs) |
| 44 | +ax.set_xlabel("X Axis") |
| 45 | +ax.set_ylabel("Y Axis") |
| 46 | +ax.set_zlabel("Z Axis") |
| 47 | + |
| 48 | +plt.show() |
| 49 | + |
0 commit comments