Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit ea787bf

Browse files
authored
DOC fix typos in metrics/_classification.py (scikit-learn#20944)
1 parent da10790 commit ea787bf

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

sklearn/metrics/_classification.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1174,7 +1174,7 @@ def fbeta_score(
11741174
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
11751175
scores for that label only.
11761176
1177-
average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None \
1177+
average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \
11781178
default='binary'
11791179
This parameter is required for multiclass/multilabel targets.
11801180
If ``None``, the scores for each class are returned. Otherwise, this
@@ -1475,7 +1475,7 @@ def precision_recall_fscore_support(
14751475
precision : float (if average is not None) or array of float, shape =\
14761476
[n_unique_labels]
14771477
1478-
recall : float (if average is not None) or array of float, , shape =\
1478+
recall : float (if average is not None) or array of float, shape =\
14791479
[n_unique_labels]
14801480
14811481
fbeta_score : float (if average is not None) or array of float, shape =\
@@ -1662,7 +1662,7 @@ def precision_score(
16621662
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
16631663
scores for that label only.
16641664
1665-
average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None \
1665+
average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \
16661666
default='binary'
16671667
This parameter is required for multiclass/multilabel targets.
16681668
If ``None``, the scores for each class are returned. Otherwise, this
@@ -1696,8 +1696,8 @@ def precision_score(
16961696
16971697
Returns
16981698
-------
1699-
precision : float (if average is not None) or array of float of shape
1700-
(n_unique_labels,)
1699+
precision : float (if average is not None) or array of float of shape \
1700+
(n_unique_labels,)
17011701
Precision of the positive class in binary classification or weighted
17021702
average of the precision of each class for the multiclass task.
17031703
@@ -1794,7 +1794,7 @@ def recall_score(
17941794
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
17951795
scores for that label only.
17961796
1797-
average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None \
1797+
average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \
17981798
default='binary'
17991799
This parameter is required for multiclass/multilabel targets.
18001800
If ``None``, the scores for each class are returned. Otherwise, this
@@ -1829,8 +1829,8 @@ def recall_score(
18291829
18301830
Returns
18311831
-------
1832-
recall : float (if average is not None) or array of float of shape
1833-
(n_unique_labels,)
1832+
recall : float (if average is not None) or array of float of shape \
1833+
(n_unique_labels,)
18341834
Recall of the positive class in binary classification or weighted
18351835
average of the recall of each class for the multiclass task.
18361836

0 commit comments

Comments
 (0)