@@ -1174,7 +1174,7 @@ def fbeta_score(
1174
1174
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
1175
1175
scores for that label only.
1176
1176
1177
- average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None \
1177
+ average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \
1178
1178
default='binary'
1179
1179
This parameter is required for multiclass/multilabel targets.
1180
1180
If ``None``, the scores for each class are returned. Otherwise, this
@@ -1475,7 +1475,7 @@ def precision_recall_fscore_support(
1475
1475
precision : float (if average is not None) or array of float, shape =\
1476
1476
[n_unique_labels]
1477
1477
1478
- recall : float (if average is not None) or array of float, , shape =\
1478
+ recall : float (if average is not None) or array of float, shape =\
1479
1479
[n_unique_labels]
1480
1480
1481
1481
fbeta_score : float (if average is not None) or array of float, shape =\
@@ -1662,7 +1662,7 @@ def precision_score(
1662
1662
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
1663
1663
scores for that label only.
1664
1664
1665
- average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None \
1665
+ average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \
1666
1666
default='binary'
1667
1667
This parameter is required for multiclass/multilabel targets.
1668
1668
If ``None``, the scores for each class are returned. Otherwise, this
@@ -1696,8 +1696,8 @@ def precision_score(
1696
1696
1697
1697
Returns
1698
1698
-------
1699
- precision : float (if average is not None) or array of float of shape
1700
- (n_unique_labels,)
1699
+ precision : float (if average is not None) or array of float of shape \
1700
+ (n_unique_labels,)
1701
1701
Precision of the positive class in binary classification or weighted
1702
1702
average of the precision of each class for the multiclass task.
1703
1703
@@ -1794,7 +1794,7 @@ def recall_score(
1794
1794
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
1795
1795
scores for that label only.
1796
1796
1797
- average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None \
1797
+ average : {'micro', 'macro', 'samples', 'weighted', 'binary'} or None, \
1798
1798
default='binary'
1799
1799
This parameter is required for multiclass/multilabel targets.
1800
1800
If ``None``, the scores for each class are returned. Otherwise, this
@@ -1829,8 +1829,8 @@ def recall_score(
1829
1829
1830
1830
Returns
1831
1831
-------
1832
- recall : float (if average is not None) or array of float of shape
1833
- (n_unique_labels,)
1832
+ recall : float (if average is not None) or array of float of shape \
1833
+ (n_unique_labels,)
1834
1834
Recall of the positive class in binary classification or weighted
1835
1835
average of the recall of each class for the multiclass task.
1836
1836
0 commit comments