Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit cf8fc75

Browse files
committed
added lstm example
1 parent 0b851ac commit cf8fc75

File tree

1 file changed

+107
-1
lines changed

1 file changed

+107
-1
lines changed
Lines changed: 107 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1,107 @@
1-
under dev..
1+
'''
2+
A Reccurent Neural Network (LSTM) implementation example using TensorFlow library.
3+
This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
4+
Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
5+
6+
Author: Aymeric Damien
7+
Project: https://github.com/aymericdamien/TensorFlow-Examples/
8+
'''
9+
10+
# Import MINST data
11+
import input_data
12+
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
13+
14+
import tensorflow as tf
15+
from tensorflow.models.rnn import rnn, rnn_cell
16+
import numpy as np
17+
18+
# Parameters
19+
learning_rate = 0.001
20+
training_iters = 100000
21+
batch_size = 128
22+
display_step = 10
23+
24+
# Network Parameters
25+
n_input = 28 # MNIST data input (img shape: 28*28)
26+
n_steps = 28 # timesteps
27+
n_hidden = 128 # hidden layer num of features
28+
n_classes = 10 # MNIST total classes (0-9 digits)
29+
30+
# tf Graph input
31+
x = tf.placeholder("float", [None, n_steps, n_input])
32+
istate = tf.placeholder("float", [None, 2*n_hidden]) #state & cell => 2x n_hidden
33+
y = tf.placeholder("float", [None, n_classes])
34+
35+
# Define weights
36+
weights = {
37+
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
38+
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
39+
}
40+
biases = {
41+
'hidden': tf.Variable(tf.random_normal([n_hidden])),
42+
'out': tf.Variable(tf.random_normal([n_classes]))
43+
}
44+
45+
def RNN(_X, _istate, _weights, _biases):
46+
47+
# input shape: (batch_size, n_steps, n_input)
48+
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
49+
# Reshape to prepare input to hidden activation
50+
_X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
51+
# Linear activation
52+
_X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
53+
54+
# Define a lstm cell with tensorflow
55+
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
56+
# Split data because rnn cell needs a list of inputs for the RNN inner loop
57+
_X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
58+
59+
# Get lstm cell output
60+
outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
61+
62+
# Linear activation
63+
# Get inner loop last output
64+
return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
65+
66+
pred = RNN(x, istate, weights, biases)
67+
68+
# Define loss and optimizer
69+
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
70+
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
71+
72+
# Evaluate model
73+
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
74+
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
75+
76+
# Initializing the variables
77+
init = tf.initialize_all_variables()
78+
79+
# Launch the graph
80+
with tf.Session() as sess:
81+
sess.run(init)
82+
step = 1
83+
# Keep training until reach max iterations
84+
while step * batch_size < training_iters:
85+
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
86+
# Reshape data to get 28 seq of 28 elements
87+
batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
88+
# Fit training using batch data
89+
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
90+
istate: np.zeros((batch_size, 2*n_hidden))})
91+
if step % display_step == 0:
92+
# Calculate batch accuracy
93+
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
94+
istate: np.zeros((batch_size, 2*n_hidden))})
95+
# Calculate batch loss
96+
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
97+
istate: np.zeros((batch_size, 2*n_hidden))})
98+
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
99+
", Training Accuracy= " + "{:.5f}".format(acc)
100+
step += 1
101+
print "Optimization Finished!"
102+
# Calculate accuracy for 256 mnist test images
103+
test_len = 256
104+
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
105+
test_label = mnist.test.labels[:test_len]
106+
print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
107+
istate: np.zeros((test_len, 2*n_hidden))})

0 commit comments

Comments
 (0)