LiteFlowNet is a lightweight, fast, and accurate opitcal flow CNN. We develop several specialized modules including (1) pyramidal features, (2) cascaded flow inference (cost volume + sub-pixel refinement), (3) feature warping (f-warp) layer, and (4) flow regularization by feature-driven local convolution (f-lconv) layer. LiteFlowNet outperforms PWC-Net (CVPR 2018) on KITTI and has a smaller model size (less than PWC-Net by ~40%). For more details about LiteFlowNet, you may visit <a href="http://mmlab.ie.cuhk.edu.hk/projects/LiteFlowNet/"><strong>my project page</strong></a>.
0 commit comments