Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit cf5048a

Browse files
committed
savez knn_data.npz
1 parent 2797421 commit cf5048a

File tree

2 files changed

+30
-2
lines changed

2 files changed

+30
-2
lines changed

ch46-机器学习-K近邻/2-使用kNN对手写数字OCR.py

+6-2
Original file line numberDiff line numberDiff line change
@@ -43,14 +43,18 @@
4343
accuracy = correct * 100.0 / result.size
4444
print('准确率', accuracy) # 准确率91%
4545

46-
#
46+
''''''
4747
# save the data
48-
np.savez('knn_data.npz', train=train, train_labels=train_labels)
48+
np.savez('knn_data.npz', train=train, train_labels=train_labels,test=test,test_labels=test_labels)
4949
# Now load the data
5050
with np.load('knn_data.npz') as data:
5151
print(data.files)
5252
train = data['train']
5353
train_labels = data['train_labels']
54+
test = data['test']
55+
test_labels = data['test_labels']
5456

5557

5658
#TODO 怎样预测数字?
59+
# knn.predict?
60+
# Docstring: predict(samples[, results[, flags]]) -> retval, results
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,24 @@
1+
# -*- coding: utf-8 -*-
2+
# @Time : 2017/8/8 11:57
3+
# @Author : play4fun
4+
# @File : 预测手写数字1.py
5+
# @Software: PyCharm
6+
7+
"""
8+
预测手写数字1.py:
9+
"""
10+
11+
import numpy as np
12+
import cv2
13+
from matplotlib import pyplot as plt
14+
15+
with np.load('knn_data.npz') as data:
16+
print(data.files)
17+
train = data['train']
18+
train_labels = data['train_labels']
19+
test = data['test']
20+
test_labels = data['test_labels']
21+
22+
knn = cv2.ml.KNearest_create()
23+
knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)
24+
ret, result, neighbours, dist = knn.findNearest(test, k=5)

0 commit comments

Comments
 (0)