
Eclipse GlassFish Application
Development Guide, Release 8

Chapter 1. Eclipse GlassFish
Application Development Guide

Release 8

Contributed 2018 - 2026

This Application Development Guide describes how to create and run Java Platform, Enterprise
Edition (Jakarta EE platform) applications that follow the open Java standards model for Jakarta EE
components and APIs in the Eclipse GlassFish environment. Topics include developer tools,
security, and debugging. This book is intended for use by software developers who create,
assemble, and deploy Jakarta EE applications using Oracle servers and software.

Eclipse GlassFish Application Development Guide, Release 8

Copyright (c) 2025 Contributors to the Eclipse Foundation. All rights reserved.

Copyright © 2019,2026 Contributors to the Eclipse Foundation. Copyright © 2013, 2019 Oracle
and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

1

http://www.eclipse.org/legal/epl-2.0

Chapter 2. Preface



This documentation is part of the Java Enterprise Edition contribution to the
Eclipse Foundation and is not intended for use in relation to Java Enterprise
Edition or Orace GlassFish. The documentation is in the process of being revised to
reflect the new Jakarta EE branding. Additional changes will be made as
requirements and procedures evolve for Jakarta EE. Where applicable, references
to Jakarta EE or Java Enterprise Edition should be considered references to Jakarta
EE.

Please see the Title page for additional license information.

This Application Development Guide describes how to create and run Java Platform, Enterprise
Edition (Jakarta EE platform) applications that follow the open Java standards model for Jakarta EE
components and APIs in the Eclipse GlassFish environment. Topics include developer tools,
security, and debugging. This book is intended for use by software developers who create,
assemble, and deploy Jakarta EE applications using Eclipse GlassFishs.

This preface contains information about and conventions for the entire Eclipse GlassFish (Eclipse
GlassFish) documentation set.

Eclipse GlassFish 8 is developed through the GlassFish project open-source community at
https://github.com/eclipse-ee4j/glassfish. The GlassFish project provides a structured process for
developing the Eclipse GlassFish platform that makes the new features of the Jakarta EE platform
available faster, while maintaining the most important feature of Jakarta EE: compatibility. It
enables Java developers to access the Eclipse GlassFish source code and to contribute to the
development of the Eclipse GlassFish.

The following topics are addressed here:

• Eclipse GlassFish Documentation Set

• Related Documentation

• Typographic Conventions

• Symbol Conventions

• Default Paths and File Names

Eclipse GlassFish Documentation Set
The Eclipse GlassFish documentation set describes deployment planning and system installation.
For an introduction to Eclipse GlassFish, refer to the books in the order in which they are listed in
the following table.

2

https://github.com/eclipse-ee4j/glassfish

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation and includes a comprehensive, table-based
summary of the supported hardware, operating system, Java
Development Kit (JDK), and database drivers.

Quick Start Guide Explains how to get started with the Eclipse GlassFish product.

Installation Guide Explains how to install the software and its components.

Upgrade Guide Explains how to upgrade to the latest version of Eclipse GlassFish.
This guide also describes differences between adjacent product
releases and configuration options that can result in incompatibility
with the product specifications.

Deployment Planning Guide Explains how to build a production deployment of Eclipse GlassFish
that meets the requirements of your system and enterprise.

Administration Guide Explains how to configure, monitor, and manage Eclipse GlassFish
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console
online help.

Security Guide Provides instructions for configuring and administering Eclipse
GlassFish security.

Application Deployment
Guide

Explains how to assemble and deploy applications to the Eclipse
GlassFish and provides information about deployment descriptors.

Application Development
Guide

Explains how to create and implement Java Platform, Enterprise
Edition (Jakarta EE platform) applications that are intended to run
on the Eclipse GlassFish. These applications follow the open Java
standards model for Jakarta EE components and application
programmer interfaces (APIs). This guide provides information
about developer tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Eclipse GlassFish to
develop add-on components for Eclipse GlassFish. This document
explains how to perform only those tasks that ensure that the add-
on component is suitable for Eclipse GlassFish.

Embedded Server Guide Explains how to run applications in embedded Eclipse GlassFish and
to develop applications in which Eclipse GlassFish is embedded.

High Availability
Administration Guide

Explains how to configure Eclipse GlassFish to provide higher
availability and scalability through failover and load balancing.

Performance Tuning Guide Explains how to optimize the performance of Eclipse GlassFish.

Troubleshooting Guide Describes common problems that you might encounter when using
Eclipse GlassFish and explains how to solve them.

Error Message Reference Describes error messages that you might encounter when using
Eclipse GlassFish.

3

https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/quick-start-guide.pdf#GSQSG
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/upgrade-guide.pdf#GSUPG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/administration-guide.pdf#GSADG
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/reference-manual.pdf#asadmin
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/application-development-guide.pdf#GSDVG
https://glassfish.org/docs/latest/add-on-component-development-guide.pdf#GSACG
https://glassfish.org/docs/latest/add-on-component-development-guide.pdf#GSACG
https://glassfish.org/docs/latest/embedded-server-guide.pdf#GSESG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/performance-tuning-guide.pdf#GSPTG
https://glassfish.org/docs/latest/troubleshooting-guide.pdf#GSTSG
https://glassfish.org/docs/latest/error-messages-reference.pdf#GSEMR

Book Title Description

Reference Manual Provides reference information in man page format for Eclipse
GlassFish administration commands, utility commands, and related
concepts.

Message Queue Release
Notes

Describes new features, compatibility issues, and existing bugs for
Open Message Queue.

Message Queue Technical
Overview

Provides an introduction to the technology, concepts, architecture,
capabilities, and features of the Message Queue messaging service.

Message Queue
Administration Guide

Explains how to set up and manage a Message Queue messaging
system.

Message Queue Developer’s
Guide for JMX Clients

Describes the application programming interface in Message Queue
for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions
(JMX).

Message Queue Developer’s
Guide for Java Clients

Provides information about concepts and procedures for developing
Java messaging applications (Java clients) that work with Eclipse
GlassFish.

Message Queue Developer’s
Guide for C Clients

Provides programming and reference information for developers
working with Message Queue who want to use the C language
binding to the Message Queue messaging service to send, receive,
and process Message Queue messages.

Related Documentation
The following tutorials explain how to develop Jakarta EE applications:

• Your First Cup: An Introduction to the Jakarta EE Platform. For beginning Jakarta EE
programmers, this short tutorial explains the entire process for developing a simple enterprise
application. The sample application is a web application that consists of a component that is
based on the Enterprise JavaBeans specification, a JAX-RS web service, and a JavaServer Faces
component for the web front end.

• The Jakarta EE Tutorial. This comprehensive tutorial explains how to use Jakarta EE platform
technologies and APIs to develop Jakarta EE applications.

Javadoc tool reference documentation for packages that are provided with Eclipse GlassFish is
available as follows.

• The Jakarta EE specifications and API specification is located at https://jakarta.ee/specifications/.

• The API specification for Eclipse GlassFish 8, including Jakarta EE platform packages and
nonplatform packages that are specific to the Eclipse GlassFish product, is located at
https://glassfish.org/docs/.

For information about creating enterprise applications in the NetBeans Integrated Development
Environment (IDE), see the NetBeans Documentation, Training & Support page.

4

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-release-notes/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-tech-over/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-jmx/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-java/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://eclipse-ee4j.github.io/openmq/guides//mq-dev-guide-c/toc.html
https://github.com/eclipse-ee4j/jakartaee-firstcup-examples
https://eclipse-ee4j.github.io/jakartaee-tutorial
https://jakarta.ee/specifications/
https://glassfish.org/docs/
https://netbeans.apache.org/kb/docs/java-ee.html

For information about the Derby database for use with the Eclipse GlassFish, see the Derby page.

The Jakarta EE Samples project is a collection of sample applications that demonstrate a broad
range of Jakarta EE technologies. The Jakarta EE Samples are bundled with the Jakarta EE Software
Development Kit (SDK) and are also available from the repository (https://github.com/eclipse-
ee4j/glassfish-samples).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with
onscreen computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a
real name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to
be emphasized (note that some
emphasized items appear bold
online)

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

Symbol Description Example Meaning

[] Contains optional
arguments and
command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices
for a required command
option.

-d {y|n} The -d option requires that you
use either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous
multiple keystrokes.

Control-A Press the Control key while you
press the A key.

5

https://db.apache.org/derby/index.html
https://github.com/eclipse-ee4j/glassfish-samples
https://github.com/eclipse-ee4j/glassfish-samples

Symbol Description Example Meaning

+ Joins consecutive
multiple keystrokes.

Ctrl+A+N Press the Control key, release it,
and then press the subsequent
keys.

> Indicates menu item
selection in a graphical
user interface.

File > New > Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Placeho
lder

Description Default Value

as-
install

Represents the base installation directory
for Eclipse GlassFish. In configuration files,
as-install is represented as follows:
${com.sun.aas.installRoot}

• Installations on the Oracle Solaris
operating system, Linux operating
system, and Mac OS operating system:

user’s-home-
directory/glassfish8/glassfish

• Installations on the Windows operating
system:

SystemDrive:\glassfish8\glassfish

as-
install-
parent

Represents the parent of the base
installation directory for Eclipse GlassFish.

• Installations on the Oracle Solaris
operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfish8

• Installations on the Windows operating
system:

SystemDrive:\glassfish8

domain-
root-dir

Represents the directory in which a domain
is created by default.

as-install/domains/

domain-
dir

Represents the directory in which a
domain’s configuration is stored. In
configuration files, domain-dir is
represented as follows:
${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

instanc
e-dir

Represents the directory for a server
instance.

domain-dir/instance-name

6

Part I

7

Chapter 3. Development Tasks and Tools

8

Chapter 4. Setting Up a Development
Environment
This chapter gives guidelines for setting up an application development environment in the Eclipse
GlassFish. Setting up an environment for creating, assembling, deploying, and debugging your code
involves installing the mainstream version of the Eclipse GlassFish and making use of development
tools. In addition, sample applications are available.

The following topics are addressed here:

• Installing and Preparing the Server for Development

• High Availability Features

• Development Tools

• Sample Applications

Installing and Preparing the Server for Development
For more information about Eclipse GlassFish installation, see the Eclipse GlassFish Installation
Guide.

The following components are included in the full installation.

• JDK

• Eclipse GlassFish core

◦ Java Platform, Standard Edition (Java SE) 11 or newer

◦ Jakarta EE 10 compliant application server

◦ Administration Console

◦ asadmin utility

◦ Other development and deployment tools

◦ Open Message Queue software

◦ Apache Derby database

◦ Load balancer plug-ins for web servers

The NetBeans Integrated Development Environment (IDE) bundles the GlassFish edition of the
Eclipse GlassFish, so information about this IDE is provided as well.

After you have installed Eclipse GlassFish, you can further optimize the server for development in
these ways:

• Locate utility classes and libraries so they can be accessed by the proper class loaders. For more
information, see Using the Common Class Loader.

• Set up debugging. For more information, see Debugging Applications.

9

https://glassfish.org/docs/latest/installation-guide.pdf#GSING
https://glassfish.org/docs/latest/installation-guide.pdf#GSING
http://db.apache.org/derby/manuals

• Configure the Virtual Machine for the Java platform (JVM software). For more information, see "
Administering the Virtual Machine for the Java Platform" in Eclipse GlassFish Administration
Guide.

High Availability Features
High availability features such as load balancing and session failover are discussed in detail in the
Eclipse GlassFish High Availability Administration Guide. This book describes the following features
in the following sections:

• For information about HTTP session persistence, see Distributed Sessions and Persistence.

• For information about checkpointing of the stateful session bean state, see Stateful Session Bean
Failover.

• For information about failover and load balancing for Java clients, see Developing Java Clients.

• For information about load balancing for message-driven beans, see Load-Balanced Message
Inflow.

Development Tools
The following general tools are provided with the Eclipse GlassFish:

• The asadmin Command

• The Administration Console

The following development tools are provided with the Eclipse GlassFish or downloadable from
Oracle:

• The Migration Tool

• The NetBeans IDE

The following third-party tools might also be useful:

• Debugging Tools

• Profiling Tools

The asadmin Command

The asadmin command allows you to configure a local or remote server and perform both
administrative and development tasks at the command line. For general information about asadmin,
see the Eclipse GlassFish Reference Manual.

The asadmin command is located in the as-install/bin directory. Type asadmin help for a list of
subcommands.

10

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-virtual-machine-for-the-java-platform
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

The Administration Console

The Administration Console lets you configure the server and perform both administrative and
development tasks using a web browser. For general information about the Administration
Console, click the Help button in the Administration Console. This displays the Eclipse GlassFish
online help.

To access the Administration Console, type http://`host:4848` in your browser. The host is the
name of the machine on which the Eclipse GlassFish is running. By default, the host is localhost.
For example:

http://localhost:4848

The Migration Tool

The Migration Tool converts and reassembles Jakarta EE applications and modules developed on
other application servers. This tool also generates a report listing how many files are successfully
and unsuccessfully migrated, with reasons for migration failure. For more information and to
download the Migration Tool, see http://java.sun.com/j2ee/tools/migration/index.html.

Code Editors

There is several advanced editors with an integration with GlassFish or generic Jakarta EE servers.
Sometimes you have to install additional extensions, sometimes all you need is just some
configuration.

• IntelliJ IDEA

• Eclipse IDE

• Apache NetBeans

• Microsoft Visual Studio Code

Debugging Tools

You can use several debugging tools with the Eclipse GlassFish. For more information, see
Debugging Applications.

Profiling Tools

You can use several profilers with the Eclipse GlassFish. For more information, see Profiling Tools.

Sample Applications
The samples are available from https://github.com/eclipse-ee4j/glassfish-samples.

Most Eclipse GlassFish samples have the following directory structure:

• The docs directory contains instructions for how to use the sample.

11

http://`host
http://java.sun.com/j2ee/tools/migration/index.html
https://www.jetbrains.com/idea/
https://www.eclipse.org/downloads/packages/
https://netbeans.apache.org
https://code.visualstudio.com
https://github.com/eclipse-ee4j/glassfish-samples

• The pom.xml file defines Maven targets for the sample.

• The src/ directory contains source code for the sample.

12

Chapter 5. Class Loaders
Understanding Eclipse GlassFish class loaders can help you determine where to place supporting
JAR and resource files for your modules and applications.

In a JVM implementation, the class loaders dynamically load a specific Java class file needed for
resolving a dependency. For example, when an instance of java.util.Enumeration needs to be
created, one of the class loaders loads the relevant class into the environment.

The following topics are addressed here:

• The Class Loader Hierarchy

• Delegation

• Using the Java Optional Package Mechanism

• Class Loader Universes

• Application-Specific Class Loading

• Circumventing Class Loader Isolation



The Web Profile of the Eclipse GlassFish supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The
full Eclipse GlassFish supports the entire EJB 3.1 specification. For details, see JSR
318 (http://jcp.org/en/jsr/detail?id=318).

For information about class loader debugging, see Class Loader Debugging.

The Class Loader Hierarchy
Class loaders in the Eclipse GlassFish runtime follow a delegation hierarchy that is illustrated in the
following figure and fully described in Table 2-1.

The following table describes the class loaders in the Eclipse GlassFish.

Table 2-1 Eclipse GlassFish Class Loaders

Class Loader Description

Bootstrap The Bootstrap class loader loads the basic runtime classes provided by the JVM
software.

Extension The Extension class loader loads classes from JAR files present in the system
extensions directory, domain-dir/lib/ext. It is parent to the Public API class
loader. See Using the Java Optional Package Mechanism.

Public API The Public API class loader makes available all classes specifically exported by
the Eclipse GlassFish runtime for use by deployed applications. This includes,
but is not limited to, Jakarta EE APIs and other Oracle APIs. It is parent to the
Common class loader.

13

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

Class Loader Description

Common The Common class loader loads JAR files in the as-install/lib directory,
followed by JAR files in the domain-dir/lib directory. Using domain-dir/lib is
recommended whenever possible, and required for custom login modules and
realms. It is parent to the Connector class loader. See Using the Common Class
Loader.

Connector The Connector class loader is a single class loader instance that loads
individually deployed connector modules, which are shared across all
applications. It is parent to the Applib class loader and the LifeCycleModule
class loader.

LifeCycleModule The LifeCycleModule class loader is created once per lifecycle module. Each
lifecycle module’s classpath is used to construct its own class loader. For more
information on lifecycle modules, see Developing Lifecycle Listeners.

Applib The Applib class loader loads the library classes, specified during deployment,
for a specific enabled module or Jakarta EE application; see Application-
Specific Class Loading. One instance of this class loader is present in each class
loader universe; see Class Loader Universes. It is parent to the Archive class
loader.

When multiple deployed applications use the same library, they share the
same instance of the library. One library cannot reference classes from
another library.

Archive The Archive class loader loads classes from the WAR, EAR, and JAR files or
directories (for directory deployment) of applications or modules deployed to
the Eclipse GlassFish. This class loader also loads any application-specific
classes generated by the Eclipse GlassFish runtime, such as stub classes or
servlets generated by JSP pages.

In previous Eclipse GlassFish versions, the JVM options provided classpath-prefix and classpath-
suffix attributes that made it possible to add JAR files or directories either in front of, or after the
application server’s system classpath. These options are not present in Eclipse GlassFish 6.0.

The classpath-prefix was typically used to substitute another package for one of the Eclipse
GlassFish packages, for example if a newer one was available. This same result can be achieved on
a per-application basis with the --libraries option for the deploy subcommand. For more
information, see the deploy(1) help page. The Java Optional Package Mechanism does what
classpath-suffix used to do. For more information, see Using the Java Optional Package
Mechanism.

Delegation
Note that the class loader hierarchy is not a Java inheritance hierarchy, but a delegation hierarchy.
In the delegation design, a class loader delegates class loading to its parent before attempting to
load a class itself. If the parent class loader cannot load a class, the class loader attempts to load the
class itself. In effect, a class loader is responsible for loading only the classes not available to the
parent. Classes loaded by a class loader higher in the hierarchy cannot refer to classes available

14

https://glassfish.org/docs/latest/reference-manual.pdf#deploy
https://glassfish.org/docs/latest/reference-manual.pdf#deploy

lower in the hierarchy.

The Java Servlet specification recommends that a web module’s class loader look in the local class
loader before delegating to its parent. You can make this class loader follow the delegation
inversion model in the Servlet specification by setting delegate="false" in the class-loader element
of the glassfish-web.xml file. It is safe to do this only for a web module that does not interact with
any other modules. For details, see "class-loader" in Eclipse GlassFish Application Deployment
Guide.

The default value is delegate="true", which causes a web module’s class loader to delegate in the
same manner as the other class loaders. You must use delegate="true" for a web application that
accesses EJB components or that acts as a web service client or endpoint. For details about
glassfish-web.xml, see the Eclipse GlassFish Application Deployment Guide.

For a number of packages, including java. and javax., symbol resolution is always delegated to the
parent class loader regardless of the delegate setting. This prevents applications from overriding
core Java runtime classes or changing the API versions of specifications that are part of the Jakarta
EE platform.

Using the Java Optional Package Mechanism
Optional packages are packages of Java classes and associated native code that application
developers can use to extend the functionality of the core platform.

To use the Java optional package mechanism, copy the JAR files into the domain-dir/lib/ext
directory, or use the asadmin add-library command with the --type ext option, then restart the
server. For more information about the asadmin add-library command, see the Eclipse GlassFish
Reference Manual.

For more information, see Optional Packages - An Overview (http://docs.oracle.com/javase/8/
docs/technotes/guides/extensions/extensions.html) and Understanding Extension Class Loading
(http://docs.oracle.com/javase/tutorial/ext/basics/load.html).

Using the Endorsed Standards Override Mechanism
Endorsed standards handle changes to classes and APIs that are bundled in the JDK but are subject
to change by external bodies.

To use the endorsed standards override mechanism, copy the JAR files into the domain-
dir`/lib/endorsed` directory, then restart the server.

For more information and the list of packages that can be overridden, see Endorsed Standards
Override Mechanism (http://docs.oracle.com/javase/8/docs/technotes/guides/standards/).

Class Loader Universes
Access to components within applications and modules installed on the server occurs within the
context of isolated class loader universes, each of which has its own Applib and Archive class

15

https://glassfish.org/docs/latest/application-deployment-guide.pdf#class-loader
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
http://docs.oracle.com/javase/8/docs/technotes/guides/extensions/extensions.html
http://docs.oracle.com/javase/8/docs/technotes/guides/extensions/extensions.html
http://docs.oracle.com/javase/8/docs/technotes/guides/extensions/extensions.html
http://download.oracle.com/javase/tutorial/ext/basics/load.html
http://docs.oracle.com/javase/tutorial/ext/basics/load.html
http://docs.oracle.com/javase/8/docs/technotes/guides/standards/
http://docs.oracle.com/javase/8/docs/technotes/guides/standards/
http://docs.oracle.com/javase/8/docs/technotes/guides/standards/

loaders.

• Application Universe - Each Jakarta EE application has its own class loader universe, which
loads the classes in all the modules in the application.

• Individually Deployed Module Universe - Each individually deployed EJB JAR or web WAR has
its own class loader universe, which loads the classes in the module.

A resource such as a file that is accessed by a servlet, JSP, or EJB component must be in one of the
following locations:

• A directory pointed to by the Libraries field or --libraries option used during deployment

• A directory pointed to by the library-directory element in the application.xml deployment
descriptor

• A directory pointed to by the application or module’s classpath; for example, a web module’s
classpath includes these directories:

module-name/WEB-INF/classes
module-name/WEB-INF/lib

Application-Specific Class Loading
You can specify module- or application-specific library classes in one of the following ways:

• Use the Administration Console. Open the Applications component, then go to the page for the
type of application or module. Select the Deploy button. Type the comma-separated paths in the
Libraries field. For details, click the Help button in the Administration Console.

• Use the asadmin deploy command with the --libraries option and specify comma-separated
paths. For details, see the Eclipse GlassFish Reference Manual.

• Use the asadmin add-library command with the --type app option, then restart the server. For
details, see the Eclipse GlassFish Reference Manual.


None of these alternatives apply to application clients. For more information, see
Using Libraries with Application Clients.

You can update a library JAR file using dynamic reloading or by restarting (disabling and re-
enabling) a module or application. To add or remove library JAR files, you can redeploy the module
or application.

Application libraries are included in the Applib class loader. Paths to libraries can be relative or
absolute. A relative path is relative to domain-dir`/lib/applibs`. If the path is absolute, the path
must be accessible to the domain administration server (DAS). The Eclipse GlassFish automatically
synchronizes these libraries to all remote cluster instances when the cluster is restarted. However,
libraries specified by absolute paths are not guaranteed to be synchronized.


You can use application-specific class loading to specify a different XML parser

16

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

than the default Eclipse GlassFish XML parser.

You can also use application-specific class loading to access different versions of a
library from different applications.

If multiple applications or modules refer to the same libraries, classes in those libraries are
automatically shared. This can reduce the memory footprint and allow sharing of static
information. However, applications or modules using application-specific libraries are not portable.
Other ways to make libraries available are described in Circumventing Class Loader Isolation.

One library cannot reference classes from another library.

For general information about deployment, including dynamic reloading, see the Eclipse GlassFish
Application Deployment Guide.


If you see an access control error message when you try to use a library, you may
need to grant permission to the library in the server.policy file. For more
information, see Changing Permissions for an Application.

Circumventing Class Loader Isolation
Since each application or individually deployed module class loader universe is isolated, an
application or module cannot load classes from another application or module. This prevents two
similarly named classes in different applications or modules from interfering with each other.

To circumvent this limitation for libraries, utility classes, or individually deployed modules
accessed by more than one application, you can include the relevant path to the required classes in
one of these ways:

• Using the Common Class Loader

• Sharing Libraries Across a Cluster

• Packaging the Client JAR for One Application in Another Application

Using the Common Class Loader

To use the Common class loader, copy the JAR files into the domain-dir/lib or as-install/lib
directory, or use the asadmin add-library command with the --type common option, then restart the
server. For more information about the asadmin add-library command, see the Eclipse GlassFish
Reference Manual.

Using the Common class loader makes an application or module accessible to all applications or
modules deployed on servers that share the same configuration. However, this accessibility does
not extend to application clients. For more information, see Using Libraries with Application
Clients.

For example, using the Common class loader is the recommended way of adding JDBC drivers to the
Eclipse GlassFish. For a list of the JDBC drivers currently supported by the Eclipse GlassFish, see the
Eclipse GlassFish Release Notes. For configurations of supported and other drivers, see

17

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN

"Configuration Specifics for JDBC Drivers" in Eclipse GlassFish Administration Guide.

To activate custom login modules and realms, place the JAR files in the domain-dir/lib directory,
then restart the server.

Sharing Libraries Across a Cluster

To share libraries across a specific cluster, copy the JAR files to the domain-dir/config/cluster-
config-name/lib directory.

Packaging the Client JAR for One Application in Another Application

By packaging the client JAR for one application in a second application, you allow an EJB or web
component in the second application to call an EJB component in the first (dependent) application,
without making either of them accessible to any other application or module.

As an alternative for a production environment, you can have the Common class loader load the
client JAR of the dependent application as described in Using the Common Class Loader. Restart the
server to make the dependent application accessible to all applications or modules deployed on
servers that share the same configuration.

To Package the Client JAR for One Application in Another Application

1. Deploy the dependent application.

2. Add the dependent application’s client JAR file to the calling application.

◦ For a calling EJB component, add the client JAR file at the same level as the EJB component.
Then add a Class-Path entry to the MANIFEST.MF file of the calling EJB component. The Class-
Path entry has this syntax:

Class-Path: filepath1.jar filepath2.jar ...

Each filepath is relative to the directory or JAR file containing the MANIFEST.MF file. For
details, see the Jakarta EE specification.

◦ For a calling web component, add the client JAR file under the WEB-INF/lib directory.

3. If you need to package the client JAR with both the EJB and web components, set
delegate="true" in the class-loader element of the glassfish-web.xml file.

This changes the Web class loader so that it follows the standard class loader delegation model
and delegates to its parent before attempting to load a class itself.

For most applications, packaging the client JAR file with the calling EJB component is sufficient.
You do not need to package the client JAR file with both the EJB and web components unless the
web component is directly calling the EJB component in the dependent application.

4. Deploy the calling application.

The calling EJB or web component must specify in its glassfish-ejb-jar.xml or glassfish-

18

https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers

web.xml file the JNDI name of the EJB component in the dependent application. Using an ejb-
link mapping does not work when the EJB component being called resides in another
application.

You do not need to restart the server.

19

Chapter 6. Debugging Applications
This chapter gives guidelines for debugging applications in the Eclipse GlassFish.

The following topics are addressed here:

• Enabling Debugging

• JPDA Options

• Generating a Stack Trace for Debugging

• Application Client Debugging

• Open Message Queue Debugging

• Enabling Verbose Mode

• Class Loader Debugging

• Eclipse GlassFish Logging

• Profiling Tools

Enabling Debugging
When you enable debugging, you enable both local and remote debugging. To start the server in
debug mode, use the --debug option as follows:

asadmin start-domain --debug [domain-name]

You can then attach to the server from the Java Debugger (jdb) at its default Java Platform Debugger
Architecture (JPDA) port, which is 9009. For example, for UNIX systems:

jdb -attach 9009

For more information about the jdb debugger, see the following links:

• Java Platform Debugger Architecture - The Java Debugger: https://docs.oracle.com/en/java/
javase/21/docs/specs/jpda/architecture.html https://docs.oracle.com/en/java/javase/21/docs/
specs/jpda/jpda.html

• Java Platform Debugger Architecture - Connecting with JDB: https://docs.oracle.com/en/java/
javase/21/docs/specs/man/jdb.html

Eclipse GlassFish debugging is based on the JPDA. For more information, see JPDA Options.

You can attach to the Eclipse GlassFish using any JPDA compliant debugger.

You can enable debugging even when the Eclipse GlassFish is started without the --debug option.
This is useful if you start the Eclipse GlassFish from the Windows Start Menu, or if you want to
make sure that debugging is always turned on.

20

https://docs.oracle.com/en/java/javase/21/docs/specs/jpda/architecture.html
https://docs.oracle.com/en/java/javase/21/docs/specs/jpda/architecture.html
https://docs.oracle.com/en/java/javase/21/docs/specs/jpda/jpda.html
https://docs.oracle.com/en/java/javase/21/docs/specs/jpda/jpda.html
https://docs.oracle.com/en/java/javase/21/docs/specs/man/jdb.html
https://docs.oracle.com/en/java/javase/21/docs/specs/man/jdb.html

To Set the Server to Automatically Start Up in Debug Mode

1. Use the Administration Console. Select the JVM Settings component under the relevant
configuration.

2. Check the Debug Enabled box.

3. To specify a different port (from 9009, the default) to use when attaching the JVM software to a
debugger, specify address=port-number in the Debug Options field.

4. To add JPDA options, add any desired JPDA debugging options in Debug Options. See JPDA
Options.

See Also

For details, click the Help button in the Administration Console from the JVM Settings page.

JPDA Options
The default JPDA options in Eclipse GlassFish are as follows:

-Xdebug -agentlib:transport=dt_socket,server=y,suspend=n,address=9009

For Windows, you can change dt_socket to dt_shmem.

If you substitute suspend=y, the JVM software starts in suspended mode and stays suspended until a
debugger attaches to it. This is helpful if you want to start debugging as soon as the JVM software
starts.

To specify a different port (from 9009, the default) to use when attaching the JVM software to a
debugger, specify `address=`port-number.

You can include additional options. A list of JPDA debugging options is available at
http://java.sun.com/javase/technologies/core/toolsapis/jpda/.

Generating a Stack Trace for Debugging
To generate a Java stack trace for debugging, use the asadmin generate-jvm-report --type=thread
command. The stack trace goes to the domain-dir`/logs/server.log` file and also appears on the
command prompt screen. For more information about the asadmin generate-jvm-report command,
see the Eclipse GlassFish Reference Manual.

Application Client Debugging
When the appclient script executes the java command to run the Application Client Container
(ACC), which in turn runs the client, it includes on the command line the value of the VMARGS
environment variable. You can set this variable to any suitable value. For example:

21

http://java.sun.com/javase/technologies/core/toolsapis/jpda/
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

VMARGS=-agentlib:transport=dt_socket,server=y,suspend=y,address=8118

For debugging an application client, you should set suspend to y so you can connect the debugger to
the client before any code has actually executed. Otherwise, the client may start running and
execute past the point you want to examine.

You should use different ports for the server and client if you are debugging both concurrently. For
details about setting the port, see JPDA Options.

You can also include JVM options in the appclient script directly. For information about the
appclient script, see the Eclipse GlassFish Reference Manual.


The Application Client Container is supported only in the full Eclipse GlassFish, not
in the Web Profile. See Developing Java Clients.

Open Message Queue Debugging
Open Message Queue has a broker logger, which can be useful for debugging Java Message Service
(JMS) applications, including message-driven bean applications. You can adjust the logger’s
verbosity, and you can send the logger output to the broker’s console using the broker’s -tty option.
For more information, see the Open Message Queue Administration Guide.


JMS resources are supported only in the full Eclipse GlassFish, not in the Web
Profile. See Using the Java Message Service.

Enabling Verbose Mode
To have the server logs and messages printed to System.out on your command prompt screen, you
can start the server in verbose mode. This makes it easy to do simple debugging using print
statements, without having to view the server.log file every time.

To start the server in verbose mode, use the --verbose option as follows:

asadmin start-domain --verbose [domain-name]

When the server is in verbose mode, messages are logged to the console or terminal window in
addition to the log file. In addition, pressing Ctrl-C stops the server and pressing Ctrl-\ (on UNIX
platforms) or Ctrl-Break (on Windows platforms) prints a thread dump. On UNIX platforms, you
can also print a thread dump using the jstack command (see http://docs.oracle.com/javase/8/
docs/technotes/tools/share/jstack.html) or the command kill -QUIT process_id.

Class Loader Debugging
To generate class loading messages, use the following asadmin create-jvm-options command:

22

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://eclipse-ee4j.github.io/openmq/guides//mq-admin-guide/toc.html
http://docs.oracle.com/javase/8/docs/technotes/tools/share/jstack.html
http://docs.oracle.com/javase/8/docs/technotes/tools/share/jstack.html

asadmin create-jvm-options -verbose\:class

To send the JVM messages to a special JVM log file instead of stdout, use the following asadmin
create-jvm-options commands:

asadmin create-jvm-options -XX\:+LogVMOutput
asadmin create-jvm-options -XX\:LogFile=${com.sun.aas.instanceRoot}/logs/jvm.log


These -XX options are specific to the OpenJDK (or Hotspot) JVM and do not work
with the JRockit JVM.

To send the Eclipse GlassFish messages to the Administration Console instead of stderr, start the
domain in verbose mode as described in Enabling Verbose Mode.

Eclipse GlassFish Logging
You can use the Eclipse GlassFish’s log files to help debug your applications. Use the Administration
Console. Select the Stand-Alone Instances component, select the instance from the table, then click
the View Log Files button in the General Information page. Or select the Cluster component, select
the cluster from the table, select the Instances tab, select the instance from the table, then click the
View Log Files button in the General Information page.

To change logging settings, select Logger Settings under the relevant configuration.

For details about logging, click the Help button in the Administration Console.

Profiling Tools
You can use a profiler to perform remote profiling on the Eclipse GlassFish to discover bottlenecks
in server-side performance. This section describes how to configure profilers for use with Eclipse
GlassFish.

The following topics are addressed here:

• The NetBeans Profiler

• The HPROF Profiler

• The JProbe Profiler

Information about comprehensive monitoring and management support in the Java 2 Platform,
Standard Edition (J2SE platform) is available at http://docs.oracle.com/javase/8/docs/technotes/
guides/management/index.html.

The NetBeans Profiler

For information on how to use the NetBeans profiler, see http://profiler.netbeans.org/index.html.

23

http://docs.oracle.com/javase/8/docs/technotes/guides/management/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/management/index.html
http://profiler.netbeans.org/index.html

The HPROF Profiler

The Heap and CPU Profiling Agent (HPROF) is a simple profiler agent shipped with the Java 2 SDK. It
is a dynamically linked library that interacts with the Java Virtual Machine Profiler Interface
(JVMPI) and writes out profiling information either to a file or to a socket in ASCII or binary format.

HPROF can monitor CPU usage, heap allocation statistics, and contention profiles. In addition, it can
also report complete heap dumps and states of all the monitors and threads in the Java virtual
machine. For more details on the HPROF profiler, see the technical article at http://java.sun.com/
developer/technicalArticles/Programming/HPROF.html.

After HPROF is enabled using the following instructions, its libraries are loaded into the server
process.

To Use HPROF Profiling on UNIX

1. Use the Administration Console. Select the JVM Settings component under the relevant
configuration. Then select the Profiler tab.

2. Edit the following fields:

◦ Profiler Name - hprof

◦ Profiler Enabled - true

◦ Classpath - (leave blank)

◦ Native Library Path - (leave blank)

◦ JVM Option - Select Add, type the HPROF JVM option in the Value field, then check its box.
The syntax of the HPROF JVM option is as follows:

-Xrunhprof[:help]|[:param=value,param2=value2, ...]

Here is an example of params you can use:

-Xrunhprof:file=log.txt,thread=y,depth=3

The file parameter determines where the stack dump is written.

Using help lists parameters that can be passed to HPROF. The output is as follows:

Hprof usage: -Xrunhprof[:help]|[:<option>=<value>, ...]

== Option Name and Value Description Default -----------

heap=dump|sites|all heap profiling all
cpu=samples|old CPU usage off
format=a|b ascii or binary output a
file=<file> write data to file java.hprof
 (.txt for ascii)

24

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html

net=<host>:<port> send data over a socket write to file
depth=<size> stack trace depth 4
cutoff=<value> output cutoff point 0.0001
lineno=y|n line number in traces? y
thread=y|n thread in traces? n
doe=y|n dump on exit? y



Do not use help in the JVM Option field. This parameter prints text to the
standard output and then exits.

The help output refers to the parameters as options, but they are not the
same thing as JVM options.

3. Restart the Eclipse GlassFish.

This writes an HPROF stack dump to the file you specified using the file HPROF parameter.

The JProbe Profiler

Information about JProbe from Sitraka is available at http://www.quest.com/jprobe/.

After JProbe is installed using the following instructions, its libraries are loaded into the server
process.

To Enable Remote Profiling With JProbe

1. Install JProbe 3.0.1.1. For details, see the JProbe documentation.

2. Configure Eclipse GlassFish using the Administration Console:

1. Select the JVM Settings component under the relevant configuration.

2. Then select the Profiler tab.

3. Edit the following fields before selecting Save and restarting the server:
Profiler Name - jprobe
Profiler Enabled - true
Classpath - (leave blank)
Native Library Path - JProbe-dir/profiler
JVM Option - For each of these options, select Add, type the option in the Value field, then
check its box:

 -Xbootclasspath/p:JProbe-dir/profiler/jpagent.jar
 -Xrunjprobeagent
 -Xnoclassgc


If any of the configuration options are missing or incorrect, the profiler
might experience problems that affect the performance of the Eclipse
GlassFish.

25

http://www.quest.com/jprobe/

When the server starts up with this configuration, you can attach the profiler.

3. Set the following environment variable:

JPROBE_ARGS_0=-jp_input=JPL-file-path

See Step 6 for instructions on how to create the JPL file.

4. Start the server instance.

5. Launch the jpprofiler and attach to Remote Session. The default port is 4444.

6. Create the JPL file using the JProbe Launch Pad. Here are the required settings:

1. Select Server Side for the type of application.

2. On the Program tab, provide the following details:
Target Server - other-server
Server home Directory - as-install
Server class File - com.sun.enterprise.server.J2EERunner
Working Directory - as-install
Classpath - as-install/lib/appserv-rt.jar
Source File Path - source-code-dir (in case you want to get the line level details)
Server class arguments - (optional)
Main Package - com.sun.enterprise.server
You must also set VM, Attach, and Coverage tabs appropriately.
For further details, see the JProbe documentation.
After you have created the JPL file, use this an input to JPROBE_ARGS_0.

26

Part II

27

Chapter 7. Developing Applications and
Application Components

28

Chapter 8. API for development
Eclipse GlassFish provides several APIs to build applications and components:

• Jakarta EE API - Platform or Web profile, depends on the Eclipse GlassFish distribution

• MicroProfile API - selected specifications, only avaiable in Eclipse GlassFish Full

• GlassFish API - to access other functionality provided by Eclipse GlassFish

GlassFish API is composed of a few sets of APIs:

• GlassFish API

• GlassFish EE API

• Simple GlassFish API

GlassFish API
Most of the functionality specific to Eclipse GlassFish is available in the GlassFish API. To compile
applications or components, add the glassfish-api.jar to the compile classpath. You may also need
scattered-archive-api.jar.

The glassfish-api.jar is located in the Eclipse GlassFish installation in as-
install/modules/glassfish-api.jar.

In Maven project, you can add it as the following dependency:

<dependency>
 <groupId>org.glassfish.main.common</groupId>
 <artifactId>glassfish-api</artifactId>
</dependency>

This will already add scattered-archive-api.jar as a transitive dependency.

MicroProfile JWT Integration

The GlassFish API includes CDI qualifiers for integrating with built-in security mechanisms.

@MicroProfileJwtAuthenticationMechanism Qualifier

The @MicroProfileJwtAuthenticationMechanism qualifier allows direct injection of the GlassFish built-
in MicroProfile JWT authentication mechanism:

import jakarta.inject.Inject;
import
jakarta.security.enterprise.authentication.mechanism.http.HttpAuthenticationMechanism;
import org.glassfish.api.security.jwt.MicroProfileJwtAuthenticationMechanism;

29

https://jakarta.ee
https://microprofile.io

@ApplicationScoped
public class SecurityService {

 @Inject
 @MicroProfileJwtAuthenticationMechanism
 private HttpAuthenticationMechanism jwtAuthMechanism;

 // Use the JWT authentication mechanism directly
}

This qualifier provides:

• Direct Access: Direct access to the GlassFish JWT authentication mechanism

• CDI Integration: Seamless integration with CDI dependency injection

• Type Safety: Uses the standard HttpAuthenticationMechanism interface

The @MicroProfileJwtAuthenticationMechanism qualifier is complementary to the qualifiers for the
standard Jakarta Security mechanisms like the Basic authentication mechanism. It can be combined
with the other standard mechanisms in the same HttpAuthenticationMechanismHandler.

Example:

@ApplicationScoped
@Alternative
@Priority(Interceptor.Priority.APPLICATION)
public class CustomAuthenticationHandler implements HttpAuthenticationMechanismHandler
{

 @Inject
 @MicroProfileJwtAuthenticationMechanism
 HttpAuthenticationMechanism jwtAuthentication;

 @Inject
 @BasicAuthenticationMechanismDefinition.BasicAuthenticationMechanism
 HttpAuthenticationMechanism basicAuthentication;

 @Override
 public AuthenticationStatus validateRequest(HttpServletRequest request,
HttpServletResponse response, HttpMessageContext messageContext) throws
AuthenticationException {
 // delegate to one of the two mechanisms
 }

}

30

GlassFish EE API
GlassFish EE API provides functionality related to Jakarta EE. To compile applications or
components, add the glassfish-ee-api.jar to the compile classpath.

The glassfish-ee-api.jar is located in the Eclipse GlassFish installation in as-
install/modules/glassfish-ee-api.jar.

In Maven project, you can add it as the following dependency:

<dependency>
 <groupId>org.glassfish.main.common</groupId>
 <artifactId>glassfish-ee-api</artifactId>
</dependency>

Simple GlassFish API
Simple GlassFish API provides basic functionality to deploy applications and run admin commands.
Mostly to use embedded Eclipse GlassFish programmatically. To compile applications or
components, add the simple-glassfish-api.jar to the compile classpath.

The simple-glassfish-api.jar is located in the Eclipse GlassFish installation in as-
install/modules/simple-glassfish-api.jar.

In Maven project, you can add it as the following dependency:

<dependency>
 <groupId>org.glassfish.main.common</groupId>
 <artifactId>simple-glassfish-api</artifactId>
</dependency>

31

Chapter 9. Securing Applications
This chapter describes how to write secure Jakarta EE applications, which contain components that
perform user authentication and access authorization for the business logic of Jakarta EE
components.

For information about administrative security for the Eclipse GlassFish, see the Eclipse GlassFish
Security Guide.

For general information about Jakarta EE security, see Security in The Jakarta EE Tutorial.

The following topics are addressed here:

• Security Goals

• Eclipse GlassFish Specific Security Features

• Container Security

• Roles, Principals, and Principal to Role Mapping

• Realm Configuration

• Jakarta EE Security API Support

• JACC Support

• Pluggable Audit Module Support

• The server.policy File

• Configuring Message Security for Web Services

• Programmatic Login Using the ProgrammaticLogin Class

• User Authentication for Single Sign-on

• Adding Authentication Mechanisms to the Servlet Container



The Web Profile of the Eclipse GlassFish supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The
full Eclipse GlassFish supports the entire EJB 3.1 specification. For details, see JSR
318 (http://jcp.org/en/jsr/detail?id=318).

Security Goals
In an enterprise computing environment, there are many security risks. The goal of the Eclipse
GlassFish is to provide highly secure, interoperable, and distributed component computing based
on the Jakarta EE security model. Security goals include:

• Full compliance with the Jakarta EE security model. This includes EJB and servlet role-based
authorization.

• Support for single sign-on across all Eclipse GlassFish applications within a single security
domain.

32

https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://eclipse-ee4j.github.io/jakartaee-tutorial/#security-2
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

• Support for web services message security.

• Security support for application clients.

• Support for several underlying authentication realms, such as simple file and Lightweight
Directory Access Protocol (LDAP). Certificate authentication is also supported for Secure Socket
Layer (SSL) client authentication. For Solaris, OS platform authentication is supported in
addition to these.

• Support for declarative security through Eclipse GlassFish specific XML-based role mapping.

• Support for Java Authorization Contract for Containers (JACC) pluggable authorization as
included in the Jakarta EE specification and defined by Java Specification Request (JSR) 115
(http://www.jcp.org/en/jsr/detail?id=115).

• Support for Java Authentication Service Provider Interface for Containers as included in the
Jakarta EE specification and defined by JSR 196 (http://www.jcp.org/en/jsr/detail?id=196).

• Support for Web Services Interoperability Technologies (WSIT) as described in Jakarta EE
Tutorial.

• Support for the Jakarta EE Security API as included in the Jakarta EE specification and defined
by JSR 375 (https://jcp.org/en/jsr/detail?id=375)

Eclipse GlassFish Specific Security Features
The Eclipse GlassFish supports the Jakarta EE security model, as well as the following features
which are specific to the Eclipse GlassFish:

• Message security; see Configuring Message Security for Web Services

• Single sign-on across all Eclipse GlassFish applications within a single security domain; see User
Authentication for Single Sign-on

• Programmatic login; see Programmatic Login Using the ProgrammaticLogin Class

Container Security
The component containers are responsible for providing Jakarta EE application security. The
container provides two security forms:

• Declarative Security

• Programmatic Security

Annotations (also called metadata) enable a declarative style of programming, and so encompass
both the declarative and programmatic security concepts. Users can specify information about
security within a class file using annotations. When the application is deployed, this information
can either be used by or overridden by the application or module deployment descriptor.

Declarative Security

Declarative security means that the security mechanism for an application is declared and handled
externally to the application. Deployment descriptors describe the Jakarta EE application’s security

33

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
https://eclipse-ee4j.github.io/jakartaee-tutorial/#web-services-interoperability-and-jakarta-xml-web-services
https://eclipse-ee4j.github.io/jakartaee-tutorial/#web-services-interoperability-and-jakarta-xml-web-services
https://jcp.org/en/jsr/detail?id=375
https://jcp.org/en/jsr/detail?id=375

structure, including security roles, access control, and authentication requirements.

The Eclipse GlassFish supports the deployment descriptors specified by Jakarta EE and has
additional security elements included in its own deployment descriptors. Declarative security is the
application deployer’s responsibility. For more information about Eclipse GlassFish deployment
descriptors, see the Eclipse GlassFish Application Deployment Guide.

There are two levels of declarative security, as follows:

• Application Level Security

• Component Level Security

Application Level Security

For an application, roles used by any application must be defined in @DeclareRoles annotations in
the code or role-name elements in the application deployment descriptor (application.xml). Those
role names are scoped to the EJB XML deployment descriptors (ejb-jar.xml and glassfish-ejb-
jar.xml files) and to the servlet XML deployment descriptors (web.xml and glassfish-web.xml files).
For an individually deployed web or EJB module, you define roles using @DeclareRoles annotations
or role-name elements in the Jakarta EE deployment descriptor files web.xml or ejb-jar.xml.

To map roles to principals and groups, define matching security-role-mapping elements in the
glassfish-application.xml, glassfish-ejb-jar.xml, or glassfish-web.xml file for each role-name used
by the application. By default, group principal names are mapped to roles of the same name.
Accordingly, the Default Principal To Role Mapping setting is enabled by default on the Security
page of the Eclipse GlassFish Administration Console. This default role mapping definition is in
effect if you do not define your own mapping in the deployment descriptor for your application as
described in this section. For more information, see Roles, Principals, and Principal to Role
Mapping.

Component Level Security

Component level security encompasses web components and EJB components.

A secure web container authenticates users and authorizes access to a servlet or JSP by using the
security policy laid out in the servlet XML deployment descriptors (web.xml and glassfish-web.xml
files).

The EJB container is responsible for authorizing access to a bean method by using the security
policy laid out in the EJB XML deployment descriptors (ejb-jar.xml and glassfish-ejb-jar.xml files).

Programmatic Security

Programmatic security involves an EJB component or servlet using method calls to the security API,
as specified by the Jakarta EE security model, to make business logic decisions based on the caller
or remote user’s security role. Programmatic security should only be used when declarative
security alone is insufficient to meet the application’s security model.

The API for programmatic security consists of methods of the Jakarta EE Security API
SecurityContext interface, and methods of the EJB EJBContext interface and the servlet

34

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

HttpServletRequest interface. The Eclipse GlassFish supports these interfaces as specified in the Java
EE specification.

There is also a proprietary Glassfish API for programmatic login. See Programmatic Login Using the
ProgrammaticLogin Class.

For more information about programmatic security, see Using Programmatic Security in the The
Jakarta EE Tutorial.

Roles, Principals, and Principal to Role Mapping
By default, any groups that an authenticated user belongs to will be mapped to roles with the same
names. Therefore, the Default Principal To Role Mapping setting is enabled by default on the
Security page of the GlassFish Administration Console. To change the default mapping you can clear
this setting. For applications, you define roles in @DeclareRoles annotations or the Jakarta EE
deployment descriptor file application.xml. You define the corresponding role mappings in the
Eclipse GlassFish deployment descriptor file glassfish-application.xml. For individually deployed
web or EJB modules, you define roles in @DeclareRoles annotations or the Jakarta EE deployment
descriptor files web.xml or ejb-jar.xml. You define the corresponding role mappings in the Eclipse
GlassFish deployment descriptor files glassfish-web.xml or glassfish-ejb-jar.xml.

For more information regarding Jakarta EE deployment descriptors, see the Jakarta EE
Specification. For more information regarding Eclipse GlassFish deployment descriptors, see
"Elements of the Eclipse GlassFish Deployment Descriptors" in Eclipse GlassFish Application
Deployment Guide.

Each security-role-mapping element in the glassfish-application.xml, glassfish-web.xml, or
glassfish-ejb-jar.xml file maps a role name permitted by the application or module to principals
and groups. For example, a glassfish-web.xml file for an individually deployed web module might
contain the following:

<glassfish-web-app>
 <security-role-mapping>
 <role-name>manager</role-name>
 <principal-name>jgarcia</principal-name>
 <principal-name>mwebster</principal-name>
 <group-name>team-leads</group-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>administrator</role-name>
 <principal-name>dsmith</principal-name>
 </security-role-mapping>
</glassfish-web-app>

A role can be mapped to either specific principals or to groups (or both). The principal or group
names used must be valid principals or groups in the realm for the application or module. Note that
the role-name in this example must match the @DeclareRoles annotations or the role-name in the
security-role element of the corresponding web.xml file.

35

https://eclipse-ee4j.github.io/jakartaee-tutorial/#using-programmatic-security-with-web-applications
https://glassfish.org/docs/latest/application-deployment-guide.pdf#c-elements-of-the-glassfish-server-deployment-descriptors

You can also specify a custom principal implementation class. This provides more flexibility in how
principals can be assigned to roles. A user’s JAAS login module now can authenticate its custom
principal, and the authenticated custom principal can further participate in the Eclipse GlassFish
authorization process. For example:

<security-role-mapping>
 <role-name>administrator</role-name>
 <principal-name class-name="CustomPrincipalImplClass">
 dsmith
 </principal-name>
</security-role-mapping>

You can specify a default principal and a default principal to role mapping, each of which applies to
the entire Eclipse GlassFish instance. The default principal to role mapping maps group principals
to the same named roles. Web modules that omit the run-as element in web.xml use the default
principal. Applications and modules that omit the security-role-mapping element use the default
principal to role mapping. These defaults are part of the Security Service, which you can access in
the following ways:

• In the Administration Console, select the Security component under the relevant configuration.
For details, click the Help button in the Administration Console.

• Use the asadmin set command. For details, see the Eclipse GlassFish Reference Manual. For
example, you can set the default principal as follows.

asadmin set server-config.security-service.default-principal=dsmith
asadmin set server-config.security-service.default-principal-password=secret

You can set the default principal to role mapping as follows.

asadmin set server-config.security-service.activate-default-principal-to-role-
mapping=true
asadmin set server-config.security-service.mapped-principal-
class=CustomPrincipalImplClass

Default principal to role mapping is enabled by default. To disable it, set the default principal to
role mapping property to false.

Realm Configuration
The following topics are addressed here:

• Supported Realms

• How to Configure a Realm

• How to Set a Realm for an Application or Module

36

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

• Creating a Custom Realm

Supported Realms

The following realms are supported in the current release of the Eclipse GlassFish:

• file - Stores user information in a file. This is the default realm when you first install the
Eclipse GlassFish.

• ldap - Stores user information in an LDAP directory.

• jdbc - Stores user information in a database.

In the JDBC realm, the server gets user credentials from a database. The Eclipse GlassFish uses
the database information and the enabled JDBC realm option in the configuration file. For digest
authentication, a JDBC realm should be created with digestRealm as the JAAS context.

• certificate - Sets up the user identity in the Eclipse GlassFish security context, and populates it
with user data obtained from cryptographically verified client certificates.

• solaris - Allows authentication using Solaris username+password data. This realm is only
supported on the Solaris operating system, version 9 and above.

For information about configuring realms, see How to Configure a Realm.

How to Configure a Realm

You can configure a realm in one of these ways:

• In the Administration Console, open the Security component under the relevant configuration
and go to the Realms page. For details, click the Help button in the Administration Console.

• Use the asadmin create-auth-realm command to configure realms on local servers. For details,
see the Eclipse GlassFish Reference Manual.

How to Set a Realm for an Application or Module

The following deployment descriptor elements have optional realm or realm-name data subelements
or attributes that override the domain’s default realm:

• glassfish-application element in glassfish-application.xml

• web-app element in web.xml

• as-context element in glassfish-ejb-jar.xml

• client-container element in sun-acc.xml

• client-credential element in sun-acc.xml

If modules within an application specify realms, these are ignored. If present, the realm defined in
glassfish-application.xml is used, otherwise the domain’s default realm is used.

For example, a realm is specified in glassfish-application.xml as follows:

37

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

<glassfish-application>
 ...
 <realm>ldap</realm>
</glassfish-application>

For more information about the deployment descriptor files and elements, see "Elements of the
Eclipse GlassFish Deployment Descriptors" in Eclipse GlassFish Application Deployment Guide.

Creating a Custom Realm

You can create a custom realm by providing a custom Java Authentication and Authorization
Service (JAAS) login module class and a custom realm class. Note that client-side JAAS login
modules are not suitable for use with the Eclipse GlassFish.

To activate the custom login modules and realms, place the JAR files in the domain-dir/lib
directory or the class files in the domain-dir`/lib/classes` directory. For more information about
class loading in the Eclipse GlassFish, see Class Loaders.

JAAS is a set of APIs that enable services to authenticate and enforce access controls upon users.
JAAS provides a pluggable and extensible framework for programmatic user authentication and
authorization. JAAS is a core API and an underlying technology for Jakarta EE security mechanisms.
For more information about JAAS, refer to the specification, available at https://jakarta.ee/
specifications/authentication/ and https://jakarta.ee/specifications/authorization/.

For general information about realms and login modules, see the section about working with
realms, users, groups, and roles in Introduction to Security in the Jakarta EE Platform in The
Jakarta EE Tutorial.

For Javadoc tool pages relevant to custom realms, see the com.sun.appserv.security package.

Custom login modules must extend the com.sun.appserv.security.AppservPasswordLoginModule class.
This class implements javax.security.auth.spi.LoginModule. Custom login modules must not
implement LoginModule directly.

Custom login modules must provide an implementation for one abstract method defined in
AppservPasswordLoginModule:

abstract protected void authenticateUser() throws LoginException

This method performs the actual authentication. The custom login module must not implement any
of the other methods, such as login, logout, abort, commit, or initialize. Default implementations
are provided in AppservPasswordLoginModule which hook into the Eclipse GlassFish infrastructure.

The custom login module can access the following protected object fields, which it inherits from
AppservPasswordLoginModule. These contain the user name and password of the user to be
authenticated:

38

https://glassfish.org/docs/latest/application-deployment-guide.pdf#c-elements-of-the-glassfish-server-deployment-descriptors
https://glassfish.org/docs/latest/application-deployment-guide.pdf#c-elements-of-the-glassfish-server-deployment-descriptors
https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authorization/
https://eclipse-ee4j.github.io/jakartaee-tutorial/#security-2

protected String _username;
protected String _password;

The authenticateUser method must end with the following sequence:

String[] grpList;
// populate grpList with the set of groups to which
// _username belongs in this realm, if any
commitUserAuthentication(grpList);

Custom realms must extend the com.sun.appserv.security.AppservRealm class and implement the
following methods:

public void init(Properties props) throws BadRealmException, NoSuchRealmException

This method is invoked during server startup when the realm is initially loaded. The props
argument contains the properties defined for this realm. The realm can do any initialization it
needs in this method. If the method returns without throwing an exception, the Eclipse GlassFish
assumes that the realm is ready to service authentication requests. If an exception is thrown, the
realm is disabled.

public String getAuthType()

This method returns a descriptive string representing the type of authentication done by this realm.

public abstract Enumeration getGroupNames(String username) throws
 InvalidOperationException, NoSuchUserException

This method returns an Enumeration (of String objects) enumerating the groups (if any) to which the
given username belongs in this realm.

Custom realms that manage users must implement the following additional methods:

public abstract boolean supportsUserManagement();

This method returns true if the realm supports user management.

public abstract Enumeration getGroupNames() throws BadRealmException;

This method returns an Enumeration of all group names.

39

public abstract Enumeration getUserNames() throws BadRealmException;

This method returns an Enumeration of all user names.

public abstract void refresh() throws BadRealmException;

This method refreshes the realm data so that new users and groups are visible.

public abstract void persist() throws BadRealmException;

This method persists the realm data to permanent storage.

public abstract User getUser(String name) throws NoSuchUserException,
BadRealmException;

This method returns the information recorded about a particular named user.

public abstract void addUser(String name, String password, String[] groupList) throws
BadRealmException, IASSecurityException;

This method adds a new user, who cannot already exist.

public abstract void removeUser(String name) throws NoSuchUserException,
BadRealmException;

This method removes a user, who must exist.

public abstract void updateUser(String name, String newName, String password,
String[] groups) throws NoSuchUserException, BadRealmException, IASSecurityException;

This method updates data for a user, who must exist.



The array passed to the commitUseAuthentication method should be newly created
and otherwise unreferenced. This is because the group name array elements are
set to null after authentication as part of cleanup. So the second time your custom
realm executes it returns an array with null elements.

Ideally, your custom realm should not return member variables from the
authenticate method. It should return local variables as the default JDBCRealm does.
Your custom realm can create a local String array in its authenticate method, copy
the values from the member variables, and return the String array. Or it can use
clone on the member variables.

40

Jakarta EE Security API Support
JSR-375 defines several authentication-related plugin SPIs, such as, HttpAuthenticationMechanism
interface, the IdentityStore and IdentityStoreHandler interfaces:

• HttpAuthenticationMechanism: An interface for modules that authenticate callers to a web
application. An application can supply its own HttpAuthenticationMechanism, or use one of the
default implementations provided by the container.

• IdentityStore: This interface defines methods for validating a caller’s credentials (such as user
name and password) and returning group membership information. An application can provide
its own IdentityStore, or use the built in LDAP or Database store.

• RememberMeIdentityStore: This interface is a variation on the IdentityStore interface, intended to
address cases where an authenticated user’s identity should be remembered for an extended
period of time, so that the caller can return to the application periodically without needing to
present primary authentication credentials each time.

In addition to these authentication plugin SPIs, the Jakarta EE Security API specification defines the
SecurityContext API for use by application code to query and interact with the current security
context. The SecurityContext interface defines methods that allow an application to access security
information about a caller, authenticate a caller, and authorize a caller. These methods include
getCallerPrincipal(), getPrincipalsByType(), isCallerInRole(), authenticate(), and
hasAccessToWebResource().

JACC Support
JACC (Java Authorization Contract for Containers) is part of the Jakarta EE specification and defined
by JSR 115 (http://www.jcp.org/en/jsr/detail?id=115). JACC defines an interface for pluggable
authorization providers. Specifically, JACC is used to plug in the Java policy provider used by the
container to perform Jakarta EE caller access decisions. The Java policy provider performs Java
policy decisions during application execution. This provides third parties with a mechanism to
develop and plug in modules that are responsible for answering authorization decisions during
Java EE application execution. The interfaces and rules used for developing JACC providers are
defined in the JACC 1.0 specification.

The Eclipse GlassFish provides a simple file-based JACC-compliant authorization engine as a default
JACC provider, named default. An alternate provider named simple is also provided. To configure
an alternate provider using the Administration Console, open the Security component under the
relevant configuration, and select the JACC Providers component. For details, click the Help button
in the Administration Console.

Pluggable Audit Module Support
Audit modules collect and store information on incoming requests (servlets, EJB components) and
outgoing responses. You can create a custom audit module.

The following topics are addressed here:

41

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115

• Configuring an Audit Module

• The AuditModule Class

Configuring an Audit Module

To configure an audit module, you can perform one of the following tasks:

• To specify an audit module using the Administration Console, open the Security component
under the relevant configuration, and select the Audit Modules component. For details, click the
Help button in the Administration Console.

• You can use the asadmin create-audit-module command to configure an audit module. For
details, see the Eclipse GlassFish Reference Manual.

The AuditModule Class

You can create a custom audit module by implementing a class that extends
com.sun.enterprise.security.audit.AuditModule.

For Javadoc tool pages relevant to audit modules, see the com.sun.enterprise.security.audit
package.

The AuditModule class provides default "no-op" implementations for each of the following methods,
which your custom class can override.

public void init(Properties props)

The preceding method is invoked during server startup when the audit module is initially loaded.
The props argument contains the properties defined for this module. The module can do any
initialization it needs in this method. If the method returns without throwing an exception, the
Eclipse GlassFish assumes the module realm is ready to service audit requests. If an exception is
thrown, the module is disabled.

public void authentication(String user, String realm, boolean success)

This method is invoked when an authentication request has been processed by a realm for the
given user. The success flag indicates whether the authorization was granted or denied.

public void webInvocation(String user, HttpServletRequest req, String type, boolean
success)

This method is invoked when a web container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The req object is the
standard HttpServletRequest object for this request. The type string is one of hasUserDataPermission
or hasResourcePermission (see JSR 115 (http://www.jcp.org/en/jsr/detail?id=115)).

42

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115

public void ejbInvocation(String user, String ejb, String method, boolean success)

This method is invoked when an EJB container call has been processed by authorization. The
success flag indicates whether the authorization was granted or denied. The ejb and method strings
describe the EJB component and its method that is being invoked.

public void webServiceInvocation(String uri, String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
servlet. The uri is the URL representation of the web service endpoint. The endpoint is the name of
the endpoint representation. The success flag indicates whether the authorization was granted or
denied.

public void ejbAsWebServiceInvocation(String endpoint, boolean success)

This method is invoked during validation of a web service request in which the endpoint is a
stateless session bean. The endpoint is the name of the endpoint representation. The success flag
indicates whether the authorization was granted or denied.

The server.policy File
Each Eclipse GlassFish domain has its own global J2SE policy file, located in domain-dir/config. The
file is named server.policy.

The Eclipse GlassFish is a Jakarta EE compliant application server. As such, it follows the
requirements of the Jakarta EE specification, including the presence of the security manager (the
Java component that enforces the policy) and a limited permission set for Jakarta EE application
code.

The following topics are addressed here:

• Default Permissions

• System Properties

• Changing Permissions for an Application

• Enabling and Disabling the Security Manager

Default Permissions

Internal server code is granted all permissions. These are covered by the AllPermission grant blocks
to various parts of the server infrastructure code. Do not modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all code
not part of the internal server code listed previously. The Eclipse GlassFish does not distinguish

43

between EJB and web module permissions. All code is granted the minimal set of web component
permissions (which is a superset of the EJB minimal set). Do not modify these entries.

A few permissions above the minimal set are also granted in the default server.policy file. These
are necessary due to various internal dependencies of the server implementation. Jakarta EE
application developers must not rely on these additional permissions. In some cases, deleting these
permissions might be appropriate. For example, one additional permission is granted specifically
for using connectors. If connectors are not used in a particular domain, you should remove this
permission, because it is not otherwise necessary.

System Properties

The following predefined system properties, also called variables, are available for use in the
server.policy file. The system property most frequently used in server.policy is
${com.sun.aas.instanceRoot}. For more information about system properties, see the asadmin
create-system-properties command in the Eclipse GlassFish Reference Manual.

Table 4-1 Predefined System Properties

Property Default Description

com.sun.aas.installRoot depends on
operating
system

Specifies the directory where the Eclipse GlassFish is
installed.

com.sun.aas.instanceRoot depends on
operating
system

Specifies the top level directory for a server
instance.

com.sun.aas.hostName none Specifies the name of the host (machine).

com.sun.aas.javaRoot depends on
operating
system

Specifies the installation directory for the Java
runtime.

com.sun.aas.imqLib depends on
operating
system

Specifies the library directory for the Open Message
Queue software.

com.sun.aas.configName server-config Specifies the name of the configuration used by a
server instance.

com.sun.aas.instanceName server1 Specifies the name of the server instance. This
property is not used in the default configuration, but
can be used to customize configuration.

com.sun.aas.clusterName cluster1 Specifies the name of the cluster. This property is
only set on clustered server instances. This property
is not used in the default configuration, but can be
used to customize configuration.

com.sun.aas.domainName domain1 Specifies the name of the domain. This property is
not used in the default configuration, but can be
used to customize configuration.

44

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Changing Permissions for an Application

The default policy for each domain limits the permissions of Jakarta EE deployed applications to the
minimal set of permissions required for these applications to operate correctly. Do not add extra
permissions to the default set (the grant block with no codebase, which applies to all code). Instead,
add a new grant block with a codebase specific to the applications requiring the extra permissions,
and only add the minimally necessary permissions in that block.

If you develop multiple applications that require more than this default set of permissions, you can
add the custom permissions that your applications need. The com.sun.aas.instanceRoot variable
refers to the domain-dir. For example:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/-" {
...
}

You can add permissions to stub code with the following grant block:

grant codeBase "file:${com.sun.aas.instanceRoot}/generated/-" {
...
}

In general, you should add extra permissions only to the applications or modules that require them,
not to all applications deployed to a domain. For example:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-" {
...
}

For a module:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyModule/-" {
...
}

 Deployment directories may change between Eclipse GlassFish releases.

An alternative way to add permissions to a specific application or module is to edit the
granted.policy file for that application or module. The granted.policy file is located in the domain-
dir`/generated/policy/`app-or-module-name directory. In this case, you add permissions to the
default grant block. Do not delete permissions from this file.

When the Eclipse GlassFish policy subsystem determines that a permission should not be granted, it
logs a server.policy message specifying the permission that was not granted and the protection
domains, with indicated code source and principals that failed the protection check. For example,

45

here is the first part of a typical message:

[#|2005-12-17T16:16:32.671-0200|INFO|sun-appserver-pe9.1|
javax.enterprise.system.core.security|_ThreadID=14;_ThreadName=Thread-31;|
JACC Policy Provider: PolicyWrapper.implies, context(null)-
permission((java.util.PropertyPermission java.security.manager write))
domain that failed(ProtectionDomain
(file:/E:/glassfish/domains/domain1/applications/cejug-clfds/ ...)
...

Granting the following permission eliminates the message:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/cejug-clfds/-" {
 permission java.util.PropertyPermission "java.security.manager", "write";
}


Do not add java.security.AllPermission to the server.policy file for application
code. Doing so completely defeats the purpose of the security manager, yet you still
get the performance overhead associated with it.

As noted in the Jakarta EE specification, an application should provide documentation of the
additional permissions it needs. If an application requires extra permissions but does not document
the set it needs, contact the application author for details.

As a last resort, you can iteratively determine the permission set an application needs by observing
AccessControlException occurrences in the server log.

If this is not sufficient, you can add the -Djava.security.debug=failure JVM option to the domain.
Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options -Djava.security.debug=failure

For more information about the asadmin create-jvm-options command, see the Eclipse GlassFish
Reference Manual.

You can use the J2SE standard policytool or any text editor to edit the server.policy file. For more
information, see http://docs.oracle.com/javase/tutorial/security/tour2/index.html.

For detailed information about policy file syntax, see http://docs.oracle.com/javase/8/docs/
technotes/guides/security/PolicyFiles.html.

For information about using system properties in the server.policy file, see
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html.

For detailed information about the permissions you can set in the server.policy file, see
http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html.

46

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
http://docs.oracle.com/javase/tutorial/security/tour2/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/PolicyFiles.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html

The Javadoc for the Permission class is at
http://docs.oracle.com/javase/8/docs/api/java/security/Permission.html.

Enabling and Disabling the Security Manager

The security manager is disabled by default.

In a production environment, you may be able to safely disable the security manager if all of the
following are true:

• Performance is critical

• Deployment to the production server is carefully controlled

• Only trusted applications are deployed

• Applications don’t need policy enforcement

Disabling the security manager may improve performance significantly for some types of
applications.

To enable the security manager, do one of the following:

• To use the Administration Console, open the Security component under the relevant
configuration, and check the Security Manager Enabled box. Then restart the server. For details,
click the Help button in the Administration Console.

• Use the following asadmin create-jvm-options command, then restart the server:

asadmin create-jvm-options -Djava.security.manager

To disable the security manager, uncheck the Security Manager Enabled box or use the
corresponding asadmin delete-jvm-options command. For more information about create-jvm-
options and delete-jvm-options, see the Eclipse GlassFish Reference Manual.

If the security manager is enabled and you are using the Java Persistence API by calling
Persistence.createEMF(), the EclipseLink persistence provider requires that you set the
eclipselink.security.usedoprivileged JVM option to true as follows:

asadmin create-jvm-options -Declipselink.security.usedoprivileged=true

If the security manager is enabled and you are using the Java Persistence API by injecting or
looking up an entity manager or entity manager factory, the EJB container sets this JVM option for
you.

You must grant additional permissions to CDI-enabled Jakarta EE applications that are deployed in
a Eclipse GlassFish 8 domain or cluster for which security manager is enabled. These additional
permissions are not required when security manager is disabled.

To deploy CDI-enabled Jakarta EE applications in a Eclipse GlassFish 8 domain or cluster for which

47

http://docs.oracle.com/javase/8/docs/api/java/security/Permission.html
http://docs.oracle.com/javase/8/docs/api/java/security/Permission.html
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

security manager is enabled, add the following permissions to the applications:

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/[ApplicationName]" {
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

For example, for a CDI application named foo.war, add the following permissions to the
server.policy file, restart the domain or cluster, and then deploy and use the application.

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/foo" {
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

For more information about modifying application permissions, see Changing Permissions for an
Application.

Configuring Message Security for Web Services
In message security, security information is applied at the message layer and travels along with the
web services message. Web Services Security (WSS) is the use of XML Encryption and XML Digital
Signatures to secure messages. WSS profiles the use of various security tokens including X.509
certificates, Security Assertion Markup Language (SAML) assertions, and username/password
tokens to achieve this.

Message layer security differs from transport layer security in that it can be used to decouple
message protection from message transport so that messages remain protected after transmission,
regardless of how many hops they travel.


Message security (JSR 196) is supported only in the full Eclipse GlassFish, not in the
Web Profile.


In this release of the Eclipse GlassFish, message layer annotations are not
supported.

For more information about web services, see Developing Web Services.

For more information about message security, see the following:

• "Introduction to Security in the Jakarta EE Platform" in The Jakarta EE Tutorial

• Eclipse GlassFish Security Guide

• JSR 196 (http://www.jcp.org/en/jsr/detail?id=196), Java Authentication Service Provider
Interface for Containers

• The Liberty Alliance Project specifications at http://www.projectliberty.org/resources/
specifications.php/?f=resources/specifications.php

• The Oasis Web Services Security (WSS) specification at http://docs.oasis-open.org/wss/2004/01/

48

https://eclipse-ee4j.github.io/jakartaee-tutorial/#security-2
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

oasis-200401-wss-soap-message-security-1.0.pdf

• The Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP) specification
at http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

• The XML and Web Services Security page at http://xwss.java.net/

• The WSIT page at http://wsit.java.net/

The following topics are addressed here:

• Message Security Providers

• Message Security Responsibilities

• Application-Specific Message Protection

• Understanding and Running the Sample Application

Message Security Providers

When you first install the Eclipse GlassFish, the providers XWS_ClientProvider and
XWS_ServerProvider are configured but disabled. You can enable them in one of the following ways:

• To enable the message security providers using the Administration Console, open the Security
component under the relevant configuration, select the Message Security component, and select
SOAP. Then select XWS_ServerProvider from the Default Provider list and XWS_ClientProvider
from the Default Client Provider list. For details, click the Help button in the Administration
Console.

• You can enable the message security providers using the following commands.

asadmin set
server-config.security-service.message-security-
config.SOAP.default_provider=XWS_ServerProvider
asadmin set
server-config.security-service.message-security-
config.SOAP.default_client_provider=XWS_ClientProvider

For more information about the asadmin set command, see the Eclipse GlassFish Reference
Manual.

The example described in Understanding and Running the Sample Application uses the
ClientProvider and ServerProvider providers, which are enabled when the Ant targets are run. You
don’t need to enable these on the Eclipse GlassFish prior to running the example.

If you install the OpenSSO, you have these additional provider choices:

• AMClientProvider and AMServerProvider - These providers secure web services and Simple Object
Access Protocol (SOAP) messages using either WS-I BSP or Liberty ID-WSF tokens. These
providers are used automatically if they are configured as the default providers. If you wish to
override any provider settings, you can configure these providers in message-security-binding
elements in the glassfish-web.xml, glassfish-ejb-jar.xml, and glassfish-application-client.xml

49

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://xwss.java.net/
http://wsit.java.net/
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

deployment descriptor files.

• AMHttpProvider - This provider handles the initial end user authentication for securing web
services using Liberty ID-WSF tokens and redirects requests to the OpenSSO for single sign-on.
To use this provider, specify it in the httpservlet-security-provider attribute of the glassfish-
web-app element in the glassfish-web.xml file.

Liberty specifications can be viewed at http://www.projectliberty.org/resources/
specifications.php/?f=resources/specifications.php. The WS-I BSP specification can be viewed at
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html.

For more information about the Eclipse GlassFish deployment descriptor files, see the Eclipse
GlassFish Application Deployment Guide.

For information about configuring these providers in the Eclipse GlassFish, see the Eclipse
GlassFish Security Guide. For additional information about overriding provider settings, see
Application-Specific Message Protection.

You can create new message security providers in one of the following ways:

• To create a message security provider using the Administration Console, open the Security
component under the relevant configuration, and select the Message Security component. For
details, click the Help button in the Administration Console.

• You can use the asadmin create-message-security-provider command to create a message
security provider. For details, see the Eclipse GlassFish Reference Manual.

In addition, you can set a few optional provider properties using the asadmin set command. For
example:

asadmin set server-config.security-service.message-security-config.provider-
config.property.debug=true

The following table describes these message security provider properties.

Table 4-2 Message Security Provider Properties

Property Default Description

security.config domain-dir`/
config/wss-server-
`config-1.0.xml

Specifies the location of the message
security configuration file. To point to a
configuration file in the domain-dir/config
directory, use the system property
${com.sun.aas.instanceRoot}/``config/, for
example:

${com.sun.aas.instanceRoot}/config/``wss-
server-config-1.0.xml

See System Properties.

50

http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://www.projectliberty.org/resources/specifications.php/?f=resources/specifications.php
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Property Default Description

debug false If true, enables dumping of server provider
debug messages to the server log.

dynamic.username.password false If true, signals the provider runtime to
collect the user name and password from
the CallbackHandler for each request. If
false, the user name and password for
wsse:UsernameToken(s) is collected once,
during module initialization. This property
is only applicable for a ClientAuthModule.

encryption.key.alias s1as Specifies the encryption key used by the
provider. The key is identified by its keystore
alias.

signature.key.alias s1as Specifies the signature key used by the
provider. The key is identified by its keystore
alias.

Message Security Responsibilities

In the Eclipse GlassFish, the system administrator and application deployer roles are expected to
take primary responsibility for configuring message security. In some situations, the application
developer may also contribute, although in the typical case either of the other roles may secure an
existing application without changing its implementation and without involving the developer.

The following topics are addressed here:

• Application Developer Responsibilities

• Application Deployer Responsibilities

• System Administrator Responsibilities

Application Developer Responsibilities

The application developer can turn on message security, but is not responsible for doing so.
Message security can be set up by the system administrator so that all web services are secured, or
set up by the application deployer when the provider or protection policy bound to the application
must be different from that bound to the container.

The application developer is responsible for the following:

• Determining if an application-specific message protection policy is required by the application.
If so, ensuring that the required policy is specified at application assembly which may be
accomplished by communicating with the application deployer.

• Determining if message security is necessary at the Eclipse GlassFish level. If so, ensuring that
this need is communicated to the system administrator, or taking care of implementing message
security at the Eclipse GlassFish level.

51

Application Deployer Responsibilities

The application deployer is responsible for the following:

• Specifying (at application assembly) any required application-specific message protection
policies if such policies have not already been specified by upstream roles (the developer or
assembler)

• Modifying Eclipse GlassFish deployment descriptors to specify application-specific message
protection policies information (message-security-binding elements) to web service endpoint
and service references

These security tasks are discussed in Application-Specific Message Protection. A sample application
using message security is discussed in Understanding and Running the Sample Application.

System Administrator Responsibilities

The system administrator is responsible for the following:

• Configuring message security providers on the Eclipse GlassFish.

• Managing user databases.

• Managing keystore and truststore files.

• Installing the sample. This is only done if the xms sample application is used to demonstrate the
use of message layer web services security.

A system administrator uses the Administration Console to manage server security settings and
uses a command line tool to manage certificate databases. Certificates and private keys are stored
in key stores and are managed with keytool. If Network Security Services (NSS) is installed,
certificates and private keys are stored in an NSS database, where they are managed using
certutil. System administrator tasks are discussed in the Eclipse GlassFish Security Guide.

Application-Specific Message Protection

When the Eclipse GlassFish provided configuration is insufficient for your security needs, and you
want to override the default protection, you can apply application-specific message security to a
web service.

Application-specific security is implemented by adding the message security binding to the web
service endpoint, whether it is an EJB or servlet web service endpoint. Modify Eclipse GlassFish
XML files to add the message binding information.

Message security can also be specified using a WSIT security policy in the WSDL file. For details, see
the WSIT page at http://wsit.java.net/.

For more information about message security providers, see Message Security Providers.

For more details on message security binding for EJB web services, servlet web services, and
clients, see the XML file descriptions in "Elements of the Eclipse GlassFish Deployment Descriptors"
in Eclipse GlassFish Application Deployment Guide.

52

https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
http://wsit.java.net/
https://glassfish.org/docs/latest/application-deployment-guide.pdf#c-elements-of-the-glassfish-server-deployment-descriptors

• For glassfish-ejb-jar.xml, see "The glassfish-ejb-jar.xml File" in Eclipse GlassFish Application
Deployment Guide.

• For glassfish-web.xml, see "The glassfish-web.xml File" in Eclipse GlassFish Application
Deployment Guide.

• For glassfish-application-client.xml, see "The glassfish-application-client.xml file" in Eclipse
GlassFish Application Deployment Guide.

The following topics are addressed here:

• Using a Signature to Enable Message Protection for All Methods

• Configuring Message Protection for a Specific Method Based on Digital Signatures

Using a Signature to Enable Message Protection for All Methods

To enable message protection for all methods using digital signature, update the message-security-
binding element for the EJB web service endpoint in the application’s glassfish-ejb-jar.xml file. In
this file, add request-protection and response-protection elements, which are analogous to the
request-policy and response-policy elements discussed in the Eclipse GlassFish Security Guide. To
apply the same protection mechanisms for all methods, leave the method-name element blank.
Configuring Message Protection for a Specific Method Based on Digital Signatures discusses listing
specific methods or using wildcard characters.

This section uses the sample application discussed in Understanding and Running the Sample
Application to apply application-level message security to show only the differences necessary for
protecting web services using various mechanisms.

To Enable Message Protection for All Methods Using Digital Signature

Follow this procedure.

1. In a text editor, open the application’s glassfish-ejb-jar.xml file.

For the xms example, this file is located in the directory app-dir`/xms-ejb/src/conf`, where app-
dir is defined in To Set Up the Sample Application.

2. Modify the glassfish-ejb-jar.xml file by adding the message-security-binding element as
shown:

<glassfish-ejb-jar>
 <enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>HelloWorld</ejb-name>
 <jndi-name>HelloWorld</jndi-name>
 <webservice-endpoint>
 <port-component-name>HelloIF</port-component-name>
 <endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
 <message-security-binding auth-layer="SOAP">
 <message-security>

53

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00078
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG

 <request-protection auth-source="content" />
 <response-protection auth-source="content"/>
 </message-security>
 </message-security-binding>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</glassfish-ejb-jar>

3. Compile, deploy, and run the application as described in To Run the Sample Application.

Configuring Message Protection for a Specific Method Based on Digital Signatures

To enable message protection for a specific method, or for a set of methods that can be identified
using a wildcard value, follow these steps. As in the example discussed in Using a Signature to
Enable Message Protection for All Methods, to enable message protection for a specific method,
update the message-security-binding element for the EJB web service endpoint in the application’s
glassfish-ejb-jar.xml file. To this file, add request-protection and response-protection elements,
which are analogous to the request-policy and response-policy elements discussed in the Eclipse
GlassFish Security Guide. The administration guide includes a table listing the set and order of
security operations for different request and response policy configurations.

This section uses the sample application discussed in Understanding and Running the Sample
Application to apply application-level message security to show only the differences necessary for
protecting web services using various mechanisms.

To Enable Message Protection for a Particular Method or Set of Methods Using Digital Signature

Follow this procedure.

1. In a text editor, open the application’s glassfish-ejb-jar.xml file.

For the xms example, this file is located in the directory app-dir`/xms-ejb/src/conf`, where app-
dir is defined in To Set Up the Sample Application.

2. Modify the glassfish-ejb-jar.xml file by adding the message-security-binding element as
shown:

<glassfish-ejb-jar>
 <enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>HelloWorld</ejb-name>
 <jndi-name>HelloWorld</jndi-name>
 <webservice-endpoint>
 <port-component-name>HelloIF</port-component-name>
 <endpoint-address-uri>service/HelloWorld</endpoint-address-uri>
 <message-security-binding auth-layer="SOAP">
 <message-security>
 <message>

54

https://glassfish.org/docs/latest/security-guide.pdf#GSSCG
https://glassfish.org/docs/latest/security-guide.pdf#GSSCG

 <java-method>
 <method-name>ejbCreate</method-name>
 </java-method>
 </message>
 <message>
 <java-method>
 <method-name>sayHello</method-name>
 </java-method>
 </message>
 <request-protection auth-source="content" />
 <response-protection auth-source="content"/>
 </message-security>
 </message-security-binding>
 </webservice-endpoint>
 </ejb>
 </enterprise-beans>
</glassfish-ejb-jar>

3. Compile, deploy, and run the application as described in To Run the Sample Application.

Understanding and Running the Sample Application

This section discusses the WSS sample application. This sample application is installed on your
system only if you installed the J2EE 1.4 samples. If you have not installed these samples, see To Set
Up the Sample Application.

The objective of this sample application is to demonstrate how a web service can be secured with
WSS. The web service in the xms example is a simple web service implemented using a Jakarta EE
EJB endpoint and a web service endpoint implemented using a servlet. In this example, a service
endpoint interface is defined with one operation, sayHello, which takes a string then sends a
response with Hello prefixed to the given string. You can view the WSDL file for the service
endpoint interface at app-dir`/xms-ejb/src/`conf/HelloWorld.wsdl, where app-dir is defined in To Set
Up the Sample Application.

In this application, the client looks up the service using the JNDI name
java:comp/env/service/HelloWorld and gets the port information using a static stub to invoke the
operation using a given name. For the name Duke, the client gets the response Hello Duke!

This example shows how to use message security for web services at the Eclipse GlassFish level. For
information about using message security at the application level, see Application-Specific Message
Protection. The WSS message security mechanisms implement message-level authentication (for
example, XML digital signature and encryption) of SOAP web services invocations using the X.509
and username/password profiles of the OASIS WS-Security standard, which can be viewed from the
following URL: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0.pdf.

The following topics are addressed here:

• To Set Up the Sample Application

55

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

• To Run the Sample Application

To Set Up the Sample Application

Before You Begin

To have access to this sample application, you must have previously installed the J2EE 1.4 samples.
If the samples are not installed, follow the steps in the following section.

After you follow these steps, the sample application is located in the directory as-install/j2ee14-
samples/samples/webservices/security/ejb/apps/xms/ or in a directory of your choice. For easy
reference throughout the rest of this section, this directory is referred to as simply app-dir.

1. Go to the J2EE 1.4 download URL (https://www.oracle.com/java/technologies/java-archive-
eesdk-downloads.html) in your browser.

2. Click on the Download button for the Samples Bundle.

3. Click on Accept License Agreement.

4. Click on the J2EE SDK Samples link.

5. Choose a location for the j2eesdk-1_4_03-samples.zip file.

Saving the file to as-install is recommended.

6. Unzip the file.

Unzipping to the as-install/j2ee14-samples directory is recommended. For example, you can use
the following command.

unzip j2eesdk-1_4_03-samples.zip -d j2ee14-samples

To Run the Sample Application

1. Make sure that the Eclipse GlassFish is running.
Message security providers are set up when the Ant targets are run, so you do not need to
configure these on the Eclipse GlassFish prior to running this example.

2. If you are not running HTTP on the default port of 8080, change the WSDL file for the example
to reflect the change, and change the common.properties file to reflect the change as well.
The WSDL file for this example is located at app-dir`/xms-ejb/`src/conf/HelloWorld.wsdl. The
port number is in the following section:

<service name="HelloWorld">
 <port name="HelloIFPort" binding="tns:HelloIFBinding">
 <soap:address location="http://localhost:8080/service/HelloWorld"/>
 </port>
</service>

Verify that the properties in the as-install/samples/common.properties` file are set properly

56

https://www.oracle.com/java/technologies/java-archive-eesdk-downloads.html
https://www.oracle.com/java/technologies/java-archive-eesdk-downloads.html
https://www.oracle.com/java/technologies/java-archive-eesdk-downloads.html

for your installation and environment. If you need a more detailed description of this
file, refer to the "Configuration" section for the web services security applications at
as-install/j2ee14-samples/samples/webservices/security/docs/common.html#Logging`.

3. Change to the app-dir directory.

4. Run the following Ant targets to compile, deploy, and run the example application:

1. To compile samples: ant

2. To deploy samples: ant deploy

3. To run samples: ant run

If the sample has compiled and deployed properly, you see the following response on your
screen after the application has run:
run:[echo] Running the xms program:[exec] Established message level security : Hello Duke!

5. To undeploy the sample, run the following Ant target:

ant undeploy

All of the web services security examples use the same web service name (HelloWorld) and web
service ports. These examples show only the differences necessary for protecting web services
using various mechanisms. Make sure to undeploy an application when you have completed
running it. If you do not, you receive an Already in Use error and deployment failures when you try
to deploy another web services example application.

Programmatic Login Using the ProgrammaticLogin
Class
Programmatic login allows a deployed Jakarta EE application or module to invoke a login method.
If the login is successful, a SecurityContext is established as if the client had authenticated using any
of the conventional Jakarta EE mechanisms. Programmatic login is supported for servlet and EJB
components on the server side, and for stand-alone or application clients on the client side.
Programmatic login is useful for an application having special needs that cannot be accommodated
by any of the Jakarta EE standard authentication mechanisms.

This section describes a proprietary GlassFish mechanism, but see also the standard security APIs
in the Jakarta EE tutorial.


The com.sun.appserv.security.ProgrammaticLogin class in Eclipse GlassFish is not a
Jakarta EE API; therefore, it is not portable to other application servers.

The following topics are addressed here:

• Programmatic Login Precautions

• Granting Programmatic Login Permission

• The ProgrammaticLogin Class

57

Programmatic Login Precautions

The Eclipse GlassFish is not involved in how the login information (user, password) is obtained by
the deployed application. Programmatic login places the burden on the application developer with
respect to assuring that the resulting system meets security requirements. If the application code
reads the authentication information across the network, the application determines whether to
trust the user.

Programmatic login allows the application developer to bypass the Eclipse GlassFish-supported
authentication mechanisms and feed authentication data directly to the security service. While
flexible, this capability should not be used without some understanding of security issues.

Since this mechanism bypasses the container-managed authentication process and sequence, the
application developer must be very careful in making sure that authentication is established before
accessing any restricted resources or methods. It is also the application developer’s responsibility to
verify the status of the login attempt and to alter the behavior of the application accordingly.

The programmatic login state does not necessarily persist in sessions or participate in single sign-
on.

Lazy authentication is not supported for programmatic login. If an access check is reached and the
deployed application has not properly authenticated using the programmatic login method, access
is denied immediately and the application might fail if not coded to account for this occurrence.
One way to account for this occurrence is to catch the access control or security exception, perform
a programmatic login, and repeat the request.

Granting Programmatic Login Permission

The ProgrammaticLoginPermission permission is required to invoke the programmatic login
mechanism for an application if the security manager is enabled. For information about the
security manager, see The server.policy File. This permission is not granted by default to deployed
applications because this is not a standard Jakarta EE mechanism.

To grant the required permission to the application, add the following to the domain-
dir`/config/server.policy` file:

grant codeBase "file:jar-file-path" {
 permission com.sun.appserv.security.ProgrammaticLoginPermission
 "login";
 };

The jar-file-path is the path to the application’s JAR file.

The ProgrammaticLogin Class

The com.sun.appserv.security.ProgrammaticLogin class enables a user to perform login
programmatically.

For Javadoc tool pages relevant to programmatic login, see the com.sun.appserv.security package.

58

The ProgrammaticLogin class has four login methods, two for servlets or JSP files and two for EJB
components.

The login methods for servlets or JSP files have the following signatures:

public java.lang.Boolean login(String user, String password,
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response)

public java.lang.Boolean login(String user, String password,
 String realm, javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response, boolean errors)
 throws java.lang.Exception

The login methods for EJB components have the following signatures:

public java.lang.Boolean login(String user, String password)

public java.lang.Boolean login(String user, String password,
 String realm, boolean errors) throws java.lang.Exception

All of these login methods accomplish the following:

• Perform the authentication

• Return true if login succeeded, false if login failed

The login occurs on the realm specified unless it is null, in which case the domain’s default realm is
used. The methods with no realm parameter use the domain’s default realm.

If the errors flag is set to true, any exceptions encountered during the login are propagated to the
caller. If set to false, exceptions are thrown.

On the client side, realm and errors parameters are ignored and the actual login does not occur
until a resource requiring a login is accessed. A java.rmi.AccessException with COBRA NO_PERMISSION
occurs if the actual login fails.

The logout methods for servlets or JSP files have the following signatures:

public java.lang.Boolean logout(HttpServletRequest request,
 HttpServletResponse response)

public java.lang.Boolean logout(HttpServletRequest request,
 HttpServletResponse response, boolean errors)
 throws java.lang.Exception

The logout methods for EJB components have the following signatures:

59

public java.lang.Boolean logout()

public java.lang.Boolean logout(boolean errors)
 throws java.lang.Exception

All of these logout methods return true if logout succeeded, false if logout failed.

If the errors flag is set to true, any exceptions encountered during the logout are propagated to the
caller. If set to false, exceptions are thrown.

User Authentication for Single Sign-on
The single sign-on feature of the Eclipse GlassFish allows multiple web applications deployed to the
same virtual server to share the user authentication state. With single sign-on enabled, users who
log in to one web application become implicitly logged into other web applications on the same
virtual server that require the same authentication information. Otherwise, users would have to log
in separately to each web application whose protected resources they tried to access.

A sample application using the single sign-on scenario could be a consolidated airline booking
service that searches all airlines and provides links to different airline web sites. After the user
signs on to the consolidated booking service, the user information can be used by each individual
airline site without requiring another sign-on.

Single sign-on operates according to the following rules:

• Single sign-on applies to web applications configured for the same realm and virtual server. The
realm is defined by the realm-name element in the web.xml file. For information about virtual
servers, see "Administering Internet Connectivity" in Eclipse GlassFish Administration Guide.

• As long as users access only unprotected resources in any of the web applications on a virtual
server, they are not challenged to authenticate themselves.

• As soon as a user accesses a protected resource in any web application associated with a virtual
server, the user is challenged to authenticate himself or herself, using the login method defined
for the web application currently being accessed.

• After authentication, the roles associated with this user are used for access control decisions
across all associated web applications, without challenging the user to authenticate to each
application individually.

• When the user logs out of one web application (for example, by invalidating the corresponding
session), the user’s sessions in all web applications are invalidated. Any subsequent attempt to
access a protected resource in any application requires the user to authenticate again.

The single sign-on feature utilizes HTTP cookies to transmit a token that associates each request
with the saved user identity, so it can only be used in client environments that support cookies.

To configure single sign-on, set the following virtual server properties:

• sso-enabled - If false, single sign-on is disabled for this virtual server, and users must
authenticate separately to every application on the virtual server. The default is false.

60

https://glassfish.org/docs/latest/administration-guide.pdf#administering-internet-connectivity

• sso-max-inactive-seconds - Specifies the time after which a user’s single sign-on record becomes
eligible for purging if no client activity is received. Since single sign-on applies across several
applications on the same virtual server, access to any of the applications keeps the single sign-
on record active. The default value is 5 minutes (300 seconds). Higher values provide longer
single sign-on persistence for the users at the expense of more memory use on the server.

• sso-reap-interval-seconds - Specifies the interval between purges of expired single sign-on
records. The default value is 60.

Here are example asadmin set commands with default values:

asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-
enabled="true"
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-max-inactive-
seconds="300"
asadmin set server-config.http-service.virtual-server.vsrv1.property.sso-reap-
interval-seconds="60"

For more information about the asadmin set command, see the Eclipse GlassFish Reference Manual.

Adding Authentication Mechanisms to the Servlet
Container
You can use JSR 196 in the web tier to facilitate the injection of pluggable authentication modules
within the servlet constraint processing engine. The Eclipse GlassFish includes implementations of
a number of HTTP layer authentication mechanisms such as basic, form, and digest authentication.
You can add alternative implementations of the included mechanisms or implementations of new
mechanisms such as HTTP Negotiate/SPNEGO, OpenID, or CAS.

The following topics are addressed here:

• The Eclipse GlassFish and JSR-375

• The Eclipse GlassFish and JSR 196

• Writing a Server Authentication Module

• Sample Server Authentication Module

• Compiling and Installing a Server Authentication Module

• Configuring a Server Authentication Module

• Binding a Server Authentication Module to Your Application

The Eclipse GlassFish and JSR-375

The Eclipse GlassFish implements JSR-375 to provide built-in support for BASIC, FORM and Custom
FORM authentication mechanisms. JSR-375 also defines plug-in interfaces for authentication and
identity stores, that is, the HttpAuthenticationMechanism interface and the IdentityStore interface,
respectively. Though HttpAuthenticationMechanism implementations can authenticate users in any

61

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

manner they choose, the IdentityStore interface provides a convenient mechanism. A significant
advantage of using HttpAuthenticationMechanism and IdentityStore over the declarative
mechanisms defined by the Servlet specification is that it allows an application to control the
identity stores that it authenticates against, in a standard, portable way. You can use the built-in
implementations of these APIs, or define custom implementations.

Jakarta EE Security API defines several annotations, with names that end with Definition, which
when used makes the corresponding built-in mechanism available as a CDI bean. Jakarta EE
Security API also supports the use of Expression Language 3.0 in these annotations to allow
dynamic configuration.

Built-in Authentication Mechanisms

An application packages its own HttpAuthenticationMechanism by including in a bean archive that is
a part of the application. Alternatively, it may select and configure one of the container’s built-in
mechanisms using the corresponding annotation, as listed below:

• BasicAuthenticationMechanismDefintion—implements BASIC authentication that conforms to the
behavior of the servlet container when BASIC <auth-method> is declared in web.xml.

• CustomFormAuthenticationMechanismDefinition—implements FORM authentication that conforms
to the behavior of the servlet container when the FORM <auth-method> is declared in web.xml.

• FormAuthenticationMechanismDefinition—implements a modified version of FORM
authentication in which custom handling replaces the POST to j_security_check.

In Eclipse GlassFish, all built-in authentication mechanisms need to be authenticated using an
identity store. The IdentityStore interface, included in the Jakarta EE Security API, defines an SPI
for interacting with identity stores, which are directories or databases containing user account
information. The IdentityStore interface has four methods: validate(Credential),
getCallerGroups(CredentialValidationResult), validationTypes() and priority().Developers can
provide their own implementation of this interface, or use one of the built-in Identity Stores. The
RememberMeIdentityStore interface, which is a variation on the IdentityStore interface, can be used
when an application wants to "remember" a user’s authenticated session for an extended period, so
that the caller can return to the application periodically without needing to present primary
authentication credentials each time.

There are two built-in implementations of IdentityStore: an LDAP identity store, and a Database
identity store. The following snippet shows the usage of DatabaseIdentityStoreDefinition, which
makes DatabaseIdentityStore available as CDI bean.

@DatabaseIdentityStoreDefinition(
 callerQuery = "#{'select password from caller where name = ?'}",
 groupsQuery = "select group_name from caller_groups where caller_name = ?",
 hashAlgorithm = Pbkdf2PasswordHash.class,
 priorityExpression = "#{100}",
 hashAlgorithmParameters = {
 "Pbkdf2PasswordHash.Iterations=3072",
 "${applicationConfig.dyna}"
 }

62

)

Since Jakarta EE Security API provides support for Expression Langauge 3.0, regular expressions
can be used to set value of annotation attributes.

The Eclipse GlassFish provides out of the box implementation of Pbkdf2PasswordHash that supports
PBKDF2 password hashing. It is suggested that you use Pbkdf2PasswordHash for generating and
validating passwords, unless there are specific requirements which cannot be met any other way.

Custom Authentication Mechanism

An application provider can choose to provide its own custom authentication mechanism, apart
from built-in authentication mechanism.

A custom authentication mechanism implements the HttpAuthenticationMechanism interface,
introduced in Jakarta EE Security API. This interface defines the following three methods.

AuthenticationStatus validateRequest(HttpServletRequest request,
 HttpServletResponse response,
 HttpMessageContext httpMessageContext
) throws AuthenticationException;

AuthenticationStatus secureResponse(HttpServletRequest request,
 HttpServletResponse response,
 HttpMessageContext httpMessageContext
) throws AuthenticationException;

void cleanSubject(HttpServletRequest request,
 HttpServletResponse response,
 HttpMessageContext httpMessageContext);

HttpAuthenticationMechanism returns AuthenticationStatus to indicate the status of authentication
request. Internally, it gets translated to corresponding JASPIC AuthStatus as shown below:

• AuthenticationStatus.NOT_DONE to AuthStatus.SUCCESS

• AuthenticationStatus.SEND_CONTINUE to AuthStatus.SEND_CONTINUE

• AuthenticationStatus.SUCCESS to AuthStatus.SUCCESS

• AuthenticationStatus.SEND_FAILURE to AuthStatus.SEND_FAILURE

Each method of the HttpAuthenticationMechanism interface performs the same function as the
corresponding ServerAuth methods. Unlike JASPIC, HttpAuthenticationMechanism is specified for the
servlet container only. Only the validateRequest() must be implemented, for other two methods,
default behaviors are specified.

validateRequest allows a caller to authenticate. The request gets inspected inside validateRequest to
read credential or any other information, or it can write to standard response with status of the
authentication request or redirect the caller to an OAuth provider. Once the credential is validated,
the result of the validation is communicated to the container using the HttpMessageContext

63

parameter.

Sample Http Authentication Mechanism

The class MyAuthenticationMechanism.java is a sample HttpAuthenticationMechanism implementation.
Note that only validateRequest method has been implemented, since Jakarta EE Security API
provides default implementation of other two methods. An application provider may choose to
override the default implementation depending on the requirement.

import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.security.enterprise.AuthenticationException;
import javax.security.enterprise.AuthenticationStatus;
import
javax.security.enterprise.authentication.mechanism.http.HttpAuthenticationMechanism;
import javax.security.enterprise.authentication.mechanism.http.HttpMessageContext;
import javax.security.enterprise.credential.UsernamePasswordCredential;
import javax.security.enterprise.identitystore.CredentialValidationResult;
import javax.security.enterprise.identitystore.IdentityStoreHandler;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import static
javax.security.enterprise.identitystore.CredentialValidationResult.Status.VALID;

@RequestScoped
public class MyAuthenticationMechanism implements HttpAuthenticationMechanism {

 @Inject
 private IdentityStoreHandler identityStoreHandler;

 @Override
 public AuthenticationStatus validateRequest(HttpServletRequest request,
HttpServletResponse response, HttpMessageContext httpMessageContext) throws
AuthenticationException {

 // Get the (caller) name and password from the request
 // NOTE: This is for the smallest possible example only. In practice
 // putting the password in a request query parameter is highly
 // insecure and is discouraged.
 String name = request.getParameter("name");
 String password = request.getParameter("password");

 if (name != null && password != null) {

 // Delegate the {credentials in -> identity data out} function to
 // the Identity Store
 CredentialValidationResult result = identityStoreHandler.validate(
 new UsernamePasswordCredential(name, password));

64

 if (result.getStatus() == VALID) {
 // Communicate the details of the authenticated user to the
 // container.
 response.addHeader("Authentication Mechanism",
"MyAuthenticationMechanism");
 return httpMessageContext.notifyContainerAboutLogin(
 result.getCallerPrincipal(), result.getCallerGroups());
 } else {
 return httpMessageContext.responseUnauthorized();
 }
 }

 return httpMessageContext.doNothing();
 }

}

The Eclipse GlassFish and JSR 196

The Eclipse GlassFish implements the Servlet Container Profile of JSR 196, Java Authentication
Service Provider Interface for Containers. JSR 196 defines a standard service provider interface
(SPI) that extends the concepts of the Java Authentication and Authorization Service (JAAS) to
enable pluggability of message authentication modules in message processing runtimes. The JSR
196 standard defines profiles that establish contracts for the use of the SPI in specific contexts. The
Servlet Container Profile of JSR 196 defines the use of the SPI by a Servlet container such that:

• The resulting container can be configured with new authentication mechanisms.

• The container employs the configured mechanisms in its enforcement of the declarative servlet
security model (declared in a web.xml file using security-constraint elements).

The JSR 196 specification defines a simple message processing model composed of four interaction
points:

1. secureRequest on the client

2. validateRequest on the server

3. secureResponse on the server

4. validateResponse on the client

A message processing runtime uses the SPI at these interaction points to delegate the corresponding
message security processing to authentication providers, also called authentication modules,
integrated into the runtime by way of the SPI.

A compatible server-side message processing runtime, such as the Eclipse GlassFish servlet
container, supports the validateRequest and secureResponse interaction points of the message
processing model. The servlet container uses the SPI at these interaction points to delegate the
corresponding message security processing to a server authentication module (SAM), integrated by
the SPI into the container.

65

Writing a Server Authentication Module

A key step in adding an authentication mechanism to a compatible server-side message processing
runtime such as the Eclipse GlassFish servlet container is acquiring a SAM that implements the
desired authentication mechanism. One way to do that is to write the SAM yourself.

A SAM implements the javax.security.auth.message.module.ServerAuthModule interface as defined
by JSR 196. A SAM is invoked indirectly by the message processing runtime at the validateRequest
and secureResponse interaction points. A SAM must implement the five methods of the
ServerAuthModule interface:

• getSupportedMessageTypes — An array of Class objects where each element defines a message
type supported by the SAM. For a SAM to be compatible with the Servlet Container Profile, the
returned array must include the HttpServletRequest.class and HttpServletResponse.class
objects.

• initialize(MessagePolicy requestPolicy, MessagePolicy responsePolicy, CallbackHandler Map
options) — The container calls this method to provide the SAM with configuration values and
with a CallbackHandler. The configuration values are returned in the policy arguments and in
the options Map. The SAM uses CallbackHandler to access services, such as password validation,
provided by the container.

• AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject
serviceSubject) — The container calls this method to process each received HttpServletRequest.
The request and its associated HttpServletResponse are passed by the container to the SAM in the
messageInfo argument. The SAM processes the request and may establish the response to be
returned by the container. The SAM uses the provided Subject arguments to convey its
authentication results. The SAM returns different status values to control the container’s
invocation processing. The status values and the circumstances under which they are returned
are as follows:

◦ AuthStatus.SUCCESS is returned when the application request message is successfully
validated. The container responds to this status value by using the returned client Subject to
invoke the target of the request. When this value is returned, the SAM (provided a custom
AuthConfigProvider is not being used) must use its CallbackHandler to handle a
CallerPrincipalCallback using the clientSubject as an argument to the callback.

◦ AuthStatus.SEND_CONTINUE indicates that message validation is incomplete and that the SAM
has established a preliminary response as the response message in messageInfo. The
container responds to this status value by sending the response to the client.

◦ AuthStatus.SEND_FAILURE indicates that message validation failed and that the SAM has
established an appropriate failure response message in messageInfo. The container responds
to this status value by sending the response to the client.

◦ AuthStatus.SEND_SUCCESS is not typically returned. This status value indicates the end of a
multi-message security dialog originating after the service interaction and during the
processing of the application response. The container responds to this status value by
sending the response to the client.

The validateRequest method may also throw an AuthException to indicate that the message
processing by the SAM failed without establishing a failure response message in messageInfo.

66

• secureResponse(MessageInfo messageInfo, Subject serviceSubject) — The container calls this
method before sending a response, resulting from an application invocation, to the client. The
response is passed to the SAM in the messageInfo argument. In most cases, this method should
just return the SEND_SUCCESS status.

• cleanSubject(MessageInfo messageInfo, Subject subject) — This method removes the
mechanism-specific principals, credentials, or both from the subject. This method is not
currently called by the container. A legitimate implementation could remove all the principals
from the argument subject.

See the Servlet Container Profile section in the JSR 196 specification for additional background and
details.

Sample Server Authentication Module

The class MySam.java is a sample SAM implementation. Notice that the sample implements the five
methods of the ServerAuthModule interface. This SAM implements an approximation of HTTP basic
authentication.

package tip.sam;

 import java.io.IOException;
 import java.util.Map;
 import javax.security.auth.Subject;
 import javax.security.auth.callback.Callback;
 import javax.security.auth.callback.CallbackHandler;
 import javax.security.auth.callback.UnsupportedCallbackException;
 import javax.security.auth.message.AuthException;
 import javax.security.auth.message.AuthStatus;
 import javax.security.auth.message.MessageInfo;
 import javax.security.auth.message.MessagePolicy;
 import javax.security.auth.message.callback.CallerPrincipalCallback;
 import javax.security.auth.message.callback.GroupPrincipalCallback;
 import javax.security.auth.message.callback.PasswordValidationCallback;
 import javax.security.auth.message.module.ServerAuthModule;
 import javax.servlet.http.HttpServletRequest;
 import javax.servlet.http.HttpServletResponse;
 import org.apache.catalina.util.Base64;

 public class MySam implements ServerAuthModule {

 protected static final Class[]
 supportedMessageTypes = new Class[]{
 HttpServletRequest.class,
 HttpServletResponse.class
 };

 private MessagePolicy requestPolicy;
 private MessagePolicy responsePolicy;
 private CallbackHandler handler;

67

 private Map options;
 private String realmName = null;
 private String defaultGroup[] = null;
 privte static final String REALM_PROPERTY_NAME =
 "realm.name";
 private static final String GROUP_PROPERTY_NAME =
 "group.name";
 private static final String BASIC = "Basic";
 static final String AUTHORIZATION_HEADER =
 "authorization";
 static final String AUTHENTICATION_HEADER =
 "WWW-Authenticate";

 public void initialize(MessagePolicy reqPolicy,
 MessagePolicy resPolicy,
 CallbackHandler cBH, Map opts)
 throws AuthException {
 requestPolicy = reqPolicy;
 responsePolicy = resPolicy;
 handler = cBH;
 options = opts;
 if (options != null) {
 realmName = (String)
 options.get(REALM_PROPERTY_NAME);
 if (options.containsKey(GROUP_PROPERTY_NAME)) {
 defaultGroup = new String[]{(String)
 options.get(GROUP_PROPERTY_NAME)};
 }
 }
 }

 public Class[] getSupportedMessageTypes() {
 return supportedMessageTypes;
 }

 public AuthStatus validateRequest(
 MessageInfo msgInfo, Subject client,
 Subject server) throws AuthException {
 try {

 String username =
 processAuthorizationToken(msgInfo, client);
 if (username ==
 null && requestPolicy.isMandatory()) {
 return sendAuthenticateChallenge(msgInfo);
 }

 setAuthenticationResult(
 username, client, msgInfo);
 return AuthStatus.SUCCESS;

68

 } catch (Exception e) {
 AuthException ae = new AuthException();
 ae.initCause(e);
 throw ae;
 }
 }

 private String processAuthorizationToken(
 MessageInfo msgInfo, Subject s)
 throws AuthException {

 HttpServletRequest request =
 (HttpServletRequest)
 msgInfo.getRequestMessage();

 String token =
 request.getHeader(AUTHORIZATION_HEADER);

 if (token != null && token.startsWith(BASIC + " ")) {

 token = token.substring(6).trim();

 // Decode and parse the authorization token
 String decoded =
 new String(Base64.decode(token.getBytes()));

 int colon = decoded.indexOf(':');
 if (colon <= 0 || colon == decoded.length() - 1) {
 return (null);
 }

 String username = decoded.substring(0, colon);

 // use the callback to ask the container to
 // validate the password
 PasswordValidationCallback pVC =
 new PasswordValidationCallback(s, username,
 decoded.substring(colon + 1).toCharArray());
 try {
 handler.handle(new Callback[]{pVC});
 pVC.clearPassword();
 } catch (Exception e) {
 AuthException ae = new AuthException();
 ae.initCause(e);
 throw ae;
 }

 if (pVC.getResult()) {
 return username;
 }
 }

69

 return null;
 }

 private AuthStatus sendAuthenticateChallenge(
 MessageInfo msgInfo) {

 String realm = realmName;
 // if the realm property is set use it,
 // otherwise use the name of the server
 // as the realm name.
 if (realm == null) {

 HttpServletRequest request =
 (HttpServletRequest)
 msgInfo.getRequestMessage();

 realm = request.getServerName();
 }

 HttpServletResponse response =
 (HttpServletResponse)
 msgInfo.getResponseMessage();

 String header = BASIC + " realm=\"" + realm + "\"";
 response.setHeader(AUTHENTICATION_HEADER, header);
 response.setStatus(
 HttpServletResponse.SC_UNAUTHORIZED);
 return AuthStatus.SEND_CONTINUE;
 }

 public AuthStatus secureResponse(
 MessageInfo msgInfo, Subject service)
 throws AuthException {
 return AuthStatus.SEND_SUCCESS;
 }

 public void cleanSubject(MessageInfo msgInfo,
 Subject subject)
 throws AuthException {
 if (subject != null) {
 subject.getPrincipals().clear();
 }
 }

 private static final String AUTH_TYPE_INFO_KEY =
 "javax.servlet.http.authType";

 // distinguish the caller principal
 // and assign default groups
 private void setAuthenticationResult(String name,
 Subject s, MessageInfo m)

70

 throws IOException,
 UnsupportedCallbackException {
 handler.handle(new Callback[]{
 new CallerPrincipalCallback(s, name)
 });
 if (name != null) {
 // add the default group if the property is set
 if (defaultGroup != null) {
 handler.handle(new Callback[]{
 new GroupPrincipalCallback(s, defaultGroup)
 });
 }
 m.getMap().put(AUTH_TYPE_INFO_KEY, ""MySAM");
 }
 }
 }

Note that the initialize method looks for the group.name and realm.name properties. The group.name
property configures the default group assigned as a result of any successful authentication. The
realm.name property defines the realm value sent back to the browser in the WWW-Authenticate
challenge.

Compiling and Installing a Server Authentication Module

Before you can use the sample SAM, you need to compile, install, and configure it. Then you can
bind it to an application.

To compile the SAM, include the SPI in your classpath. When the Eclipse GlassFish is installed, the
JAR file containing the SPI, jmac-api.jar, is installed in the as-install/lib directory. After you
compile the SAM, install it by copying a JAR file containing the compiled SAM to the as-install/lib
directory.

Configuring a Server Authentication Module

You can configure a SAM in one of these ways:

• In the Administration Console, open the Security component under the relevant configuration
and go to the Message Security page. Set the following options:

◦ Authentication Layer — HttpServlet

◦ Provider Type — server or client-server

◦ Provider ID — Specify a unique name for the SAM, for example MySAM

◦ Class Name — Specify the fully qualified class name, for example tip.sam.MySam

◦ Additional Property — Name: group-name Value: user

◦ Additional Property — Name: realm-name Value: Sam

For details, click the Help button in the Administration Console.

71

• Use the asadmin create-message-security-provider command to configure a SAM. Set the
following options:

◦ --layer HttpServlet

◦ --providertype server or --providertype client-server

◦ --classname tip.sam.MySam

◦ --property group-name=user:realm-name=Sam

◦ Provider name operand — Specify a unique name for the SAM, for example MySAM

For details, see the Eclipse GlassFish Reference Manual.

Binding a Server Authentication Module to Your Application

After you install and configure the SAM, you can bind it for use by the container on behalf of one or
more of your applications. You have two options in how you bind the SAM, depending on whether
you are willing to repackage and redeploy your application:

• If you are willing to repackage and redeploy, you can bind the SAM using the glassfish-web.xml
file. Set the value of the httpservlet-security-provider attribute of the glassfish-web-app
element to the SAM’s configured provider ID, for example, MySAM. For more information about
the glassfish-web.xml file, see the Eclipse GlassFish Application Deployment Guide. This option
leverages the native AuthConfigProvider implementation that ships with the Eclipse GlassFish.

• Another approach is to develop your own AuthConfigProvider and register it with the Eclipse
GlassFish AuthConfigFactory for use on behalf of your applications. For example, a simple
AuthConfigProvider can obtain, through its initialization properties, the classname of a SAM to
configure on behalf of the applications for which the provider is registered. You can find a
description of the functionality of an AuthConfigProvider and of the registration facilities
provided by an AuthConfigFactory in the JSR 196 specification.

72

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

Chapter 10. Developing Web Services
This chapter describes Eclipse GlassFish support for web services. The following topics are
addressed here:

• Creating Portable Web Service Artifacts

• Deploying a Web Service

• The Web Service URI, WSDL File, and Test Page

• The Databinding Provider



If you installed the Web Profile, web services are not supported. Without the Metro
add-on component, a servlet or EJB component cannot be a web service endpoint,
and the glassfish-web.xml and glassfish-ejb-jar.xml elements related to web
services are ignored.

In addition, the as-install/modules/webservices-osgi.jar and as-
install/modules/webservices-api-osgi.jar files must be in the classpath of your web
services application. IDEs such as NetBeans and Eclipse do this automatically.

"Web Services" in The Jakarta EE Tutorial shows how to deploy simple web services to Eclipse
GlassFish.

For additional information about JAXB (Java Architecture for XML Binding), see Java Specification
Request (JSR) 222 and The Databinding Provider.

For additional information about JAX-WS (Java API for XML-Based Web Services), see Java
Specification Request (JSR) 224 and Java Specification Request (JSR) 109.

For information about web services security, see Configuring Message Security for Web Services.

The Fast Infoset standard specifies a binary format based on the XML Information Set. This format
is an efficient alternative to XML. For more information about using Fast Infoset, see the Metro
WSIT Guide

Creating Portable Web Service Artifacts
For a tutorial that shows how to use the wsimport and wsgen commands, see " Web Services" in The
Jakarta EE Tutorial.

Deploying a Web Service
You deploy a web service endpoint to the Eclipse GlassFish just as you would any servlet, stateless
session bean (SLSB), or application.


For complex services with dependent classes, user specified WSDL files, or other
advanced features, autodeployment of an annotated file is not sufficient.

73

https://eclipse-ee4j.github.io/jakartaee-tutorial/#web-services
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/aboutJava/communityprocess/pfd/jsr224/index.html
http://jcp.org/en/jsr/detail?id=109
https://eclipse-ee4j.github.io/metro-wsit/3.0.0/guide/ch02.html#using-fastinfoset
https://eclipse-ee4j.github.io/metro-wsit/3.0.0/guide/ch02.html#using-fastinfoset
https://eclipse-ee4j.github.io/jakartaee-tutorial/#web-services

The Eclipse GlassFish deployment descriptor files glassfish-web.xml and glassfish-ejb-jar.xml
provide optional web service enhancements in the webservice-endpoint and webservice-description
elements, including a debugging-enabled subelement that enables the creation of a test page. The
test page feature is enabled by default and described in The Web Service URI, WSDL File, and Test
Page.

For more information about deployment, autodeployment, and deployment descriptors, see the
Eclipse GlassFish Application Deployment Guide. For more information about the asadmin deploy
command, see the Eclipse GlassFish Reference Manual.

The Web Service URI, WSDL File, and Test Page
Clients can run a deployed web service by accessing its service endpoint address URI, which has the
following format:

http://host:port/context-root/servlet-mapping-url-pattern

The context-root is defined in the application.xml or web.xml file, and can be overridden in the
glassfish-application.xml or glassfish-web.xml file. The servlet-mapping-url-pattern is defined in
the web.xml file.

In the following example, the context-root is my-ws and the servlet-mapping-url-pattern is /simple:

http://localhost:8080/my-ws/simple

You can view the WSDL file of the deployed service in a browser by adding ?WSDL to the end of the
URI. For example:

http://localhost:8080/my-ws/simple?WSDL

For debugging, you can run a test page for the deployed service in a browser by adding ?Tester to
the end of the URL. For example:

http://localhost:8080/my-ws/simple?Tester

You can also test a service using the Administration Console. Open the Web Services component,
select the web service in the listing on the General tab, and select Test. For details, click the Help
button in the Administration Console.


The test page works only for WS-I compliant web services. This means that the
tester servlet does not work for services with WSDL files that use RPC/encoded
binding.

Generation of the test page is enabled by default. You can disable the test page for a web service by

74

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

setting the value of the debugging-enabled element in the glassfish-web.xml and glassfish-ejb-
jar.xml deployment descriptor to false. For more information, see the Eclipse GlassFish Application
Deployment Guide.

The Databinding Provider
The JAX-WS reference implementation (RI) used to be dependent on the JAXB RI for databinding.
JAXB and JAX-WS implementations have been decoupled, and databinding is modular. JAXB and
JAX-WS are no longer Jakarta EE APIs.

The EclipseLink JAXB implementation, plus EclipseLink extensions, is called MOXy. The
org.eclipse.persistence.moxy.jar file is bundled with Eclipse GlassFish, which supports the JAXB RI
and MOXy as databinding providers.

To specify the databinding provider for the JVM, set the
com.sun.xml.ws.spi.db.BindingContextFactory JVM property to one of the following values:

com.sun.xml.ws.db.glassfish.JAXBRIContextFactory

Specifies the JAXB reference implementation. This is the default.

com.sun.xml.ws.db.toplink.JAXBContextFactory

Specifies Eclipselink MOXy JAXB binding.

For example:

asadmin create-jvm-options
-Dcom.sun.xml.ws.spi.db.BindingContextFactory=com.sun.xml.ws.db.toplink.JAXBContextFac
tory

To specify the databinding provider for a web service endpoint:

• Set the org.jvnet.ws.databinding.DatabindingModeFeature feature during WebServiceFeature
initialization or using the add method.

Allowed values are as follows

org.jvnet.ws.databinding.DatabindingModeFeature.GLASSFISH_JAXB

Specifies the JAXB reference implementation. This is the default.

com.sun.xml.ws.db.toplink.JAXBContextFactory.ECLIPSELINK_JAXB

Specifies Eclipselink MOXy JAXB binding.

For example:

import jakarta.xml.ws.WebServiceFeature;
import org.jvnet.ws.databinding.DatabindingModeFeature;
import com.sun.xml.ws.db.toplink.JAXBContextFactory;
...
WebServiceFeature[] features = {new DatabindingModeFeature(

75

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

JAXBContextFactory.ECLIPSELINK_JAXB)};
...

• Set the org.jvnet.ws.databinding.DatabindingModeFeature feature using the @DatabindingMode
annotation. For example:

import jakarta.jws.WebService;
import org.jvnet.ws.databinding.DatabindingMode;
import com.sun.xml.ws.db.toplink.JAXBContextFactory;
...
@WebService()
@DatabindingMode(JAXBContextFactory.ECLIPSELINK_JAXB);
...

• Set the databinding attribute of the endpoint element in the sun-jaxws.xml file. Allowed values
are glassfish.jaxb or eclipselink.jaxb. For example:

<endpoint name='hello'
 implementation='hello.HelloImpl'
 url-pattern='/hello'
 databinding='eclipselink.jaxb'
/>

The EclipseLink JAXB compiler is not included but can be used with Eclipse GlassFish. Download
the EclipseLink zip file at http://www.eclipse.org/eclipselink/downloads/ and unzip it. The
compiler files are located here:

bin/jaxb-compiler.cmd
bin/jaxb-compiler.sh

76

http://www.eclipse.org/eclipselink/downloads/

Chapter 11. Configuring the Java Persistence
Provider
This chapter describes Oracle TopLink, the default persistence provider in Eclipse GlassFish, and
introduces how to use it. This chapter also tells how to set the default persistence provider in
Eclipse GlassFish and how to use persistence-related features specific to Eclipse GlassFish such as
automatic schema generation.

The following topics are addressed here:

• Overview of Oracle TopLink

• Using Oracle TopLink in Eclipse GlassFish

• Specifying the Database for an Application

• Specifying the Persistence Provider for an Application

• Primary Key Generation Defaults

• Automatic Schema Generation

• Restrictions and Optimizations

Overview of Oracle TopLink
Oracle TopLink is the default persistence provider in Eclipse GlassFish. It is a comprehensive
standards-based object-persistence and object-transformation framework that provides APIs,
schemas, and run-time services for the persistence layer of an application.

TopLink includes all of EclipseLink, from the Eclipse Foundation. EclipseLink is the default
persistence provider in Eclipse GlassFish. EclipseLink is the open source implementation of the
development framework and the runtime provided in TopLink. EclipseLink implements the
following specifications, plus value-added extensions:

• Java Persistence Architecture (JPA) 2.0.

JPA 2.0 is part of Java Platform, Enterprise Edition 6 (Jakarta EE 6). It includes improvements
and enhancements to domain modeling, object/relational mapping, EntityManager and Query
interfaces, and the Java Persistence Query Language (JPQL). It includes an API for criteria
queries, a metamodel API, and support for validation. The Java Persistence API can be used with
non-EJB components outside the EJB container.

For the JPA 2.0 Specification, see Java Specification Request (JSR) 317. For basic information
about the Java Persistence API, see Persistence in The Jakarta EE Tutorial.

• Java Architecture for XML Binding (JAXB) 2.0. The EclipseLink JAXB implementation, plus
EclipseLink extensions, is called MOXy. The org.eclipse.persistence.moxy.jar file is bundled
with Eclipse GlassFish. For more information about MOXy support in Eclipse GlassFish, see The
Databinding Provider.

77

http://jcp.org/aboutJava/communityprocess/pfd/jsr317/index.html
https://eclipse-ee4j.github.io/jakartaee-tutorial/#persistence

For the JAXB 2.0 specification, see Java Specification Request (JSR) 222.

• EclipseLink utilities are not included but can be used with Eclipse GlassFish. Download the
EclipseLink zip file at http://www.eclipse.org/eclipselink/downloads/ and unzip it. The utility
files are located here:

bin/jaxb-compiler.cmd
bin/jaxb-compiler.sh

In addition to all of EclipseLink, Oracle TopLink includes TopLink Grid, an integration between
TopLink and Oracle Coherence that allows TopLink to use Oracle Coherence as a level 2 (L2) cache
and persistence layer for entities. The toplink-grid.jar file is bundled with Eclipse GlassFish.

 You must have a license for Oracle Coherence to be able to use TopLink Grid.

For information about developing, deploying, and configuring Oracle TopLink, EclipseLink, and
TopLink Grid applications, see the following:

• Oracle Fusion Middleware Solution Guide for Oracle TopLink

• EclipseLink project home at http://wiki.eclipse.org/EclipseLink

• EclipseLink Documentation Center at http://wiki.eclipse.org/EclipseLink/UserGuide

• Java API Reference for EclipseLink at http://www.eclipse.org/eclipselink/api/latest/
index.html

• EclipseLink examples at http://wiki.eclipse.org/EclipseLink/Examples

• Oracle Coherence Developer’s Guide

• Oracle Fusion Middleware Integration Guide for Oracle TopLink with Coherence Grid

Using Oracle TopLink in Eclipse GlassFish
To run TopLink JPA applications in Eclipse GlassFish, you must configure the server and coordinate
certain server and application settings. These are described in the following steps. For a summary
of these steps, see "Using TopLink with WebLogic Server" in Oracle Fusion Middleware Solution
Guide for Oracle TopLink. For more detailed explanations of these steps, see the links in the steps.

1. Set up the datasource. See " Administering Database Connectivity" in Eclipse GlassFish
Administration Guide.

2. Create the application. For guidance in writing your application, see Persistence in The Jakarta
EE Tutorial.

3. Create the persistence.xml file. See Specifying the Database for an Application for
considerations specific to Eclipse GlassFish.

If you are using the Java Persistence API by calling Persistence.createEMF(), see Specifying the
Persistence Provider for an Application.

4. If the security manager is enabled and you are using the Java Persistence API by calling

78

http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html
http://www.eclipse.org/eclipselink/downloads/
http://docs.oracle.com/html/E25034_01.html
http://wiki.eclipse.org/EclipseLink
http://wiki.eclipse.org/EclipseLink/UserGuide
http://www.eclipse.org/eclipselink/api/latest/index.html
http://www.eclipse.org/eclipselink/api/latest/index.html
http://wiki.eclipse.org/EclipseLink/Examples
http://docs.oracle.com/cd/E18686_01/coh.37/e18677.html
http://docs.oracle.com/cd/E17904_01/doc.1111/e16596.html
http://docs.oracle.com/html/E25034_01/tlandgs.html#CIHDDACF
https://glassfish.org/docs/latest/administration-guide.pdf#administering-database-connectivity
https://eclipse-ee4j.github.io/jakartaee-tutorial/#persistence

Persistence.createEMF(), see Enabling and Disabling the Security Manager.

5. Deploy the application. See the Eclipse GlassFish Application Deployment Guide.

6. Run the application. See "Application Client Launch" and "To Launch an Application" in
Administration Console online help.

7. Monitor the application. See " Administering the Monitoring Service" in Eclipse GlassFish
Administration Guide.

Specifying the Database for an Application
Eclipse GlassFish uses the bundled Apache Derby database by default, named jdbc/__default. If the
transaction-type element is omitted or specified as JTA and both the jta-data-source and non-jta-
data-source elements are omitted in the persistence.xml file, Apache Derby is used as a JTA data
source. If transaction-type is specified as RESOURCE_LOCAL and both jta-data-source and non-jta-
data-source are omitted, Apache Derby is used as a non-JTA data source.

To use a non-default database, either specify a value for the jta-data-source element, or set the
transaction-type element to RESOURCE_LOCAL and specify a value for the non-jta-data-source
element.

If you are using the default persistence provider, the provider attempts to automatically detect the
database type based on the connection metadata. This database type is used to issue SQL statements
specific to the detected database type’s dialect. You can specify the optional eclipselink.target-
database property to guarantee that the database type is correct. For example:

<?xml version="1.0" encoding="UTF-8"?>
 <persistence xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name ="em1">
 <jta-data-source>jdbc/MyDB2DB</jta-data-source>
 <properties>
 <property name="eclipselink.target-database"
 value="DB2"/>
 </properties>
 </persistence-unit>
 </persistence>

The following eclipselink.target-database property values are allowed. Supported platforms have
been tested with the Eclipse GlassFish and are found to be Jakarta EE compatible.

//Supported platforms
JavaDB
Derby
Oracle
MySQL4
//Others available
SQLServer
DB2
Sybase

79

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service

PostgreSQL
Informix
TimesTen
Attunity
HSQL
SQLAnyWhere
DBase
DB2Mainframe
Cloudscape
PointBase

For more information about the eclipselink.target-database property, see Using EclipseLink JPA
Extensions for Session, Target Database and Target Application Server (http://wiki.eclipse.org/
Using_EclipseLink_JPA_Extensions_(ELUG)#
Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server).

If you are using the Java Persistence API by calling Persistence.createEMF(), do not specify the jta-
data-source or non-jta-data-source elements. Instead, specify the provider element and any
additional properties required by the JDBC driver or the database. For example:

<?xml version="1.0" encoding="UTF-8"?>
 <persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name ="em2">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>ejb3.war.servlet.JpaBean</class>
 <properties>
 <property name="eclipselink.target-database"
 value="Derby"/>
 <!-- JDBC connection properties -->
 <property name="eclipselink.jdbc.driver" value=
"org.apache.derby.jdbc.ClientDriver"/>
 <property name="eclipselink.jdbc.url"
value="jdbc:derby://localhost:1527/testdb;retrieveMessagesFromServerOnGetMessage=true;
create=true;"/>
 <property name="eclipselink.jdbc.user" value="APP"/>
 <property name="eclipselink.jdbc.password" value="APP"/>
 </properties>
 </persistence-unit>
 </persistence>

For a list of the JDBC drivers currently supported by the Eclipse GlassFish, see the Eclipse GlassFish
Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for
JDBC Drivers" in Eclipse GlassFish Administration Guide.

Specifying the Persistence Provider for an Application
If you are using the default persistence provider in an application that uses the Java Persistence API
by injecting or looking up an entity manager or entity manager factory, you do not need to specify

80

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Session.2C_Target_Database_and_Target_Application_Server
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers

the provider.

If you are using the Java Persistence API by calling Persistence.createEMF(), you should always
specify the persistence provider for specification compliance. To specify the default provider, set
the provider element of the persistence.xml file to
org.eclipse.persistence.jpa.PersistenceProvider.

You can specify a non-default persistence provider for an application in the manner described in
the Java Persistence API Specification:

1. Install the provider. Copy the provider JAR files to the domain-dir/lib directory, and restart the
Eclipse GlassFish. For more information about the domain-dir/lib directory, see Using the
Common Class Loader. The new persistence provider is now available to all modules and
applications deployed on servers that share the same configuration.

However, the default provider remains the same, Oracle TopLink or EclipseLink.

2. In your persistence unit, specify the provider and any properties the provider requires in the
persistence.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
 <persistence xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name ="em3">
 <provider>com.company22.persistence.PersistenceProviderImpl</provider>
 <properties>
 <property name="company22.database.name" value="MyDB"/>
 </properties>
 </persistence-unit>
 </persistence>

To specify the provider programmatically instead of in the persistence.xml file, set the
javax.persistence.provider property and pass it to the Map parameter of the following method:

javax.persistence.Persistence.createEntityManagerFactory(String, Map)

Primary Key Generation Defaults
In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator annotations in
the Java Persistence Specification, certain defaults are noted as specific to the persistence provider.
The default persistence provider’s primary key generation defaults are listed here.

@GeneratedValue defaults are as follows:

• Using strategy=AUTO (or no strategy) creates a @TableGenerator named SEQ_GEN with default
settings. Specifying a generator has no effect.

• Using strategy=TABLE without specifying a generator creates a @TableGenerator named
SEQ_GEN_TABLE with default settings. Specifying a generator but no @TableGenerator creates and

81

names a @TableGenerator with default settings.

• Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are database-
specific.

◦ For Oracle databases, not specifying a generator creates a @SequenceGenerator named
SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no @SequenceGenerator
creates and names a @SequenceGenerator with default settings.

◦ For PostgreSQL databases, a SERIAL column named entity-table`_`pk-column`_SEQ` is
created.

◦ For MySQL databases, an AUTO_INCREMENT column is created.

◦ For other supported databases, an IDENTITY column is created.

The @SequenceGenerator annotation has one default specific to the default provider. The default
sequenceName is the specified name.

@TableGenerator defaults are as follows:

• The default table is SEQUENCE.

• The default pkColumnName is SEQ_NAME.

• The default valueColumnName is SEQ_COUNT.

• The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation
The automatic schema generation feature of the Eclipse GlassFish defines database tables based on
the fields or properties in entities and the relationships between the fields or properties. This
insulates developers from many of the database related aspects of development, allowing them to
focus on entity development. The resulting schema is usable as-is or can be given to a database
administrator for tuning with respect to performance, security, and so on.

The following topics are addressed here:

• Annotations

• Generation Options



Automatic schema generation is supported on an all-or-none basis: it expects that
no tables exist in the database before it is executed. It is not intended to be used as
a tool to generate extra tables or constraints.

Deployment won’t fail if all tables are not created, and undeployment won’t fail if
not all tables are dropped. Instead, an error is written to the server log. This is
done to allow you to investigate the problem and fix it manually. You should not
rely on the partially created database schema to be correct for running the
application.

82

Annotations

The following annotations are used in automatic schema generation: @AssociationOverride,
@AssociationOverrides, @AttributeOverride, @AttributeOverrides, @Column, @DiscriminatorColumn,
@DiscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue, @Id, @IdClass, @JoinColumn,
@JoinColumns, @JoinTable, @Lob, @ManyToMany, @ManyToOne, @OneToMany, @OneToOne, @PrimaryKeyJoinColumn,
@PrimaryKeyJoinColumns, @SecondaryTable, @SecondaryTables, @SequenceGenerator, @Table,
@TableGenerator, @UniqueConstraint, and @Version. For information about these annotations, see the
Java Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic schema
generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the resulting DDL
files.

Generation Options

Schema generation properties or asadmin command line options can control automatic schema
generation by the following:

• Creating tables during deployment

• Dropping tables during undeployment

• Dropping and creating tables during redeployment

• Generating the DDL files


Before using these options, make sure you have a properly configured database.
See Specifying the Database for an Application.

Optional schema generation properties control the automatic creation of database tables. You can
specify them in the persistence.xml file. For more information, see Using EclipseLink JPA
Extensions for Schema Generation (http://wiki.eclipse.org/
Using_EclipseLink_JPA_Extensions_(ELUG)#
Using_EclipseLink_JPA_Extensions_for_Schema_Generation).

The following options of the asadmin deploy or asadmin deploydir command control the automatic
creation of database tables at deployment.

Table 6-1 The asadmin deploy and asadmin deploydir Generation Options

Option Default Description

--createtabl
es

none If true, causes database tables to be
created for entities that need them.
No unique constraints are created.
If false, does not create tables. If
not specified, the value of the
eclipselink.ddl-generation
property in persistence.xml is used.

83

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_(ELUG)#Using_EclipseLink_JPA_Extensions_for_Schema_Generation

Option Default Description

--dropandcre
atetables

none If true, and if tables were
automatically created when this
application was last deployed,
tables from the earlier deployment
are dropped and fresh ones are
created.

If true, and if tables were not
automatically created when this
application was last deployed, no
attempt is made to drop any tables.
If tables with the same names as
those that would have been
automatically created are found,
the deployment proceeds, but a
warning is thrown to indicate that
tables could not be created.

If false, the eclipselink.ddl-
generation property setting in
persistence.xml is overridden.

The following options of the asadmin undeploy command control the automatic removal of database
tables at undeployment.

Table 6-2 The asadmin undeploy Generation Options

Option Default Description

--dropt
ables

none If true, causes database tables that were
automatically created when the entities
were last deployed to be dropped when
the entities are undeployed. If false,
does not drop tables.

If not specified, tables are dropped only
if the eclipselink.ddl-generation
property setting in persistence.xml is
drop-and-create-tables.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy
commands, see the Eclipse GlassFish Reference Manual.

When asadmin deployment options and persistence.xml options are both specified, the asadmin
deployment options take precedence.

84

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the Java
Persistence API.

The following topics are addressed here:

• Oracle Database Enhancements

• Extended Persistence Context

• Using @OrderBy with a Shared Session Cache

• Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver

• Database Case Sensitivity

• Sybase Finder Limitation

• MySQL Database Restrictions

Oracle Database Enhancements

EclipseLink features a number of enhancements for use with Oracle databases. These
enhancements require classes from the Oracle JDBC driver JAR files to be visible to EclipseLink at
runtime. If you place the JDBC driver JAR files in domain-dir/lib, the classes are not visible to
Eclipse GlassFish components, including EclipseLink.

If you are using an Oracle database, put JDBC driver JAR files in domain-dir/lib/ext instead. This
ensures that the JDBC driver classes are visible to EclipseLink.

If you do not want to take advantage of Oracle-specific extensions from EclipseLink or you cannot
put JDBC driver JAR files in domain-dir/lib/ext, set the eclipselink.target-database property to the
value org.eclipse.persistence.platform.database.OraclePlatform. For more information about the
eclipselink.target-database property, see Specifying the Database for an Application.

Extended Persistence Context

The Java Persistence API specification does not specify how the container and persistence provider
should work together to serialize an extended persistence context. This also prevents successful
serialization of a reference to an extended persistence context in a stateful session bean.

Even in a single-instance environment, if a stateful session bean is passivated, its extended
persistence context could be lost when the stateful session bean is activated.

Therefore, in Eclipse GlassFish, a stateful session bean with an extended persistence context is
never passivated and cannot be failed over.

Using @OrderBy with a Shared Session Cache

Setting @OrderBy on a ManyToMany or OneToMany relationship field in which a List represents the Many
side doesn’t work if the session cache is shared. Use one of the following workarounds:

85

• Have the application maintain the order so the List is cached properly.

• Refresh the session cache using EntityManager.refresh() if you don’t want to maintain the order
during creation or modification of the List.

• Disable session cache sharing in persistence.xml as follows:

<property name="eclipselink.cache.shared.default" value="false"/>

Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver

To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC Driver
for Oracle Databases, you must set the database’s streamstolob property value to true.

Database Case Sensitivity

Mapping references to column or table names must be in accordance with the expected column or
table name case, and ensuring this is the programmer’s responsibility. If column or table names are
not explicitly specified for a field or entity, the Eclipse GlassFish uses upper case column names by
default, so any mapping references to the column or table names must be in upper case. If column
or table names are explicitly specified, the case of all mapping references to the column or table
names must be in accordance with the case used in the specified names.

The following are examples of how case sensitivity affects mapping elements that refer to columns
or tables. Keep case sensitivity in mind when writing these mappings.

Unique Constraints

If column names are not explicitly specified on a field, unique constraints and foreign key
mappings must be specified using uppercase references. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= {
"DEPTNAME" }) })

The other way to handle this is by specifying explicit column names for each field with the required
case. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= {
"deptName" }) })
public class Department{ @Column(name="deptName") private String deptName; }

Otherwise, the ALTER TABLE statement generated by the Eclipse GlassFish uses the incorrect case,
and the creation of the unique constraint fails.

Foreign Key Mapping

Use @OneToMany(mappedBy="COMPANY") or specify an explicit column name for the Company field on the

86

Many side of the relationship.

SQL Result Set Mapping

Use the following elements:

<sql-result-set-mapping name="SRSMName">
 <entity-result entity-class="entities.someEntity" />
 <column-result name="UPPERCASECOLUMNNAME" />
</sql-result-set-mapping>

Or specify an explicit column name for the upperCaseColumnName field.

Named Native Queries and JDBC Queries

Column or table names specified in SQL queries must be in accordance with the expected case. For
example, MySQL requires column names in the SELECT clause of JDBC queries to be uppercase,
while PostgreSQL and Sybase require table names to be uppercase in all JDBC queries.

PostgreSQL Case Sensitivity

PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve
column or table names in lowercase unless the names are quoted. For example:

use aliases Select m.ID AS \"ID\" from Department m

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation

If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type TEXT
and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype
'TEXT' to 'VARCHAR' is not allowed. Use the CONVERT function to run this query.

To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions

The following restrictions apply when you use a MySQL database with the Eclipse GlassFish for
persistence.

• MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields in
your table, use \`int1` and \`int2\` field names in your SQL file.

87

• When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an error
message, start the MySQL database in strict SQL mode.

• The order of fields in a foreign key index must match the order in the explicitly created index
on the primary table.

• The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having commit,
rollback, and crash recovery capabilities.

• For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four bytes
to store a FLOAT type that does not have an explicit precision definition. For example, this causes
a number such as 12345.67890123 to be rounded off to 12345.7 during an INSERT. To prevent
this, specify FLOAT(10,2) in the DDL file, which forces the database to use an eight-byte double-
precision column. For more information, see http://dev.mysql.com/doc/mysql/en/numeric-
types.html.

• To use || as the string concatenation symbol, start the MySQL server with the --sql
-mode="PIPES_AS_CONCAT" option. For more information, see http://dev.mysql.com/doc/refman/
5.0/en/server-sql-mode.html and http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

• MySQL always starts a new connection when autoCommit==true is set. This ensures that each SQL
statement forms a single transaction on its own. If you try to rollback or commit an SQL
statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:
Can't call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:
Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information, see
http://forums.mysql.com/read.php?39,31326,31404.

• MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an example
that illustrates the issue.

create table EMPLOYEE (
 empId int NOT NULL,
 salary float(25,2) NULL,
 mgrId int NULL,
 PRIMARY KEY (empId),
 FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
) ENGINE=InnoDB;

 insert into Employee values (1, 1234.34, 1);

88

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

 delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:
a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (
 empId int NOT NULL,
 salary float(25,2) NULL,
 mgrId int NULL,
 PRIMARY KEY (empId),
 FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
 ON DELETE SET NULL
) ENGINE=InnoDB;

 insert into Employee values (1, 1234.34, 1);
 delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

89

http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

Chapter 12. Using Jakarta Data Repositories
This chapter describes how to use Jakarta Data repositories in Eclipse GlassFish applications.
Jakarta Data provides a standard API for data access that simplifies database operations through
repository interfaces and automatic query generation.

The following topics are addressed here:

• Overview of Jakarta Data

• Choosing Between JPA and NoSQL

• Basic Repository Example

• Defining Repository Interfaces

• Query Methods

• Custom Queries

• Method Name-Based Queries (Deprecated)

• Pagination and Sorting

• Configuring JPA Data Repositories

• Configuring NoSQL Data Repositories

• Transaction Management

• Jakarta Validation Support

• Limitations and Considerations

For more information about Jakarta Data 1.0.1, see the official Jakarta Data 1.0.1 documentation.

Overview of Jakarta Data
Jakarta Data is a specification that provides a standard API for data access in Jakarta EE
applications. It offers a repository-based programming model that reduces boilerplate code and
provides type-safe database operations.

Key features of Jakarta Data include:

• Repository interfaces with automatic implementation generation

• Query derivation from method names and annotations

• Support for custom queries using JDQL (Jakarta Data Query Language) or JPQL

• Built-in pagination and sorting capabilities

• Integration with Jakarta Persistence (JPA) for relational databases

• Integration with Jakarta NoSQL for NoSQL databases

• Type-safe query building

• Support for both SQL and NoSQL databases in the same application

90

https://jakarta.ee/specifications/data/1.0

Jakarta Data repositories work by defining interfaces that may extend base repository types. The
Jakarta Data provider automatically generates implementations of these interfaces at build time or
runtime.

In Eclipse GlassFish, Jakarta Data is implemented using Eclipse JNoSQL, which provides:

• Unified API - The same repository interfaces for both SQL and NoSQL databases

• Multi-database support - Support for SQL, Document, Key-Value, Wide-Column, and Graph
databases

• JPA integration - Seamless integration with existing JPA entities for relational databases

• NoSQL entities - Support for Jakarta NoSQL entities for NoSQL databases

• Automatic routing - Automatic database detection and query creation based on entity type

Choosing Between JPA and NoSQL
When deciding between JPA entities and NoSQL entities for your Jakarta Data repositories, consider
the following factors:

Factor JPA Entities NoSQL Entities

Database Type Relational databases (PostgreSQL,
MySQL, Oracle, etc.)

NoSQL databases (MongoDB,
Redis, Cassandra, Neo4j, etc.)

Data Structure Structured data with
relationships

Flexible schemas, nested
documents, key-value pairs

Transactions Full JTA transaction support Limited transaction support
(database-dependent)

Validation Jakarta Validation supported Manual validation required

Relationships Full relationship mapping
(@OneToMany, @ManyToOne,
etc.)

No relationship mapping (embed
or reference manually)

Query Language JPQL and JDQL JDQL only

Schema Evolution Requires database migrations Flexible schema changes

Scalability Vertical scaling (with some
horizontal options)

Horizontal scaling

ACID Properties Full ACID compliance Eventual consistency (varies by
database)

Use JPA entities when:

• You need strong consistency and ACID transactions

• Your data has complex relationships

• You require Jakarta Validation

• You’re working with existing relational database schemas

91

Use NoSQL entities when:

• You need flexible schemas and rapid development

• You’re working with large-scale, distributed data

• Your data is document-oriented or graph-based

• You need horizontal scalability

Basic Repository Example
This example shows a simple repository interface that extends CrudRepository for a Product JPA
entity. It demonstrates both the modern annotated approach and the deprecated method name-
based approach.

JPA Entity Example

import jakarta.persistence.*;
import jakarta.validation.constraints.*;

@Entity
@Table(name = "products")
public class Product {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 @Column(unique = true)
 @NotBlank(message = "Product code is required")
 @Size(max = 20, message = "Product code must not exceed 20 characters")
 private String code;

 @NotBlank(message = "Product name is required")
 @Size(max = 100, message = "Product name must not exceed 100 characters")
 private String name;

 private String category;

 @NotNull(message = "Price is required")
 @DecimalMin(value = "0.0", inclusive = false, message = "Price must be greater
than 0")
 private BigDecimal price;

 // Constructors, getters, and setters
}

92

Repository Interface (Recommended Approach)

import jakarta.data.repository.CrudRepository;
import jakarta.data.repository.Repository;
import jakarta.data.repository.Find;
import jakarta.data.repository.By;
import jakarta.data.repository.OrderBy;
import jakarta.data.repository.Query;

@Repository
public interface ProductRepository extends CrudRepository<Product, Long> {

 // Annotated queries using @Find and @By annotations (RECOMMENDED)
 @Find
 List<Product> findProducts(@By("name") String name);

 @Find
 Optional<Product> findProduct(@By("code") String code);

 @Find
 @OrderBy("price")
 List<Product> findProducts(@By("category") String category);

 // Custom query using JDQL
 @Query("WHERE price BETWEEN :minPrice AND :maxPrice ORDER BY price")
 List<Product> findProductsByPriceRange(BigDecimal minPrice, BigDecimal maxPrice);
}

Defining Repository Interfaces
Jakarta Data repositories are defined as interfaces annotated with @Repository annotation
(@jakarta.data.Repository). The interface can extend one of the base repository interfaces, which
provide ready-to-use methods:

• Repository<T, K> - Marker interface with no predefined methods

• CrudRepository<T, K> - Adds basic CRUD operations (save, findById, findAll, delete, etc.)

• PageableRepository<T, K> - Extends CrudRepository and adds pagination support

Query Methods
Jakarta Data supports automatic query generation using annotated methods with query
annotations like @Find, @Count, @Exists, and @Delete combined with parameter annotations like @By.
This is the recommended approach for defining repository methods.

Supported Query Annotations

• @Find - Find operations that return entities

93

• @Count - Count operations that return the number of matching entities

• @Exists - Existence checks that return boolean values

• @Delete - Delete operations that remove entities

• @Insert - Insert operations that create new entities

• @Update - Update operations that modify existing entities

• @Save - Save operations that insert or update entities

Parameter Annotations

• @By("propertyName") - Specifies the entity property to query by. Can be nested to specify
properties of referenced entities (e.g., @By("customer.address.city")).


If the application is compiled with parameter names preserved in bytecode (e.g.,
with javac -parameters), @By is not required. The property name will be derived
from the parameter name if the @By annotation is not present.

Annotated Query Examples

import jakarta.data.repository.*;

@Repository
public interface CustomerRepository extends CrudRepository<Customer, Long> {

 // Find by single property
 @Find
 List<Customer> findCustomers(@By("lastName") String lastName);

 // Multiple conditions (implicit AND)
 @Find
 List<Customer> findCustomers(@By("firstName") String firstName, @By("lastName")
String lastName);

 // Nested property access
 @Find
 List<Customer> findCustomers(@By("address.city") String city);

 // Counting
 @Count
 long countCustomers(@By("status") String status);

 // Existence checks
 @Exists
 boolean customerExists(@By("email") String email);

 // Delete operations
 @Delete
 void deleteCustomers(@By("status") String status);

94

 // Insert operations
 @Insert
 Customer insertCustomer(Customer customer);

 @Insert
 List<Customer> insertCustomers(List<Customer> customers);

 // Update operations
 @Update
 Customer updateCustomer(Customer customer);

 // Save operations (insert or update)
 @Save
 Customer saveCustomer(Customer customer);

 // Null value handling
 @Find
 List<Customer> findCustomers(@By("middleName") String middleName);

 default List<Customer> findCustomersWithNullMiddleName() {
 return findCustomers((String) null);
 }
}

Custom Queries
For complex queries that cannot be expressed through annotated methods, Jakarta Data supports
custom queries using the @Query annotation. Jakarta Data specifies its own query language called
JDQL (Jakarta Data Query Language), which is similar to JPQL (Java Persistence Query Language).
Eclipse GlassFish also supports full JPQL queries for JPA entities.

JDQL vs JPQL

JDQL (Jakarta Data Query Language):

• Simplified syntax that allows omitting the SELECT clause

• Automatically infers the entity type from the method return type

• Works with both JPA and NoSQL entities

• Example: WHERE customer.id = :customerId AND status = :status

JPQL (Java Persistence Query Language):

• Full SQL-like syntax with explicit SELECT clauses

• Only works with JPA entities

• More powerful for complex joins and projections

• Example: SELECT o FROM Order o WHERE o.customer.id = :customerId AND o.status = :status

95

Custom Query Examples

import jakarta.data.repository.Query;

@Repository
public interface OrderRepository extends CrudRepository<Order, Long> {

 // JDQL query - simplified syntax
 @Query("WHERE customer.id = :customerId AND status = :status")
 List<Order> findOrdersByCustomerAndStatus(Long customerId, String status);

 // JDQL query with range conditions
 @Query("WHERE orderDate BETWEEN :startDate AND :endDate ORDER BY orderDate DESC")
 List<Order> findOrdersByDateRange(LocalDate startDate, LocalDate endDate);

 // JDQL query with pattern matching
 @Query("WHERE customer.email LIKE :pattern")
 List<Order> findOrdersByCustomerEmailPattern(String pattern);

 // JDQL query with collection operations
 @Query("WHERE status IN :statuses")
 List<Order> findOrdersByStatuses(Collection<String> statuses);

 // JPQL query with explicit SELECT and JOIN (JPA entities only)
 @Query("SELECT o FROM Order o JOIN o.items i WHERE i.product.category = :category
")
 List<Order> findOrdersWithProductCategory(String category);

 // JPQL query with aggregation (JPA entities only)
 @Query("SELECT COUNT(o) FROM Order o WHERE o.orderDate >= :startDate")
 long countOrdersSince(LocalDate startDate);

 // JPQL query with projection (JPA entities only)
 @Query("SELECT NEW com.example.dto.OrderSummary(o.id, o.customer.name, o.total)
FROM Order o WHERE o.status = :status")
 List<OrderSummary> findOrderSummariesByStatus(String status);
}

Method Name-Based Queries (Deprecated)


Method name-based query derivation is deprecated and may be removed in future
versions. It’s provided for migrating existing code to Data repositories. For new
code, use the annotated approach shown in the previous sections instead.

Eclipse GlassFish also supports method name-based query derivation using a standardized naming
convention. While this approach is deprecated, it’s still supported for backward compatibility and
migration purposes.

96

Supported Keywords

• findBy, getBy, queryBy, readBy - Find operations

• countBy - Count operations

• existsBy - Existence checks

• deleteBy, removeBy - Delete operations

Property Expressions

• And, Or - Logical operators

• Between - Range queries

• LessThan, GreaterThan, LessThanEqual, GreaterThanEqual - Comparison operators

• Like, NotLike - Pattern matching

• In, NotIn - Collection membership

• IsNull, IsNotNull - Null checks

• True, False - Boolean values

• OrderBy - Sorting (can be combined with Asc or Desc)

Method Name-Based Query Examples

@Repository
public interface CustomerRepository extends CrudRepository<Customer, Long> {

 // Find by single property
 List<Customer> findByLastName(String lastName);

 // Multiple conditions with And
 List<Customer> findByFirstNameAndLastName(String firstName, String lastName);

 // Or conditions
 List<Customer> findByFirstNameOrLastName(String name);

 // Comparison operators
 List<Customer> findByAgeGreaterThan(int age);
 List<Customer> findByAgeLessThan(int age);
 List<Customer> findByAgeGreaterThanEqual(int age);
 List<Customer> findByAgeLessThanEqual(int age);
 List<Customer> findByAgeBetween(int minAge, int maxAge);

 // Pattern matching
 List<Customer> findByEmailLike(String pattern);
 List<Customer> findByEmailNotLike(String pattern);

 // Collection operations
 List<Customer> findByStatusIn(Collection<String> statuses);

97

 List<Customer> findByStatusNotIn(Collection<String> statuses);

 // Null checks
 List<Customer> findByMiddleNameIsNull();
 List<Customer> findByMiddleNameIsNotNull();

 // Boolean values
 List<Customer> findByActiveTrue();
 List<Customer> findByActiveFalse();

 // Sorting
 List<Customer> findByLastNameOrderByFirstNameAsc(String lastName);
 List<Customer> findByLastNameOrderByFirstNameDesc(String lastName);
 List<Customer> findByStatusOrderByLastNameAscFirstNameAsc(String status);

 // Counting
 long countByStatus(String status);
 long countByAgeGreaterThan(int age);

 // Existence checks
 boolean existsByEmail(String email);
 boolean existsByLastNameAndFirstName(String lastName, String firstName);

 // Delete operations
 void deleteByStatus(String status);
 long removeByAgeGreaterThan(int age);

 // Complex combinations
 List<Customer> findByLastNameAndAgeGreaterThanAndActiveTrue(String lastName, int
age);
 List<Customer> findByEmailLikeOrPhoneLike(String emailPattern, String
phonePattern);
}

Nested Property Access

Method names can also access nested properties using camel case:

@Repository
public interface OrderRepository extends CrudRepository<Order, Long> {

 // Access nested properties
 List<Order> findByCustomerLastName(String lastName);
 List<Order> findByCustomerAddressCity(String city);
 List<Order> findByCustomerAddressCountry(String country);

 // Complex nested queries
 List<Order> findByCustomerLastNameAndShippingAddressCity(String lastName, String
city);
 List<Order> findByCustomerActiveAndOrderDateGreaterThan(boolean active, LocalDate

98

date);
}

Pagination and Sorting
Jakarta Data provides built-in support for pagination and sorting through the Pageable and Sort
interfaces.

Using Pageable

import jakarta.data.repository.Pageable;
import jakarta.data.repository.Page;
import jakarta.data.repository.Sort;
import jakarta.data.repository.Find;
import jakarta.data.repository.By;

@Repository
public interface ProductRepository extends PageableRepository<Product, Long> {

 @Find
 Page<Product> findProducts(@By("category") String category, Pageable pageable);

 @Query("WHERE price > :price")
 List<Product> findProductsAbovePrice(BigDecimal price, Sort sort);
}

Usage Example

@Inject
private ProductRepository productRepository;

public void demonstratePagination() {
 // Create pageable request for page 0, size 10, sorted by name
 Pageable pageable = Pageable.of(0, 10, Sort.by("name").ascending());

 Page<Product> page = productRepository.findProducts("Electronics", pageable);

 List<Product> products = page.getContent();
 long totalElements = page.getTotalElements();
 int totalPages = page.getTotalPages();
 boolean hasNext = page.hasNext();
}

Configuring JPA Data Repositories
To use Jakarta Data repositories with JPA entities in your Eclipse GlassFish application, you need to:

99

1. Add Jakarta Data API dependency to your project

2. Configure a Jakarta Persistence persistence unit

3. Set up database connection (optional - uses default Derby database if not specified)

Adding Dependencies

Add the Jakarta Data API dependency to your pom.xml:

<dependency>
 <groupId>jakarta.data</groupId>
 <artifactId>jakarta.data-api</artifactId>
 <version>1.0.1</version>
 <scope>provided</scope>
</dependency>

Alternatively, if you’re using the full Jakarta EE platform:

<dependency>
 <groupId>jakarta.platform</groupId>
 <artifactId>jakarta.jakartaee-api</artifactId>
 <version>11.0.0</version>
 <scope>provided</scope>
</dependency>

Jakarta Persistence Configuration

Configure your persistence unit in persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="https://jakarta.ee/xml/ns/persistence" version="3.0">
 <persistence-unit name="default" transaction-type="JTA">
 <properties>
 <property name="jakarta.persistence.schema-generation.database.action"
value="create"/>
 </properties>
 </persistence-unit>
</persistence>

This configuration uses the default data source in Eclipse GlassFish, which points to a Derby
database. Make sure Derby is running using the start-database command.

Custom Data Source Configuration (Recommended)

For production applications, configure a custom data source using the Eclipse GlassFish
administration console or CLI commands:

100

https://glassfish.org/docs/latest/reference-manual.pdf#start-database

Create connection pool for PostgreSQL
asadmin create-jdbc-connection-pool \
 --datasourceclassname org.postgresql.ds.PGSimpleDataSource \
 --restype javax.sql.DataSource \
 --property
user=myuser:password=mypassword:databaseName=mydb:serverName=localhost:port=5432 \
 MyPool

Create JDBC resource
asadmin create-jdbc-resource --connectionpoolid MyPool jdbc/MyDataSource

Adjust the datasourceclassname and properties according to your database and JDBC driver.


For information on how to install JDBC drivers in Eclipse GlassFish, see
Administering Database Connectivity.


For more information about these commands, see create-jdbc-connection-pool
and create-jdbc-resource in the Reference Manual.

Then reference the custom data source in your persistence.xml:

<persistence-unit name="myPU" transaction-type="JTA">
 <jta-data-source>jdbc/MyDataSource</jta-data-source>
 <properties>
 <property name="jakarta.persistence.schema-generation.database.action" value=
"create"/>
 </properties>
</persistence-unit>

EntityManager Integration

You can access the EntityManager used by the repository for custom operations:

@Repository
public interface ProductRepository extends CrudRepository<Product, Long> {

 // Method to access the repository's EntityManager
 EntityManager getEntityManager();

 // Custom method using the repository's EntityManager
 default List<Product> findProductsWithComplexLogic(String searchTerm) {
 EntityManager em = getEntityManager();
 return em.createQuery(
 "SELECT p FROM Product p WHERE p.name LIKE :term OR p.description LIKE
:term",
 Product.class)
 .setParameter("term", "%" + searchTerm + "%")

101

https://glassfish.org/docs/latest/administration-guide.pdf#jdbc
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-resource

 .getResultList();
 }
}

EntityManager Configuration Options

By default, Jakarta Data repositories use the default EntityManager. You can customize this
behavior:

Option 1: Specify persistence unit name

Use the dataStore attribute of the @Repository annotation to specify which persistence unit the
repository should use.

@Repository(dataStore = "myPU")
public interface ProductRepository extends CrudRepository<Product, Long> {
 // Repository methods
}

Option 2: Use CDI qualifiers

Define a custom CDI qualifier and use it to inject a specific EntityManager.

@Repository
public interface ProductRepository extends CrudRepository<Product, Long> {

 @CustomDB
 EntityManager getEntityManager();
}

Option 3: Programmatic EntityManager selection

Define a default method in the repository interface that returns an EntityManager. This approach
allows you to programmatically select the appropriate EntityManager using CDI lookup, JNDI
lookup, or any other mechanism.

@Repository
public interface ProductRepository extends CrudRepository<Product, Long> {

 default EntityManager getEntityManager() {
 return CDI.current().select(EntityManager.class, new CustomDB.Literal()).get(
);
 }
}

102

Mixing Repository and EntityManager Operations

Repository methods and direct EntityManager operations can be used together in the same
transaction when they use the same persistence unit:

@ApplicationScoped
@Transactional
public class CustomerService {

 @Inject
 private EntityManager entityManager;

 @Inject
 private CustomerRepository customerRepository;

 public Customer updateCustomerWithAudit(Long customerId, CustomerUpdate update) {

 EntityManager repositoryEntityManager = customerRepository.getEntityManager();

 // Use repository for simple operations
 Customer customer = customerRepository.findById(customerId)
 .orElseThrow(() -> new EntityNotFoundException("Customer not found"));

 // Use EntityManager for complex operations
 AuditLog audit = new AuditLog();
 audit.setAction("UPDATE_CUSTOMER");
 audit.setEntityId(customerId);
 audit.setTimestamp(LocalDateTime.now());
 entityManager.persist(audit);

 // Alternatively, use the repository's EntityManager to ensure the same
persistence context
 repositoryEntityManager.flush();

 // Update using repository
 customer.setName(update.getName());
 customer.setEmail(update.getEmail());

 return customerRepository.save(customer);
 }
}

Configuring NoSQL Data Repositories
To use Jakarta Data repositories with NoSQL entities in your Eclipse GlassFish application, you need
to:

1. Add Jakarta Data and NoSQL API dependencies to your project

2. Add NoSQL database driver dependency

103

3. Configure database connection properties

4. Define NoSQL entities using Jakarta NoSQL annotations

Adding Dependencies

Add the Jakarta Data API dependency (as provided - only compile-time, not included in the
application):

<dependency>
 <groupId>jakarta.data</groupId>
 <artifactId>jakarta.data-api</artifactId>
 <version>1.0.1</version>
 <scope>provided</scope>
</dependency>

Add the Jakarta NoSQL API dependency (as provided - only compile-time, not included in the
application):

<dependency>
 <groupId>jakarta.nosql</groupId>
 <artifactId>jakarta.nosql-api</artifactId>
 <version>1.0.1</version>
 <scope>provided</scope>
</dependency>

Add the appropriate Eclipse JNoSQL database driver (the driver and its dependencies should be
added to the application). For example, for MongoDB:

<dependency>
 <groupId>org.eclipse.jnosql.databases</groupId>
 <artifactId>jnosql-mongodb</artifactId>
 <version>{jnosql-version}</version>
</dependency>



Eclipse GlassFish does not bundle NoSQL database drivers. You must add the
appropriate Eclipse JNoSQL database dependency and its transitive dependencies
to your application. If you use Maven or a similar build tool, it will pull all
transitive dependencies automatically.

NoSQL Database Categories

Eclipse JNoSQL supports four main categories of NoSQL databases:

104

Category Examples Use Cases

Document MongoDB, CouchDB,
CouchBase, ArangoDB

Content management, catalogs, user profiles
with nested data

Key-Value Redis, Hazelcast,
Memcached, Riak

Caching, session storage, shopping carts

Wide-Column Cassandra, HBase,
DynamoDB

Time-series data, IoT applications, analytics

Graph Neo4j, ArangoDB,
OrientDB

Social networks, recommendation engines,
fraud detection

NoSQL Entity Definition

NoSQL entities use Jakarta NoSQL annotations:

Annotation Description

@jakarta.nosql.Entity Specifies that the class is a NoSQL entity

@jakarta.nosql.Id Specifies the primary key of the entity

@jakarta.nosql.Column Maps a field to a database column/attribute

@jakarta.nosql.Convert Specifies a converter for the field

@jakarta.nosql.Embeddable Specifies that the class is embeddable

@jakarta.nosql.Inheritance Specifies inheritance mapping strategy for entities

@jakarta.nosql.Discriminato
rColumn

Specifies the discriminator column for the inheritance mapping
strategy

@jakarta.nosql.Discriminato
rValue

Specifies the discriminator value for the inheritance mapping
strategy

@jakarta.nosql.MappedSuperc
lass

Specifies a class whose mapping information is applied to entities
that inherit from it

Key differences from JPA annotations:

• No @Table annotation - collection/table name is specified in @Entity

• No relationship annotations (@OneToMany, @ManyToOne) - embed or reference manually

• No @GeneratedValue - primary keys must be assigned manually or assigned automatically be the
database

• No @Version for optimistic locking

• No @Transient - non-annotated fields are ignored by default

• Java record types are supported for read-only operations

NoSQL Entity Examples

Class-based entity with embedded objects:

105

import jakarta.nosql.Entity;
import jakarta.nosql.Id;
import jakarta.nosql.Column;
import jakarta.nosql.Embeddable;

@Entity("customers")
public class Customer {

 @Id
 private String id;

 @Column
 private String name;

 @Column
 private String email;

 @Column
 private Address address; // Embedded object

 @Column
 private List<String> tags;

 @Column
 private Map<String, Object> metadata;

 // Constructors, getters, and setters
}

@Embeddable
public class Address {
 @Column
 private String street;

 @Column
 private String city;

 @Column
 private String country;

 // Constructors, getters, and setters
}

Record-based entity (read-only):

@Entity("sensor_data")
public record SensorReading(
 @Id String id,
 @Column String sensorId,

106

 @Column LocalDateTime timestamp,
 @Column Double temperature,
 @Column Double humidity,
 @Column Map<String, Double> additionalMetrics
) {}

Repository Usage with NoSQL Entities

NoSQL entities work with the same repository interfaces as JPA entities:

@Repository
public interface CustomerRepository extends CrudRepository<Customer, String> {

 @Find
 List<Customer> findCustomers(@By("name") String name);

 @Find
 List<Customer> findCustomers(@By("address.city") String city);

 @Query("WHERE tags IN :tags")
 List<Customer> findCustomersByTags(List<String> tags);

 @Count
 long countCustomers(@By("address.country") String country);
}

@Repository
public interface SensorReadingRepository extends CrudRepository<SensorReading, String>
{

 @Find
 List<SensorReading> findReadings(@By("sensorId") String sensorId);

 @Query("WHERE timestamp BETWEEN :start AND :end")
 List<SensorReading> findByTimestampRange(LocalDateTime start, LocalDateTime end);

 @Count
 long countBySensorId(@By("sensorId") String sensorId);
}

Database Configuration

NoSQL database connections are configured using MicroProfile Config properties. Configuration
varies by database type and specific database.

MongoDB Configuration Example:

Add properties to your microprofile-config.properties file:

107

Document database configuration
jnosql.document.database=mystore
jnosql.mongodb.host=localhost:27017
jnosql.mongodb.user=myuser
jnosql.mongodb.password=mypassword

MongoDB-specific properties:

Property Description

jnosql.mongodb.host MongoDB server hostname and port (default:
localhost:27017)

jnosql.mongodb.user Username for MongoDB authentication

jnosql.mongodb.password Password for MongoDB authentication

jnosql.mongodb.authentication.source The source where the user is defined

jnosql.mongodb.authentication.mechani
sm

Authentication mechanism (see MongoDB JavaDoc)

Common Configuration Properties:

Property Description

jnosql.<type>.provider Fully qualified class name of the database configuration provider

jnosql.<type>.database Database name or identifier

jnosql.<database>.host Database host and port (format: host:port)

jnosql.<database>.user Username for authentication

jnosql.<database>.password Password for authentication

jnosql.<database>.timeout Connection timeout in milliseconds

Where <type> is one of: document, keyvalue, column, graph and <database> is the specific database
name.

Adding NoSQL Database Dependencies

To use a specific NoSQL database, add the corresponding Eclipse JNoSQL database dependency. For
example:

MongoDB (Document Database):

<dependency>
 <groupId>org.eclipse.jnosql.databases</groupId>
 <artifactId>jnosql-mongodb</artifactId>
 <version>{jnosql-version}</version>
</dependency>

108

Redis (Key-Value Database):

<dependency>
 <groupId>org.eclipse.jnosql.databases</groupId>
 <artifactId>jnosql-redis</artifactId>
 <version>{jnosql-version}</version>
</dependency>

Cassandra (Wide-Column Database):

<dependency>
 <groupId>org.eclipse.jnosql.databases</groupId>
 <artifactId>jnosql-cassandra</artifactId>
 <version>{jnosql-version}</version>
</dependency>

Neo4j (Graph Database):

<dependency>
 <groupId>org.eclipse.jnosql.databases</groupId>
 <artifactId>jnosql-neo4j</artifactId>
 <version>{jnosql-version}</version>
</dependency>

Supported NoSQL Databases

For an up-to-date list of supported databases and driver installation instructions, see the Eclipse
JNoSQL Databases repository.

Document Databases: MongoDB, CouchDB, CouchBase, OrientDB, ArangoDB, RavenDB,
Elasticsearch, Solr

Key-Value Databases: Redis, Hazelcast, Infinispan, Memcached, Riak, Oracle NoSQL, ArangoDB

Wide-Column Databases: Cassandra, HBase, DynamoDB

Graph Databases: Neo4j, OrientDB, ArangoDB, TinkerPop-compatible databases

Programmatic Configuration

You can configure NoSQL databases programmatically by creating a configuration supplier. The
supplier is typically a CDI bean that implements the Supplier interface. it should be annotated with
@Alternative and @Priority to override the default configuration.

For example, a supplier for MongoDB:

@ApplicationScoped

109

https://github.com/eclipse-jnosql/jnosql-databases/
https://github.com/eclipse-jnosql/jnosql-databases/

@Alternative
@Priority(Interceptor.Priority.APPLICATION)
public class MongoDBManagerSupplier implements Supplier<DocumentManager> {

 @Produces
 public DocumentManager get() {
 Settings settings = Settings.builder()
 .put("jnosql.mongodb.host", "localhost:27017")
 .put("jnosql.document.database", "mystore")
 .build();

 MongoDBDocumentConfiguration configuration = new MongoDBDocumentConfiguration
();
 DocumentManagerFactory factory = configuration.apply(settings);
 return factory.apply("mystore");
 }
}

Transaction Management
Jakarta Data repositories integrate with Jakarta EE transaction management for JPA entities.
Repository methods automatically participate in existing transactions or create new ones as
needed.


Transaction management is currently only supported for JPA entities. NoSQL
repositories do not support JTA transactions yet.

Declarative Transactions

import jakarta.ejb.Stateless;
import jakarta.transaction.Transactional;

@ApplicationScoped
public class OrderService {

 @Inject
 private OrderRepository orderRepository;

 @Inject
 private ProductRepository productRepository;

 @Transactional
 public Order createOrder(OrderRequest request) {
 // All repository operations participate in the same transaction
 Product product = productRepository.findById(request.getProductId())
 .orElseThrow(() -> new IllegalArgumentException("Product not found"));

 Order order = new Order();

110

 order.setProduct(product);
 order.setQuantity(request.getQuantity());
 order.setCustomerId(request.getCustomerId());

 return orderRepository.save(order);
 }
}

Custom Transaction Behavior

You can override the default transaction behavior using the @Transactional annotation:

@Repository
public interface AuditRepository extends CrudRepository<AuditLog, Long> {

 @Transactional(Transactional.TxType.REQUIRES_NEW)
 AuditLog save(AuditLog auditLog);
}

By default, repository methods use REQUIRED transaction type, which means they join an existing
transaction or create a new one if none exists.

Jakarta Validation Support
Jakarta Data repositories integrate with Jakarta Validation to validate method parameters and
return values for JPA entities.


Validation is currently only supported for JPA entities. NoSQL repositories do not
support Jakarta Validation yet.

Parameter Validation

For simple field validation, use annotations directly on parameters:

@Repository
public interface ProductRepository extends CrudRepository<Product, Long> {

 @Find
 List<Product> findProducts(@By("price") @Max(1000) @Min(0) BigDecimal maxPrice);

 @Find
 List<Product> findProducts(@By("category") @NotBlank String category);
}

For entities with validation annotations, use @Valid on the parameter:

111

@Repository
public interface ProductRepository extends CrudRepository<Product, Long> {

 @Insert
 Product insertProduct(@Valid Product product);

 @Update
 Product updateProduct(@Valid Product product);

 @Save
 Product saveProduct(@Valid Product product);
}

Handling Validation Errors

Validation errors are thrown as ConstraintViolationException:

@ApplicationScoped
public class ProductService {

 private static final System.Logger logger = System.getLogger(ProductService.class
.getName());

 @Inject
 private ProductRepository productRepository;

 public Product createProduct(Product product) {
 try {
 return productRepository.insertProduct(product);
 } catch (ConstraintViolationException e) {
 Set<ConstraintViolation<?>> violations = e.getConstraintViolations();
 for (ConstraintViolation<?> violation : violations) {
 String property = violation.getPropertyPath().toString();
 String message = violation.getMessage();
 logger.log(System.Logger.Level.ERROR,
 () -> "Validation error on " + property + ": " + message);
 }
 throw e;
 }
 }
}

Limitations and Considerations

General Limitations

Single NoSQL Database Type per Application

112

Eclipse GlassFish supports only one NoSQL database per application instance.

On the other hand, you can use multiple JPA persistence units in the same application. You can also
use both JPA and NoSQL Data repositories simultaneously in the same application.

Repository Interface Restrictions

• Each repository must be dedicated to a single entity type

• For JPA entities, each repository must use a single persistence unit

• You cannot mix JPA and NoSQL entities in the same repository interface

Mixed JPA and NoSQL Entity Usage

You can use both JPA entities and NoSQL entities in the same Eclipse GlassFish application by
defining separate repository interfaces for each entity type and configuring the appropriate
database connections. However, there are important restrictions:

Separate Repository Interfaces Required You cannot mix JPA entities and NoSQL entities in the
same repository interface. Each repository must be dedicated to a single entity type:

// JPA repository - works with relational database
@Repository
public interface JpaProductRepository extends CrudRepository<JpaProduct, Long> {
 @Find
 List<JpaProduct> findProducts(@By("category") String category);
}

// NoSQL repository - works with NoSQL database
@Repository
public interface NoSqlProductRepository extends CrudRepository<NoSqlProduct, String> {
 @Find
 List<NoSqlProduct> findProducts(@By("category") String category);
}

Separate Database Configurations Configure separate database connections for JPA and NoSQL
entities:

• JPA entities use persistence.xml and JDBC data sources

• NoSQL entities use MicroProfile Config properties

No Cross-Database Transactions Transactions cannot span across JPA and NoSQL databases. Each
database type manages its own transaction context.

JPA Entity Considerations

• Full JTA transaction support

• Jakarta Validation integration

113

• JPQL and JDQL query support

NoSQL Entity Limitations

Current Limitations:

No Jakarta Validation Support Validation annotations on NoSQL entities and repository
parameters are ignored. Implement validation manually:

@ApplicationScoped
public class NoSQLProductService {

 private static final System.Logger logger = System.getLogger(NoSQLProductService
.class.getName());

 @Inject
 private NoSQLProductRepository repository;

 public NoSQLProduct createProduct(NoSQLProduct product) {
 // Manual validation
 if (product.getName() == null || product.getName().isBlank()) {
 throw new IllegalArgumentException("Product name is required");
 }
 if (product.getPrice() == null || product.getPrice().compareTo(BigDecimal.
ZERO) <= 0) {
 throw new IllegalArgumentException("Product price must be greater than
zero");
 }

 logger.log(System.Logger.Level.INFO, () -> "Creating product: " + product
.getName());
 return repository.save(product);
 }
}

No JTA Transaction Support NoSQL repositories do not participate in JTA transactions. Manage
transactions manually if supported by your database:

@ApplicationScoped
public class NoSQLOrderService {

 private static final System.Logger logger = System.getLogger(NoSQLOrderService
.class.getName());

 @Inject
 private NoSQLOrderRepository orderRepository;

 @Inject
 private NoSQLCustomerRepository customerRepository;

114

 public void processOrder(NoSQLOrder order) {
 // No automatic transaction management
 // Implement compensation logic if needed
 try {
 orderRepository.save(order);
 // Update customer separately - no transaction guarantees
 NoSQLCustomer customer = customerRepository.findById(order.getCustomerId(
))
 .orElseThrow();
 customer.incrementOrderCount();
 customerRepository.save(customer);

 logger.log(System.Logger.Level.INFO, () -> "Order processed successfully"
);
 } catch (Exception e) {
 logger.log(System.Logger.Level.ERROR, () -> "Failed to process order: " +
e.getMessage());
 // Implement manual rollback if needed
 throw e;
 }
 }
}

Single NoSQL Database per Application You can only configure one NoSQL database per
application instance.

Common Issues and Troubleshooting

Configuration Issues:

• Verify database drivers are properly installed

• Check MicroProfile Config properties syntax

• Ensure persistence.xml is in the correct location

• Validate JNDI resource names match configuration

Runtime Issues:

• Check database connectivity and credentials

• Verify entity annotations are correct

• Ensure repository interfaces are properly annotated

• Review application logs for detailed error messages

For more detailed troubleshooting, enable debug logging:

Enable Jakarta Data and JNoSQL debug logging
org.eclipse.jnosql.level=FINE

115

org.glassfish.main.jnosql.level=FINE
Enable EclipseLink (Jakarta Persistence) logging
org.eclipse.persistence.level=FINE

116

Chapter 13. Developing Web Applications
This chapter describes how web applications are supported in the Eclipse GlassFish.

The following topics are addressed here:

• Using Servlets

• Using JavaServer Pages

• Creating and Managing Sessions

• Using Comet

• Advanced Web Application Features

For general information about web applications, see " The Web Tier" in The Jakarta EE Tutorial.



The Web Profile of the Eclipse GlassFish supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The
full Eclipse GlassFish supports the entire EJB 3.1 specification. For details, see JSR
318 (http://jcp.org/en/jsr/detail?id=318).

Using Servlets
Eclipse GlassFish supports the Java Servlet Specification version 4.0.


Servlet API version 4.0 is fully backward compatible with versions 3.0, 2.3, 2.4, and
2.5, so all existing servlets should work without modification or recompilation.

To develop servlets, use the Java Servlet API. For information about using the Java Servlet API, see
the documentation at https://jakarta.ee/specifications/servlet/.

The Eclipse GlassFish provides the wscompile and wsdeploy tools to help you implement a web
service endpoint as a servlet. For more information about these tools, see the Eclipse GlassFish
Reference Manual.

This section describes how to create effective servlets to control application interactions running on
a Eclipse GlassFish, including standard-based servlets. In addition, this section describes the Eclipse
GlassFish features to use to augment the standards.

The following topics are addressed here:

• Caching Servlet Results

• About the Servlet Engine

Caching Servlet Results

The Eclipse GlassFish can cache the results of invoking a servlet, a JSP, or any URL pattern to make
subsequent invocations of the same servlet, JSP, or URL pattern faster. The Eclipse GlassFish caches

117

https://eclipse-ee4j.github.io/jakartaee-tutorial/#getting-started-with-web-applications
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
https://jakarta.ee/specifications/servlet/
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

the request results for a specific amount of time. In this way, if another data call occurs, the Eclipse
GlassFish can return the cached data instead of performing the operation again. For example, if
your servlet returns a stock quote that updates every 5 minutes, you set the cache to expire after
300 seconds.

Whether to cache results and how to cache them depends on the data involved. For example, it
makes no sense to cache the results of a quiz submission, because the input to the servlet is
different each time. However, it makes sense to cache a high level report showing demographic
data taken from quiz results that is updated once an hour.

To define how a Eclipse GlassFish web application handles response caching, you edit specific fields
in the glassfish-web.xml file.

 A servlet that uses caching is not portable.

For Javadoc tool pages relevant to caching servlet results, see the com.sun.appserv.web.cache
package.

For information about JSP caching, see JSP Caching.

The following topics are addressed here:

• Caching Features

• Default Cache Configuration

• Caching Example

• The CacheKeyGenerator Interface

Caching Features

The Eclipse GlassFish has the following web application response caching capabilities:

• Caching is configurable based on the servlet name or the URI.

• When caching is based on the URI, this includes user specified parameters in the query string.
For example, a response from /garden/catalog?category=roses is different from a response from
/garden/catalog?category=lilies. These responses are stored under different keys in the cache.

• Cache size, entry timeout, and other caching behaviors are configurable.

• Entry timeout is measured from the time an entry is created or refreshed. To override this
timeout for an individual cache mapping, specify the cache-mapping subelement timeout.

• To determine caching criteria programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheHelper interface. For example, if only a servlet knows when a
back end data source was last modified, you can write a helper class to retrieve the last
modified timestamp from the data source and decide whether to cache the response based on
that timestamp.

• To determine cache key generation programmatically, write a class that implements the
com.sun.appserv.web.cache.CacheKeyGenerator interface. See The CacheKeyGenerator
Interface.

118

• All non-ASCII request parameter values specified in cache key elements must be URL encoded.
The caching subsystem attempts to match the raw parameter values in the request query string.

• Since newly updated classes impact what gets cached, the web container clears the cache
during dynamic deployment or reloading of classes.

• The following HttpServletRequest request attributes are exposed.

◦ com.sun.appserv.web.cachedServletName, the cached servlet target

◦ com.sun.appserv.web.cachedURLPattern, the URL pattern being cached

• Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are cached if caching has been enabled for those resources. For
details, see "cache-mapping" in Eclipse GlassFish Application Deployment Guide and "
dispatcher" in Eclipse GlassFish Application Deployment Guide. These are elements in the
glassfish-web.xml file.

Default Cache Configuration

If you enable caching but do not provide any special configuration for a servlet or JSP, the default
cache configuration is as follows:

• The default cache timeout is 30 seconds.

• Only the HTTP GET method is eligible for caching.

• HTTP requests with cookies or sessions automatically disable caching.

• No special consideration is given to Pragma:, Cache-control:, or Vary: headers.

• The default key consists of the Servlet Path (minus pathInfo and the query string).

• A "least recently used" list is maintained to evict cache entries if the maximum cache size is
exceeded.

• Key generation concatenates the servlet path with key field values, if any are specified.

• Results produced by resources that are the target of a RequestDispatcher.include() or
RequestDispatcher.forward() call are never cached.

Caching Example

Here is an example cache element in the glassfish-web.xml file:

<cache max-capacity="8192" timeout="60">
<cache-helper name="myHelper" class-name="MyCacheHelper"/>
<cache-mapping>
 <servlet-name>myservlet</servlet-name>
 <timeout name="timefield">120</timeout>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
</cache-mapping>
<cache-mapping>
 <url-pattern> /catalog/* </url-pattern>
 <!-- cache the best selling category; cache the responses to

119

https://glassfish.org/docs/latest/application-deployment-guide.pdf#cache-mapping
https://glassfish.org/docs/latest/../application-deployment-guide.pdf#dispatcher

 -- this resource only when the given parameters exist. Cache
 -- only when the catalog parameter has 'lilies' or 'roses'
 -- but no other catalog varieties:
 -- /orchard/catalog?best&category='lilies'
 -- /orchard/catalog?best&category='roses'
 -- but not the result of
 -- /orchard/catalog?best&category='wild'
 -->
 <constraint-field name='best' scope='request.parameter'/>
 <constraint-field name='category' scope='request.parameter'>
 <value> roses </value>
 <value> lilies </value>
 </constraint-field>
 <!-- Specify that a particular field is of given range but the
 -- field doesn't need to be present in all the requests -->
 <constraint-field name='SKUnum' scope='request.parameter'>
 <value match-expr='in-range'> 1000 - 2000 </value>
 </constraint-field>
 <!-- cache when the category matches with any value other than
 -- a specific value -->
 <constraint-field name="category" scope="request.parameter>
 <value match-expr="equals" cache-on-match-failure="true">
 bogus
 </value>
 </constraint-field>
</cache-mapping>
<cache-mapping>
 <servlet-name> InfoServlet </servlet-name>
 <cache-helper-ref>myHelper</cache-helper-ref>
</cache-mapping>
</cache>

For more information about the glassfish-web.xml caching settings, see "cache" in Eclipse GlassFish
Application Deployment Guide.

The CacheKeyGenerator Interface

The built-in default CacheHelper implementation allows web applications to customize the key
generation. An application component (in a servlet or JSP) can set up a custom CacheKeyGenerator
implementation as an attribute in the ServletContext.

The name of the context attribute is configurable as the value of the cacheKeyGeneratorAttrName
property in the default-helper element of the glassfish-web.xml deployment descriptor. For more
information, see "default-helper" in Eclipse GlassFish Application Deployment Guide.

About the Servlet Engine

Servlets exist in and are managed by the servlet engine in the Eclipse GlassFish. The servlet engine
is an internal object that handles all servlet meta functions. These functions include instantiation,
initialization, destruction, access from other components, and configuration management.

120

https://glassfish.org/docs/latest/application-deployment-guide.pdf#cache
https://glassfish.org/docs/latest/application-deployment-guide.pdf#default-helper

The following topics are addressed here:

• Instantiating and Removing Servlets

• Request Handling

Instantiating and Removing Servlets

After the servlet engine instantiates the servlet, the servlet engine calls the servlet’s init method to
perform any necessary initialization. You can override this method to perform an initialization
function for the servlet’s life, such as initializing a counter.

When a servlet is removed from service, the servlet engine calls the destroy method in the servlet
so that the servlet can perform any final tasks and deallocate resources. You can override this
method to write log messages or clean up any lingering connections that won’t be caught in
garbage collection.

Request Handling

When a request is made, the Eclipse GlassFish hands the incoming data to the servlet engine. The
servlet engine processes the request’s input data, such as form data, cookies, session information,
and URL name-value pairs, into an HttpServletRequest request object type.

The servlet engine also creates an HttpServletResponse response object type. The engine then passes
both as parameters to the servlet’s service method.

In an HTTP servlet, the default service method routes requests to another method based on the
HTTP transfer method: POST, GET, DELETE, HEAD, OPTIONS, PUT, or TRACE. For example, HTTP POST
requests are sent to the doPost method, HTTP GET requests are sent to the doGet method, and so on.
This enables the servlet to process request data differently, depending on which transfer method is
used. Since the routing takes place in the service method, you generally do not override service in
an HTTP servlet. Instead, override doGet, doPost, and so on, depending on the request type you
expect.

To perform the tasks to answer a request, override the service method for generic servlets, and the
doGet or doPost methods for HTTP servlets. Very often, this means accessing EJB components to
perform business transactions, then collating the information in the request object or in a JDBC
ResultSet object.

Using JavaServer Pages
The Eclipse GlassFish supports the following JSP features:

• JavaServer Pages (JSP) Specification

• Precompilation of JSP files, which is especially useful for production servers

• JSP tag libraries and standard portable tags

For information about creating JSP files, see the JavaServer Pages web site at https://jakarta.ee/
specifications/pages/.

121

https://jakarta.ee/specifications/pages/
https://jakarta.ee/specifications/pages/

This section describes how to use JavaServer Pages (JSP files) as page templates in a Eclipse
GlassFish web application.

The following topics are addressed here:

• JSP Tag Libraries and Standard Portable Tags

• JSP Caching

• Options for Compiling JSP Files

JSP Tag Libraries and Standard Portable Tags

Eclipse GlassFish supports tag libraries and standard portable tags. For more information, see the
JavaServer Pages Standard Tag Library (JSTL) page at https://jakarta.ee/specifications/tags/.

Web applications don’t need to bundle copies of the jsf-impl.jar or appserv-jstl.jar JSP tag
libraries (in as-install/lib) to use JavaServer Faces technology or JSTL, respectively. These tag
libraries are automatically available to all web applications.

However, the as-install/lib/jspcachtags.jar tag library for JSP caching is not automatically
available to web applications. See JSP Caching, next.

JSP Caching

JSP caching lets you cache tag invocation results within the Java engine. Each can be cached using
different cache criteria. For example, suppose you have invocations to view stock quotes, weather
information, and so on. The stock quote result can be cached for 10 minutes, the weather report
result for 30 minutes, and so on.

The following topics are addressed here:

• Enabling JSP Caching

• Caching Scope

• The cache Tag

• The flush Tag

For more information about response caching as it pertains to servlets, see Caching Servlet Results.

Enabling JSP Caching

To globally enable JSP caching, set the jspCachingEnabled property to true. The default is false. For
example:

asadmin set server-config.web-container.property.jspCachingEnabled="true"

For more information about the asadmin set command, see the Eclipse GlassFish Reference Manual.

To enable JSP caching for a single web application, follow these steps:

122

https://jakarta.ee/specifications/tags/
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

1. Extract the META-INF/jspcachtags.tld file from the as-install/modules/web-glue.jar file.

2. Create a new JAR file (for example, jspcachtags.jar) containing just the META-
INF/jspcachtags.tld file previously extracted.

3. Bundle this new JAR file in the WEB-INF/lib directory of your web application.


Web applications that use JSP caching without bundling the tag library are not
portable.

Refer to Eclipse GlassFish tags in JSP files as follows:

<%@ taglib prefix="prefix" uri="http://glassfish.org/taglibs/cache" %>

Subsequently, the cache tags are available as <`prefix:cache>` and <`prefix:flush>`. For example, if
your prefix is mypfx, the cache tags are available as <mypfx:cache> and <mypfx:flush>.

Caching Scope

JSP caching is available in three different scopes: request, session, and application. The default is
application. To use a cache in request scope, a web application must specify the
com.sun.appserv.web.taglibs.cache.CacheRequestListener in its web.xml deployment descriptor, as
follows:

<listener>
 <listener-class>
 com.sun.appserv.web.taglibs.cache.CacheRequestListener
 </listener-class>
</listener>

Likewise, for a web application to utilize a cache in session scope, it must specify the
com.sun.appserv.web.taglibs.cache.CacheSessionListener in its web.xml deployment descriptor, as
follows:

<listener>
 <listener-class>
 com.sun.appserv.web.taglibs.cache.CacheSessionListener
 </listener-class>
</listener>

To utilize a cache in application scope, a web application need not specify any listener. The
com.sun.appserv.web.taglibs.cache.CacheContextListener is already specified in the jspcachtags.tld
file.

The cache Tag

The cache tag caches the body between the beginning and ending tags according to the attributes

123

specified. The first time the tag is encountered, the body content is executed and cached. Each
subsequent time it is run, the cached content is checked to see if it needs to be refreshed and if so, it
is executed again, and the cached data is refreshed. Otherwise, the cached data is served.

Attributes of cache

The following table describes attributes for the cache tag.

Table 7-1 The cache Attributes

Attribut
e

Default Description

key ServletPath`_`
Suffix

(optional) The name used by the container to access the cached entry.
The cache key is suffixed to the servlet path to generate a key to access
the cached entry. If no key is specified, a number is generated according
to the position of the tag in the page.

timeout 60s (optional) The time in seconds after which the body of the tag is
executed and the cache is refreshed. By default, this value is interpreted
in seconds. To specify a different unit of time, add a suffix to the timeout
value as follows: s for seconds, m for minutes, h for hours, d for days. For
example, 2h specifies two hours.

nocache false (optional) If set to true, the body content is executed and served as if
there were no cache tag. This offers a way to programmatically decide
whether the cached response is sent or whether the body has to be
executed, though the response is not cached.

refresh false (optional) If set to true, the body content is executed and the response is
cached again. This lets you programmatically refresh the cache
immediately regardless of the timeout setting.

scope application (optional) The scope of the cache. Can be request, session, or application.
See Caching Scope.

Example of cache

The following example represents a cached JSP file:

<%@ taglib prefix="mypfx" uri="http://glassfish.org/taglibs/cache" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<mypfx:cache key="${sessionScope.loginId}"
 nocache="${param.nocache}"
 refresh="${param.refresh}"
 timeout="10m">
<c:choose>
 <c:when test="${param.page == 'frontPage'}">
 <%-- get headlines from database --%>
 </c:when>
 <c:otherwise>
 ...

124

 </c:otherwise>
</c:choose>
</mypfx:cache>
<mypfx:cache timeout="1h">
<h2> Local News </h2>
 <%-- get the headline news and cache them --%>
</mypfx:cache>

The flush Tag

Forces the cache to be flushed. If a key is specified, only the entry with that key is flushed. If no key
is specified, the entire cache is flushed.

Attributes of flush

The following table describes attributes for the flush tag.

Table 7-2 The flush Attributes

Attribute Default Description

key ServletPath`_`Suff
ix

(optional) The name used by the container to access the cached
entry. The cache key is suffixed to the servlet path to generate a key
to access the cached entry. If no key is specified, a number is
generated according to the position of the tag in the page.

scope application (optional) The scope of the cache. Can be request, session, or
application. See Caching Scope.

Examples of flush

To flush the entry with key="foobar":

<mypfx:flush key="foobar"/>

To flush the entire cache:

<c:if test="${empty sessionScope.clearCache}">
 <mypfx:flush />
</c:if>

Options for Compiling JSP Files

Eclipse GlassFish provides the following ways of compiling JSP source files into servlets:

• JSP files are automatically compiled at runtime.

• The asadmin deploy command has a --precompilejsp option. For details, see the Eclipse GlassFish
Reference Manual.

125

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

• The jspc command line tool allows you to precompile JSP files at the command line. For details,
see the Eclipse GlassFish Reference Manual.

Creating and Managing Sessions
This section describes how to create and manage HTTP sessions that allows users and transaction
information to persist between interactions.

The following topics are addressed here:

• Configuring Sessions

• Session Managers

Configuring Sessions

The following topics are addressed here:

• HTTP Sessions, Cookies, and URL Rewriting

• Coordinating Session Access

• Saving Sessions During Redeployment

• Logging Session Attributes

• Distributed Sessions and Persistence

HTTP Sessions, Cookies, and URL Rewriting

To configure whether and how HTTP sessions use cookies and URL rewriting, edit the session-
properties and cookie-properties elements in the glassfish-web.xml file for an individual web
application. For more about the properties you can configure, see "session-properties" in Eclipse
GlassFish Application Deployment Guide and "cookie-properties" in Eclipse GlassFish Application
Deployment Guide.

For information about configuring default session properties for the entire web container, see
Using the default-web.xml File and the Eclipse GlassFish High Availability Administration Guide.

Coordinating Session Access

Make sure that multiple threads don’t simultaneously modify the same session object in conflicting
ways. If the persistence type is replicated (see The replicated Persistence Type), the following
message in the log file indicates that this might be happening:

Primary Key Constraint violation while saving session session_id

This is especially likely to occur in web applications that use HTML frames where multiple servlets
are executing simultaneously on behalf of the same client. A good solution is to ensure that one of
the servlets modifies the session and the others have read-only access.

126

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#session-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#cookie-properties
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG

Saving Sessions During Redeployment

Whenever a redeployment is done, the sessions at that transit time become invalid unless you use
the --keepstate=true option of the asadmin redeploy command. For example:

asadmin redeploy --keepstate=true --name hello.war

For details, see the Eclipse GlassFish Reference Manual.

The default for --keepstate is false. This option is supported only on the default server instance,
named server. It is not supported and ignored for any other target.

For web applications, this feature is applicable only if in the glassfish-web-app.xml file the
persistence-type attribute of the session-manager element is file.

If any active web session fails to be preserved or restored, none of the sessions will be available
when the redeployment is complete. However, the redeployment continues and a warning is
logged.

The new class loader of the redeployed application is used to deserialize any sessions previously
saved. The usual restrictions about serialization and deserialization apply. For example, any
application-specific class referenced by a session attribute may evolve only in a backward-
compatible fashion. For more information about class loaders, see Class Loaders.

Logging Session Attributes

You can write session attribute values to an access log. The access log format token %session.name%
logs one of the following:

• The value of the session attribute with the name name

• NULL-SESSION-ATTRIBUTE-name if the named attribute does not exist in the session

• NULL-SESSION if no session exists

For more information about access logging and format tokens, see online help for the Access Log
tab of the HTTP Service page in the Administration Console.

Distributed Sessions and Persistence

A distributed HTTP session can run in multiple Eclipse GlassFish instances, provided the following
criteria are met:

• Each server instance has the same distributable web application deployed to it. The web-app
element of the web.xml deployment descriptor file must have the distributable subelement
specified.

• The web application uses high-availability session persistence. If a non-distributable web
application is configured to use high-availability session persistence, a warning is written to the
server log, and the session persistence type reverts to memory. See The replicated Persistence
Type.

127

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

• All objects bound into a distributed session must be of the types listed in Table 7-3.

• The web application must be deployed using the deploy or deploydir command with the
--availabilityenabled option set to true. See the Eclipse GlassFish Reference Manual.



Contrary to the Servlet 5.0 specification, Eclipse GlassFish does not throw an
IllegalArgumentException if an object type not supported for failover is bound into
a distributed session.

Keep the distributed session size as small as possible. Session size has a direct
impact on overall system throughput.

In the event of an instance or hardware failure, another server instance can take over a distributed
session, with the following limitations:

• If a distributable web application references a Jakarta EE component or resource, the reference
might be lost. See Table 7-3 for a list of the types of references that HTTPSession failover
supports.

• References to open files or network connections are lost.

For information about how to work around these limitations, see the Eclipse GlassFish Deployment
Planning Guide.

In the following table, No indicates that failover for the object type might not work in all cases and
that no failover support is provided. However, failover might work in some cases for that object
type. For example, failover might work because the class implementing that type is serializable.

For more information about the InitialContext, see Accessing the Naming Context. For more
information about transaction recovery, see Using the Transaction Service. For more information
about Administered Objects, see "Administering JMS Physical Destinations" in Eclipse GlassFish
Administration Guide.

Table 7-3 Object Types Supported for Jakarta EE Web Application Session State Failover

Java Object Type Failover Support

Colocated or distributed stateless session,
stateful session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted,
any prepared global transactions are lost and might
not be correctly rolled back or committed.

JDBC DataSource No

Java Message Service (JMS)
ConnectionFactory, Destination

No

Jakarta Mail Session No

Connection Factory No

128

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/deployment-planning-guide.pdf#GSPLG
https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-physical-destinations

Java Object Type Failover Support

Administered Object No

Web service reference No

Serializable Java types Yes

Extended persistence context No

Session Managers

A session manager automatically creates new session objects whenever a new session starts. In
some circumstances, clients do not join the session, for example, if the session manager uses
cookies and the client does not accept cookies.

Eclipse GlassFish offers these session management options, determined by the session-manager
element’s persistence-type attribute in the glassfish-web.xml file:

• The memory Persistence Type, the default

• The file Persistence Type, which uses a file to store session data

• The replicated Persistence Type, which uses other servers in the cluster for session persistence


If the session manager configuration contains an error, the error is written to the
server log and the default (memory) configuration is used.

For more information, see "session-manager" in Eclipse GlassFish Application Deployment Guide.

The memory Persistence Type

This persistence type is not designed for a production environment that requires session
persistence. It provides no session persistence. However, you can configure it so that the session
state in memory is written to the file system prior to server shutdown.

To specify the memory persistence type for a specific web application, edit the glassfish-web.xml file
as in the following example. The persistence-type attribute is optional, but must be set to memory if
included. This overrides the web container availability settings for the web application.

<glassfish-web-app>
...

<session-config>
 <session-manager persistence-type="memory" />
 <manager-properties>
 <property name="sessionFilename" value="sessionstate" />
 </manager-properties>
 </session-manager>
 ...
</session-config>
...

129

https://glassfish.org/docs/latest/application-deployment-guide.pdf#session-manager

</glassfish-web-app>

The only manager property that the memory persistence type supports is sessionFilename, which is
listed under "manager-properties" in Eclipse GlassFish Application Deployment Guide. The
sessionFilename property specifies the name of the file where sessions are serialized and persisted
if the web application or the server is stopped. To disable this behavior, specify an empty string as
the value of sessionFilename. The default value is an empty string.

For more information about the glassfish-web.xml file, see the Eclipse GlassFish Application
Deployment Guide.

The file Persistence Type

This persistence type provides session persistence to the local file system, and allows a single server
domain to recover the session state after a failure and restart. The session state is persisted in the
background, and the rate at which this occurs is configurable. The store also provides passivation
and activation of the session state to help control the amount of memory used. This option is not
supported in a production environment. However, it is useful for a development system with a
single server instance.


Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy,
see The server.policy File.

To specify the file persistence type for a specific web application, edit the glassfish-web.xml file as
in the following example. Note that persistence-type must be set to file. This overrides the web
container availability settings for the web application.

<glassfish-web-app>
...
<session-config>
 <session-manager persistence-type="file">
 <store-properties>
 <property name="directory" value="sessiondir" />
 </store-properties>
 </session-manager>
 ...
</session-config>
...
</glassfish-web-app>

The file persistence type supports all the manager properties listed under "manager-properties" in
Eclipse GlassFish Application Deployment Guide except sessionFilename, and supports the directory
store property listed under "store-properties" in Eclipse GlassFish Application Deployment Guide.

For more information about the glassfish-web.xml file, see the Eclipse GlassFish Application
Deployment Guide.

130

https://glassfish.org/docs/latest/application-deployment-guide.pdf#manager-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#manager-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#store-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

The replicated Persistence Type

The replicated persistence type uses other servers in the cluster for session persistence. Clustered
server instances replicate session state. Each backup instance stores the replicated data in memory.
This allows sessions to be distributed. For details, see Distributed Sessions and Persistence. In
addition, you can configure the frequency and scope of session persistence. The other servers are
also used as the passivation and activation store. Use this option in a production environment that
requires session persistence.

To use the replicated persistence type, you must enable availability. Select the Availability Service
component under the relevant configuration in the Administration Console. Check the Availability
Service box. To enable availability for the web container, select the Web Container Availability tab,
then check the Availability Service box. All instances in an Eclipse GlassFish cluster should have the
same availability settings to ensure consistent behavior. For details, see the Eclipse GlassFish High
Availability Administration Guide.

To change settings such as persistence frequency and persistence scope for the entire web
container, use the Persistence Frequency and Persistence Scope drop-down lists on the Web
Container Availability tab in the Administration Console, or use the asadmin set command. For
example:

asadmin set
server-config.availability-service.web-container-availability.persistence-
frequency=time-based

For more information, see the description of the asadmin set command in the Eclipse GlassFish
Reference Manual.

To specify the replicated persistence type for a specific web application, edit the glassfish-web.xml
file as in the following example. Note that persistence-type must be set to replicated. This overrides
the web container availability settings for the web application.

<glassfish-web-app>
...
<session-config>
 <session-manager persistence-type="replicated">
 <manager-properties>
 <property name="persistenceFrequency" value="web-method" />
 </manager-properties>
 <store-properties>
 <property name="persistenceScope" value="session" />
 </store-properties>
 </session-manager>
 ...
</session-config>
...
</glassfish-web-app>

131

https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

The replicated persistence type supports all the manager properties listed under "manager-
properties" in Eclipse GlassFish Application Deployment Guide except sessionFilename, and
supports the persistenceScope store property listed under "store-properties" in Eclipse GlassFish
Application Deployment Guide.

For more information about the glassfish-web.xml file, see the Eclipse GlassFish Application
Deployment Guide.

To specify that web sessions for which high availability is enabled are first buffered and then
replicated using a separate asynchronous thread, use the --asyncreplication=true option of the
asadmin deploy command. For example:

asadmin deploy --availabilityenabled=true --asyncreplication=true --name hello.war

If --asyncreplication is set to true (the default), performance is improved but availability is
reduced. If the instance where states are buffered but not yet replicated fails, the states are lost. If
set to false, performance is reduced but availability is guaranteed. States are not buffered but
immediately transmitted to other instances in the cluster.

Using Comet
This section explains the Comet programming technique and how to create and deploy a Comet-
enabled application with the Eclipse GlassFish.

The following topics are addressed here:

• Introduction to Comet

• Grizzly Comet

• Bayeux Protocol

Introduction to Comet

Comet is a programming technique that allows a web server to send updates to clients without
requiring the clients to explicitly request them.

This kind of programming technique is called server push, which means that the server pushes
data to the client. The opposite style is client pull, which means that the client must pull the data
from the server, usually through a user-initiated event, such as a button click.

Web applications that use the Comet technique can deliver updates to clients in a more timely
manner than those that use the client-pull style while avoiding the latency that results from clients
frequently polling the server.

One of the many use cases for Comet is a chat room application. When the server receives a
message from one of the chat clients, it needs to send the message to the other clients without
requiring them to ask for it. With Comet, the server can deliver messages to the clients as they are
posted rather than expecting the clients to poll the server for new messages.

132

https://glassfish.org/docs/latest/application-deployment-guide.pdf#manager-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#manager-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#store-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

To accomplish this scenario, a Comet application establishes a long-lived HTTP connection. This
connection is suspended on the server side, waiting for an event to happen before resuming. This
kind of connection remains open, allowing an application that uses the Comet technique to send
updates to clients when they are available rather than expecting clients to reopen the connection to
poll the server for updates.

The Grizzly Implementation of Comet

A limitation of the Comet technique is that you must use it with a web server that supports non-
blocking connections to avoid poor performance. Non-blocking connections are those that do not
need to allocate one thread for each request. If the web server were to use blocking connections
then it might end up holding many thousands of threads, thereby hindering its scalability.

The Eclipse GlassFish includes the Grizzly HTTP Engine, which enables asynchronous request
processing (ARP) by avoiding blocking connections. Grizzly’s ARP implementation accomplishes
this by using the Java NIO API.

With Java NIO, Grizzly enables greater performance and scalability by avoiding the limitations
experienced by traditional web servers that must run a thread for each request. Instead, Grizzly’s
ARP mechanism makes efficient use of a thread pool system and also keeps the state of requests so
that it can keep requests alive without holding a single thread for each of them.

Grizzly supports two different implementations of Comet:

• Grizzly Comet — Based on ARP, this includes a set of APIs that you use from a web component to
enable Comet functionality in your web application. Grizzly Comet is specific to the Eclipse
GlassFish.

• Bayeux Protocol — Often referred to as Cometd, it consists of the JSON-based Bayeux message
protocol, a set of Dojo or Ajax libraries, and an event handler. The Bayeux protocol uses a
publish/subscribe model for server/client communication. The Bayeux protocol is portable, but
it is container dependent if you want to invoke it from an Enterprise Java Beans (EJB)
component. The Grizzly implementation of Cometd consists of a servlet that you reference from
your web application.

Client Technologies to Use With Comet

In addition to creating a web component that uses the Comet APIs, you need to enable your client to
accept asynchronous updates from the web component. To accomplish this, you can use JavaScript,
IFrames, or a framework, such as Dojo (http://dojotoolkit.org).

An IFrame is an HTML element that allows you to include other content in an HTML page. As a
result, the client can embed updated content in the IFrame without having to reload the page.

The example in this tutorial employs a combination of JavaScript and IFrames to allow the client to
accept asynchronous updates. A servlet included in the example writes out JavaScript code to one
of the IFrames. The JavaScript code contains the updated content and invokes a function in the
page that updates the appropriate elements in the page with the new content.

The next section explains the two kinds of connections that you can make to the server. While you
can use any of the client technologies listed in this section with either kind of connection, it is more

133

http://dojotoolkit.org
http://dojotoolkit.org

difficult to use JavaScript with an HTTP-streaming connection.

Types of Comet Connections

When working with Comet, as implemented in Grizzly, you have two different ways to handle client
connections to the server:

• HTTP Streaming

• Long Polling

HTTP Streaming

The HTTP Streaming technique keeps a connection open indefinitely. It never closes, even after the
server pushes data to the client.

In the case of HTTP streaming, the application sends a single request and receives responses as they
come, reusing the same connection forever. This technique significantly reduces the network
latency because the client and the server don’t need to open and close the connection.

The basic life cycle of an application using HTTP-streaming is:

request > suspend > data available > write response > data available > write response

The client makes an initial request and then suspends the request, meaning that it waits for a
response. Whenever data is available, the server writes it to the response.

Long Polling

The long-polling technique is a combination of server-push and client-pull because the client needs
to resume the connection after a certain amount of time or after the server pushes an update to the
client.

The basic life cycle of an application using long-polling is:

request > suspend > data available > write response > resume

The client makes an initial request and then suspends the request. When an update is available, the
server writes it to the response. The connection closes, and the client optionally resumes the
connection.

How to Choose the Type of Connection

If you anticipate that your web application will need to send frequent updates to the client, you
should use the HTTP-streaming connection so that the client does not have to frequently reestablish
a connection. If you anticipate less frequent updates, you should use the long-polling connection so
that the web server does not need to keep a connection open when no updates are occurring. One
caveat to using the HTTP-streaming connection is that if you are streaming through a proxy, the
proxy can buffer the response from the server. So, be sure to test your application if you plan to use
HTTP-streaming behind a proxy.

134

Grizzly Comet

For details on using Grizzly Comet including a sample application, refer to the Grizzly Comet
documentation.

Grizzly’s support for Comet includes a small set of APIs that make it easy to add Comet functionality
to your web applications. The Grizzly Comet APIs that developers use most often are the following:

• CometContext: A Comet context, which is a shareable space to which applications subscribe to
receive updates.

• CometEngine: The entry point to any component using Comet. Components can be servlets,
JavaServer Pages (JSP), JavaServer Faces components, or pure Java classes.

• CometEvent: Contains the state of the CometContext object

• CometHandler: The interface an application implements to be part of one or more Comet
contexts.

The way a developer would use this API in a web component is to perform the following tasks:

1. Register the context path of the application with the CometContext object:

CometEngine cometEngine = CometEngine.getEngine();
CometContext cometContext = cometEngine.register(contextPath)

2. Register the CometHandler implementation with the CometContext object:

cometContext.addCometHandler(handler)

3. Notify one or more CometHandler implementations when an event happens:

cometContext.notify((Object)(handler))

Bayeux Protocol

The Bayeux protocol, often referred to as Cometd, greatly simplifies the use of Comet. No server-side
coding is needed for servers such as Eclipse GlassFish that support the Bayeux protocol. Just enable
Comet and the Bayeux protocol, then write and deploy the client.

The following topics are addressed here:

• Enabling Comet

• To Configure the web.xml File

• To Write, Deploy, and Run the Client

135

https://eclipse-ee4j.github.io/grizzly/comet.html
https://eclipse-ee4j.github.io/grizzly/comet.html

Enabling Comet

Before running a Comet-enabled application, you need to enable Comet in the HTTP listener for
your application by setting a special attribute in the associated protocol configuration. The
following example shows the asadmin set command that adds this attribute:

asadmin set server-config.network-config.protocols.protocol.http-1.http.comet-support-
enabled="true"

Substitute the name of the protocol for http-1.

To Configure the web.xml File

To enable the Bayeux protocol on the Eclipse GlassFish, you must reference the CometdServlet in
your web application’s web.xml file. In addition, if your web application includes a servlet, set the
load-on-startup value for your servlet to 0 (zero) so that it will not load until the client makes a
request to it.

1. Open the web.xml file for your web application in a text editor.

2. Add the following XML code to the web.xml file:

<servlet>
 <servlet-name>Grizzly Cometd Servlet</servlet-name>
 <servlet-class>
 com.sun.grizzly.cometd.servlet.CometdServlet
 </servlet-class>
 <init-param>
 <description>
 expirationDelay is the long delay before a request is
 resumed. -1 means never.
 </description>
 <param-name>expirationDelay</param-name>
 <param-value>-1</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Grizzly Cometd Servlet</servlet-name>
 <url-pattern>/cometd/*</url-pattern>
</servlet-mapping>

Note that the load-on-startup value for the CometdServlet is 1.

3. If your web application includes a servlet, set the load-on-startup value to 0 for your servlet (not
the CometdServlet) as follows:

136

<servlet>
 ...
 <load-on-startup>0</load-on-startup>
</servlet>

4. Save the web.xml file.

To Write, Deploy, and Run the Client

1. Add script tags to the HTML page. For example:

<script type="text/javascript" src="chat.js"></script>

2. In the script, call the needed libraries. For example:

dojo.require("dojo.io.cometd");

3. In the script, use publish and subscribe methods to send and receive messages. For example:

cometd.subscribe("/chat/demo", false, room, "_chat");
cometd.publish("/chat/demo", { user: room._username, chat: text});

4. Deploy the web application as you would any other web application. For example:

asadmin deploy cometd-example.war

5. Run the application as you would any other web application.

The context root for the example chat application is /cometd and the HTML page is index.html.
So the URL might look like this:

http://localhost:8080/cometd/index.html

See Also

For more information about deployment in the Eclipse GlassFish, see the Eclipse GlassFish
Application Deployment Guide.

For more information about the Bayeux protocol, see Bayeux Protocol (https://docs.cometd.org/
current/reference/#_bayeux).

For more information about the Dojo toolkit, see http://dojotoolkit.org/.

137

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://docs.cometd.org/current/reference/#_bayeux
https://docs.cometd.org/current/reference/#_bayeux
https://docs.cometd.org/current/reference/#_bayeux
http://dojotoolkit.org/

Advanced Web Application Features
The following topics are addressed here:

• Internationalization Issues

• Virtual Server Properties

• Class Loader Delegation

• Using the default-web.xml File

• Configuring Logging and Monitoring in the Web Container

• Configuring Idempotent URL Requests

• Header Management

• Configuring Valves and Catalina Listeners

• Alternate Document Roots

• Using a context.xml File

• Enabling WebDav

• Using SSI

• Using CGI

Internationalization Issues

The following topics are addressed here:

• The Server’s Default Locale

• Servlet Character Encoding

The Server’s Default Locale

To set the default locale of the entire Eclipse GlassFish, which determines the locale of the
Administration Console, the logs, and so on, use the Administration Console. Select the domain
component. Then type a value in the Locale field. For details, click the Help button in the
Administration Console.

Servlet Character Encoding

This section explains how the Eclipse GlassFish determines the character encoding for the servlet
request and the servlet response. For encodings you can use, see http://docs.oracle.com/javase/8/
docs/technotes/guides/intl/encoding.doc.html.

Servlet Request

When processing a servlet request, the server uses the following order of precedence, first to last, to
determine the request character encoding:

• The getCharacterEncoding method

138

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

• A hidden field in the form, specified by the form-hint-field attribute of the parameter-encoding
element in the glassfish-web.xml file

• The default-charset attribute of the parameter-encoding element in the glassfish-web.xml file

• The default, which is ISO-8859-1

For details about the parameter-encoding element, see "parameter-encoding" in Eclipse GlassFish
Application Deployment Guide.

Servlet Response

When processing a servlet response, the server uses the following order of precedence, first to last,
to determine the response character encoding:

• The setCharacterEncoding or setContentType method

• The setLocale method

• The default, which is ISO-8859-1

Virtual Server Properties

You can set virtual server properties in the following ways:

• You can define virtual server properties using the asadmin create-virtual-server command. For
example:

asadmin create-virtual-server --hosts localhost --property authRealm=ldap MyVS

For details and a complete list of virtual server properties, see create-virtual-server(1).

• You can define virtual server properties using the asadmin set command. For example:

asadmin set server-config.http-service.virtual-
server.MyVS.property.authRealm="ldap"

For details, see set(1).

• You can define virtual server properties using the Administration Console. Select the HTTP
Service component under the relevant configuration, select Virtual Servers, and select the
desired virtual server. Select Add Property, enter the property name and value, check the
enable box, and select Save. For details and a complete list of virtual server properties, click the
Help button in the Administration Console.

Some virtual server properties can be set for a specific web application. For details, see "glassfish-
web-app" in Eclipse GlassFish Application Deployment Guide.

139

https://glassfish.org/docs/latest/application-deployment-guide.pdf#parameter-encoding
https://glassfish.org/docs/latest/reference-manual.pdf#create-virtual-server
https://glassfish.org/docs/latest/reference-manual.pdf#create-virtual-server
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/reference-manual.pdf#set
https://glassfish.org/docs/latest/application-deployment-guide.pdf#glassfish-web-app
https://glassfish.org/docs/latest/application-deployment-guide.pdf#glassfish-web-app

Class Loader Delegation

The Servlet specification recommends that a web application class loader look in the local class
loader before delegating to its parent. To make the web application class loader follow the
delegation model in the Servlet specification, set delegate="false" in the class-loader element of
the glassfish-web.xml file. It’s safe to do this only for a web module that does not interact with any
other modules.

The default value is delegate="true", which causes the web application class loader to delegate in
the same manner as the other class loaders. Use delegate="true" for a web application that accesses
EJB components or that acts as a web service client or endpoint. For details about glassfish-
web.xml, see the Eclipse GlassFish Application Deployment Guide.

For a number of packages, including java. and javax., symbol resolution is always delegated to the
parent class loader regardless of the delegate setting. This prevents applications from overriding
core Java runtime classes or changing the API versions of specifications that are part of the Jakarta
EE platform.

For general information about class loaders, see Class Loaders.

Using the default-web.xml File

You can use the default-web.xml file to define features such as filters and security constraints that
apply to all web applications.

For example, directory listings are disabled by default for added security. To enable directory
listings, in your domain’s default-web.xml file, search for the definition of the servlet whose
servlet-name is equal to default, and set the value of the init-param named listings to true. Then
redeploy your web application if it has already been deployed, or restart the server.

<init-param>
 <param-name>listings</param-name>
 <param-value>true</param-value>
</init-param>

If listings is set to true, you can also determine how directory listings are sorted. Set the value of
the init-param named sortedBy to NAME, SIZE, or LAST_MODIFIED. Then redeploy your web application
if it has already been deployed, or restart the server.

<init-param>
 <param-name>sortedBy</param-name>
 <param-value>LAST_MODIFIED</param-value>
</init-param>

The mime-mapping elements in default-web.xml are global and inherited by all web applications. You
can override these mappings or define your own using mime-mapping elements in your web

140

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

application’s web.xml file. For more information about mime-mapping elements, see the Servlet
specification.

You can use the Administration Console to edit the default-web.xml file. For details, click the Help
button in the Administration Console. As an alternative, you can edit the file directly using the
following steps.

To Use the default-web.xml File

1. Place the JAR file for the filter, security constraint, or other feature in the domain-dir/lib
directory.

2. Edit the domain-dir/config/default-web.xml file to refer to the JAR file.

3. Restart the server.

Configuring Logging and Monitoring in the Web Container

For information about configuring logging and monitoring in the web container using the
Administration Console, click the Help button in the Administration Console. Select Logger Settings
under the relevant configuration, or select the Stand-Alone Instances component, select the
instance from the table, and select the Monitor tab.

Configuring Idempotent URL Requests

An idempotent request is one that does not cause any change or inconsistency in an application
when retried. To enhance the availability of your applications deployed on an Eclipse GlassFish
cluster, configure the load balancer to retry failed idempotent HTTP requests on all the Eclipse
GlassFish instances in a cluster. This option can be used for read-only requests, for example, to
retry a search request.

The following topics are addressed here:

• Specifying an Idempotent URL

• Characteristics of an Idempotent URL

Specifying an Idempotent URL

To configure idempotent URL response, specify the URLs that can be safely retried in idempotent-
url-pattern elements in the glassfish-web.xml file. For example:

<idempotent-url-pattern url-pattern="sun_java/*" no-of-retries="10"/>

For details, see "idempotent-url-pattern" in Eclipse GlassFish Application Deployment Guide.

If none of the server instances can successfully serve the request, an error page is returned.

Characteristics of an Idempotent URL

Since all requests for a given session are sent to the same application server instance, and if that

141

https://glassfish.org/docs/latest/application-deployment-guide.pdf#idempotent-url-pattern

Eclipse GlassFish instance is unreachable, the load balancer returns an error message. Normally,
the request is not retried on another Eclipse GlassFish instance. However, if the URL pattern
matches that specified in the glassfish-web.xml file, the request is implicitly retried on another
Eclipse GlassFish instance in the cluster.

In HTTP, some methods (such as GET) are idempotent, while other methods (such as POST) are not.
In effect, retrying an idempotent URL should not cause values to change on the server or in the
database. The only difference should be a change in the response received by the user.

Examples of idempotent requests include search engine queries and database queries. The
underlying principle is that the retry does not cause an update or modification of data.

A search engine, for example, sends HTTP requests with the same URL pattern to the load balancer.
Specifying the URL pattern of the search request to the load balancer ensures that HTTP requests
with the specified URL pattern are implicitly retried on another Eclipse GlassFish instance.

For example, if the request URL sent to the Eclipse GlassFish is of the type /search/something.html,
then the URL pattern can be specified as /search/*.

Examples of non-idempotent requests include banking transactions and online shopping. If you
retry such requests, money might be transferred twice from your account.

Header Management

In all Editions of the Eclipse GlassFish, the Enumeration from request.getHeaders() contains multiple
elements (one element per request header) instead of a single, aggregated value.

The header names used in HttpServletResponse.addXXXHeader() and HttpServletResponse.set
XXXHeader() are returned as they were created.

Configuring Valves and Catalina Listeners

You can configure custom valves and Catalina listeners for web modules or virtual servers by
defining properties. A valve class must implement the org.apache.catalina.Valve interface from
Tomcat or previous Eclipse GlassFish releases, or the org.glassfish.web.valve.GlassFishValve
interface from the current Eclipse GlassFish release. A listener class for a virtual server must
implement the org.apache.catalina.ContainerListener or org.apache.catalina.LifecycleListener
interface. A listener class for a web module must implement the
org.apache.catalina.ContainerListener , org.apache.catalina.LifecycleListener, or
org.apache.catalina.InstanceListener interface.

In the glassfish-web.xml file, valve and listener properties for a web module look like this:

<glassfish-web-app ...>
 ...
 <property name="valve_1" value="org.glassfish.extension.Valve"/>
 <property name="listener_1" value="org.glassfish.extension.MyLifecycleListener"/>
</glassfish-web-app>

142

You can define these same properties for a virtual server. For more information, see Virtual Server
Properties.

Alternate Document Roots

An alternate document root (docroot) allows a web application to serve requests for certain
resources from outside its own docroot, based on whether those requests match one (or more) of
the URI patterns of the web application’s alternate docroots.

To specify an alternate docroot for a web application or a virtual server, use the alternatedocroot_n
property, where n is a positive integer that allows specification of more than one. This property can
be a subelement of a glassfish-web-app element in the glassfish-web.xml file or a virtual server
property. For more information about these elements, see "glassfish-web-app" in Eclipse GlassFish
Application Deployment Guide.

A virtual server’s alternate docroots are considered only if a request does not map to any of the
web modules deployed on that virtual server. A web module’s alternate docroots are considered
only once a request has been mapped to that web module.

If a request matches an alternate docroot’s URI pattern, it is mapped to the alternate docroot by
appending the request URI (minus the web application’s context root) to the alternate docroot’s
physical location (directory). If a request matches multiple URI patterns, the alternate docroot is
determined according to the following precedence order:

• Exact match

• Longest path match

• Extension match

For example, the following properties specify three glassfish-web.xml docroots. The URI pattern of
the first alternate docroot uses an exact match, whereas the URI patterns of the second and third
alternate docroots use extension and longest path prefix matches, respectively.

<property name="alternatedocroot_1" value="from=/my.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_2" value="from=*.jpg dir=/srv/images/jpg"/>
<property name="alternatedocroot_3" value="from=/jpg/* dir=/src/images"/>

The value of each alternate docroot has two components: The first component, from, specifies the
alternate docroot’s URI pattern, and the second component, dir, specifies the alternate docroot’s
physical location (directory).

Suppose the above examples belong to a web application deployed at http://company22.com/myapp.
The first alternate docroot maps any requests with this URL:

http://company22.com/myapp/my.jpg

To this resource:

143

https://glassfish.org/docs/latest/application-deployment-guide.pdf#glassfish-web-app
http://company22.com/myapp

/svr/images/jpg/my.jpg

The second alternate docroot maps any requests with a *.jpg suffix, such as:

http://company22.com/myapp/*.jpg

To this physical location:

/svr/images/jpg

The third alternate docroot maps any requests whose URI starts with /myapp/jpg/, such as:

http://company22.com/myapp/jpg/*

To the same directory as the second alternate docroot.

For example, the second alternate docroot maps this request:

http://company22.com/myapp/abc/def/my.jpg

To:

/srv/images/jpg/abc/def/my.jpg

The third alternate docroot maps:

http://company22.com/myapp/jpg/abc/resource

To:

/srv/images/jpg/abc/resource

If a request does not match any of the target web application’s alternate docroots, or if the target
web application does not specify any alternate docroots, the request is served from the web
application’s standard docroot, as usual.

Using a context.xml File

You can define a context.xml file for all web applications, for web applications assigned to a specific

144

virtual server, or for a specific web application.

To define a global context.xml file, place the file in the domain-dir/config directory and name it
context.xml.

Use the contextXmlDefault property to specify the name and the location, relative to domain-dir, of
the context.xml file for a specific virtual server. Specify this property in one of the following ways:

• In the Administration Console, open the HTTP Service component under the relevant
configuration. Open the Virtual Servers component and scroll down to the bottom of the page.
Enter contextXmlDefault as the property name and the path and file name relative to domain-dir
as the property value.

• Use the asadmin create-virtual-server command. For example:

asadmin create-virtual-server --property contextXmlDefault=config/vs1ctx.xml vs1

• Use the asadmin set command for an existing virtual server. For example:

asadmin set server-config.http-service.virtual-
server.vs1.property.contextXmlDefault=config/myctx.xml

To define a context.xml file for a specific web application, place the file in the META-INF directory
and name it context.xml.

For more information about virtual server properties, see Virtual Server Properties. For more
information about the context.xml file, see The Context Container (http://tomcat.apache.org/
tomcat-5.5-doc/config/context.html). Context parameters, environment entries, and resource
definitions in context.xml are supported in the Eclipse GlassFish.

Enabling WebDav

To enable WebDav in the Eclipse GlassFish, you edit the web.xml and glassfish-web.xml files as
follows.

First, enable the WebDav servlet in your web.xml file:

<servlet>
 <servlet-name>webdav</servlet-name>
 <servlet-class>org.apache.catalina.servlets.WebdavServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>0</param-value>
 </init-param>
 <init-param>
 <param-name>listings</param-name>
 <param-value>true</param-value>
 </init-param>

145

http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html

 <init-param>
 <param-name>readonly</param-name>
 <param-value>false</param-value>
 </init-param>
</servlet>

Then define the servlet mapping associated with your WebDav servlet in your web.xml file:

<servlet-mapping>
 <servlet-name>webdav</servlet-name>
 <url-pattern>/webdav/*</url-pattern>
</servlet-mapping>

To protect the WebDav servlet so other users can’t modify it, add a security constraint in your
web.xml file:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Login Resources</web-resource-name>
 <url-pattern>/webdav/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>Admin</role-name>
 </security-role>
</security-constraint>

Then define a security role mapping in your glassfish-web.xml file:

<security-role-mapping>
 <role-name>Admin</role-name>
 <group-name>Admin</group-name>
</security-role-mapping>

If you are using the file realm, create a user and password. For example:

146

asadmin create-file-user --groups Admin --authrealmname default admin

Enable the security manager as described in Enabling and Disabling the Security Manager.

You can now use any WebDav client by connecting to the WebDav servlet URL, which has this
format:

http://host:port/context-root/webdav/file

For example:

http://localhost:80/glassfish-webdav/webdav/index.html

You can add the WebDav servlet to your default-web.xml file to enable it for all applications, but you
can’t set up a security role mapping to protect it.

Using SSI

To enable SSI (server-side includes) processing for a specific web module, add the SSIServlet to
your web.xml file as follows:

<web-app>
 <servlet>
 <servlet-name>ssi</servlet-name>
 <servlet-class>org.apache.catalina.ssi.SSIServlet</servlet-class>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>ssi</servlet-name>
 <url-pattern>*.shtml</url-pattern>
 </servlet-mapping>
 ...
 <mime-mapping>
 <extension>shtml</extension>
 <mime-type>text/html</mime-type>
 </mime-mapping>
</web-app>

To enable SSI processing for all web modules, un-comment the corresponding sections in the
default-web.xml file.

If the mime-mapping is not specified in web.xml, Eclipse GlassFish attempts to determine the MIME
type from default-web.xml or the operating system default.

You can configure the following init-param values for the SSIServlet.

147

Table 7-4 SSIServlet init-param Values

init-param Type Default Description

buffered boolean false Specifies whether the output should be
buffered.

debug int 0 (for no
debugging)

Specifies the debugging level.

expires Long Expires header in
HTTP response not
set

Specifies the expiration time in
seconds.

inputEncoding String operating system
encoding

Specifies encoding for the SSI input if
there is no URL content encoding
specified.

isVirtualWebappRelative boolean false (relative to
the given SSI file)

Specifies whether the virtual path of
the #include directive is relative to the
content-root.

outputEncoding String UTF-8 Specifies encoding for the SSI output.

For more information about SSI, see http://httpd.apache.org/docs/2.2/mod/mod_include.html.

Using CGI

To enable CGI (common gateway interface) processing for a specific web module, add the
CGIServlet to your web.xml file as follows:

<web-app>
 <servlet>
 <servlet-name>cgi</servlet-name>
 <servlet-class>org.apache.catalina.servlets.CGIServlet</servlet-class>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>cgi</servlet-name>
 <url-pattern>/cgi-bin/*</url-pattern>
 </servlet-mapping>
</web-app>

To enable CGI processing for all web modules, un-comment the corresponding sections in the
default-web.xml file.

Package the CGI program under the cgiPathPrefix. The default cgiPathPrefix is WEB-INF/cgi. For
security, it is highly recommended that the contents and binaries of CGI programs be prohibited
from direct viewing or download. For information about hiding directory listings, see Using the
default-web.xml File.

Invoke the CGI program using a URL of the following format:

148

http://httpd.apache.org/docs/2.2/mod/mod_include.html

http://host:8080/context-root/cgi-bin/cgi-name

For example:

http://localhost:8080/mycontext/cgi-bin/hello

You can configure the following init-param values for the CGIServlet.

Table 7-5 CGIServlet init-param Values

init-param Type Default Description

cgiPathPrefix String WEB-INF/cgi Specifies the subdirectory
containing the CGI programs.

debug int 0 (for no debugging) Specifies the debugging level.

executable String perl Specifies the executable for
running the CGI script.

parameterEncoding String System.getProperty`("file.
encoding",` "UTF-8")

Specifies the parameter’s encoding.

passShellEnvironment boolean false Specifies whether to pass shell
environment properties to the CGI
program.

To work with a native executable, do the following:

1. Set the value of the init-param named executable to an empty String in the web.xml file.

2. Make sure the executable has its executable bits set correctly.

3. Use directory deployment to deploy the web module. Do not deploy it as a WAR file, because the
executable bit information is lost during the process of jar and unjar. For more information
about directory deployment, see the Eclipse GlassFish Application Deployment Guide.

149

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

Chapter 14. Using Enterprise JavaBeans
Technology
This chapter describes how Enterprise JavaBeans (EJB) technology is supported in the Eclipse
GlassFish.

The following topics are addressed here:

• Value Added Features

• EJB Timer Service

• Using Session Beans

• Using Read-Only Beans

• Using Message-Driven Beans

For general information about enterprise beans, see Enterprise Beans in The Jakarta EE Tutorial.



The Web Profile of the Eclipse GlassFish supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The
full Eclipse GlassFish supports the entire EJB 3.1 specification. For details, see JSR
318 (http://jcp.org/en/jsr/detail?id=318).

The Eclipse GlassFish is backward compatible with 1.1, 2.0, 2.1, and 3.0 enterprise
beans. However, to take advantage of version 3.1 features, you should develop new
beans as 3.1 enterprise beans.

Value Added Features
The Eclipse GlassFish provides a number of value additions that relate to EJB development.
References to more in-depth material are included.

The following topics are addressed here:

• Read-Only Beans

• The pass-by-reference Element

• Pooling and Caching

• Priority Based Scheduling of Remote Bean Invocations

• Immediate Flushing

Read-Only Beans

Another feature that the Eclipse GlassFish provides is the read-only bean, an EJB 2.1 entity bean
that is never modified by an EJB client. Read-only beans avoid database updates completely.

 Read-only beans are specific to the Eclipse GlassFish and are not part of the

150

https://eclipse-ee4j.github.io/jakartaee-tutorial/#enterprise-beans
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean
results in a non-portable application.

To make an EJB 3.0 entity read-only, use @Column annotations to mark its columns
insertable=false and updatable=false.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is updated
by another bean, the read-only bean can be notified to refresh its cached data.

The Eclipse GlassFish provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file and
the trans-attribute element (or @TransactionAttribute annotation) in the ejb-jar.xml file, it is easy
to configure a read-only bean that is one of the following:

• Always refreshed

• Periodically refreshed

• Never refreshed

• Programmatically refreshed

Read-only beans are best suited for situations where the underlying data never changes, or changes
infrequently. For further information and usage guidelines, see Using Read-Only Beans.

The pass-by-reference Element

The pass-by-reference element in the glassfish-ejb-jar.xml file allows you to specify the parameter
passing semantics for colocated remote EJB invocations. This is an opportunity to improve
performance. However, use of this feature results in non-portable applications. See "pass-by-
reference" in Eclipse GlassFish Application Deployment Guide.

Pooling and Caching

The EJB container of the Eclipse GlassFish pools anonymous instances (message-driven beans,
stateless session beans, and entity beans) to reduce the overhead of creating and destroying objects.
The EJB container maintains the free pool for each bean that is deployed. Bean instances in the free
pool have no identity (that is, no primary key associated) and are used to serve method calls. The
free beans are also used to serve all methods for stateless session beans.

Bean instances in the free pool transition from a Pooled state to a Cached state after ejbCreate and
the business methods run. The size and behavior of each pool is controlled using pool-related
properties in the EJB container or the glassfish-ejb-jar.xml file.

In addition, the Eclipse GlassFish supports a number of tunable parameters that can control the
number of "stateful" instances (stateful session beans and entity beans) cached as well as the
duration they are cached. Multiple bean instances that refer to the same database row in a table
can be cached. The EJB container maintains a cache for each bean that is deployed.

To achieve scalability, the container selectively evicts some bean instances from the cache, usually

151

https://glassfish.org/docs/latest/application-deployment-guide.pdf#pass-by-reference
https://glassfish.org/docs/latest/application-deployment-guide.pdf#pass-by-reference

when cache overflows. These evicted bean instances return to the free bean pool. The size and
behavior of each cache can be controlled using the cache-related properties in the EJB container or
the glassfish-ejb-jar.xml file.

Pooling and caching parameters for the glassfish-ejb-jar.xml file are described in "bean-cache" in
Eclipse GlassFish Application Deployment Guide.

Pooling Parameters

One of the most important parameters for Eclipse GlassFish pooling is steady-pool-size. When
steady-pool-size is set to a value greater than 0, the container not only pre-populates the bean pool
with the specified number of beans, but also attempts to ensure that this number of beans is always
available in the free pool. This ensures that there are enough beans in the ready-to-serve state to
process user requests.

Note that the steady-pool-size and max-pool-size parameters only govern the number of instances
that are pooled over a long period of time. They do not necessarily guarantee that the number of
instances that may exist in the JVM at a given time will not exceed the value specified by max-pool-
size. For example, suppose an idle stateless session container has a fully-populated pool with a
steady-pool-size of 10. If 20 concurrent requests arrive for the EJB component, the container
creates 10 additional instances to satisfy the burst of requests. The advantage of this is that it
prevents the container from blocking any of the incoming requests. However, if the activity dies
down to 10 or fewer concurrent requests, the additional 10 instances are discarded.

Another parameter, pool-idle-timeout-in-seconds, allows the administrator to specify the amount
of time a bean instance can be idle in the pool. When pool-idle-timeout-in-seconds is set to greater
than 0, the container removes or destroys any bean instance that is idle for this specified duration.

Caching Parameters

Eclipse GlassFish provides a way that completely avoids caching of entity beans, using commit
option C. Commit option C is particularly useful if beans are accessed in large number but very
rarely reused. For additional information, refer to Commit Options.

The Eclipse GlassFish caches can be either bounded or unbounded. Bounded caches have limits on
the number of beans that they can hold beyond which beans are passivated. For stateful session
beans, there are three ways (LRU, NRU and FIFO) of picking victim beans when cache overflow
occurs. Caches can also passivate beans that are idle (not accessed for a specified duration).

Priority Based Scheduling of Remote Bean Invocations

You can create multiple thread pools, each having its own work queues. An optional element in the
glassfish-ejb-jar.xml file, use-thread-pool-id, specifies the thread pool that processes the requests
for the bean. The bean must have a remote interface, or use-thread-pool-id is ignored. You can
create different thread pools and specify the appropriate thread pool ID for a bean that requires a
quick response time. If there is no such thread pool configured or if the element is absent, the
default thread pool is used.

152

https://glassfish.org/docs/latest/application-deployment-guide.pdf#bean-cache

Immediate Flushing

Normally, all entity bean updates within a transaction are batched and executed at the end of the
transaction. The only exception is the database flush that precedes execution of a finder or select
query.

Since a transaction often spans many method calls, you might want to find out if the updates made
by a method succeeded or failed immediately after method execution. To force a flush at the end of
a method’s execution, use the flush-at-end-of-method element in the glassfish-ejb-jar.xml file.
Only non-finder methods in an entity bean can be flush-enabled. (For an EJB 2.1 bean, these
methods must be in the Local, Local Home, Remote, or Remote Home interface.) See "flush-at-end-
of-method" in Eclipse GlassFish Application Deployment Guide.

Upon completion of the method, the EJB container updates the database. Any exception thrown by
the underlying data store is wrapped as follows:

• If the method that triggered the flush is a create method, the exception is wrapped with
CreateException.

• If the method that triggered the flush is a remove method, the exception is wrapped with
RemoveException.

• For all other methods, the exception is wrapped with EJBException.

All normal end-of-transaction database synchronization steps occur regardless of whether the
database has been flushed during the transaction.

EJB Timer Service
The EJB Timer Service uses a database to store persistent information about EJB timers. The EJB
Timer Service in Eclipse GlassFish is preconfigured to use an embedded version of the Apache
Derby database.

The EJB Timer Service configuration can store persistent timer information in any database
supported by the Eclipse GlassFish for persistence. For a list of the JDBC drivers currently supported
by the Eclipse GlassFish, see the Eclipse GlassFish Release Notes. For configurations of supported
and other drivers, see "Configuration Specifics for JDBC Drivers" in Eclipse GlassFish
Administration Guide.

The timer service is automatically enabled when you deploy an application or module that uses it.
You can verify that the timer service is running by accessing the following URL:

http://localhost:8080/ejb-timer-service-app/timer

To change the database used by the EJB Timer Service, set the EJB Timer Service’s Timer
DataSource setting to a valid JDBC resource. If the EJB Timer Service has already been started in a
server instance, you must also create the timer database table. DDL files are located in as-
install/lib/install/databases.

Using the EJB Timer Service is equivalent to interacting with a single JDBC resource manager. If an

153

https://glassfish.org/docs/latest/application-deployment-guide.pdf#flush-at-end-of-method
https://glassfish.org/docs/latest/application-deployment-guide.pdf#flush-at-end-of-method
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers

EJB component or application accesses a database either directly through JDBC or indirectly (for
example, through an entity bean’s persistence mechanism), and also interacts with the EJB Timer
Service, its data source must be configured with an XA JDBC driver.

You can change the following EJB Timer Service settings. You must restart the server for the
changes to take effect.

Minimum Delivery Interval

Specifies the minimum time in milliseconds before an expiration for a particular timer can
occur. This guards against extremely small timer increments that can overload the server. The
default is 1000.

Maximum Redeliveries

Specifies the maximum number of times the EJB timer service attempts to redeliver a timer
expiration after an exception or rollback of a container-managed transaction. The default is 1.

Redelivery Interval

Specifies how long in milliseconds the EJB timer service waits after a failed ejbTimeout delivery
before attempting a redelivery. The default is 5000.

Timer DataSource

Specifies the database used by the EJB Timer Service. The default is jdbc/__TimerPool.



Do not use the jdbc/__TimerPool resource for timers in clustered Eclipse
GlassFish environments. You must instead use a custom JDBC resource or the
jdbc/__default resource. See the instructions below, in To Deploy an EJB Timer
to a Cluster. Also refer to "Enabling the jdbc/__default Resource in a Clustered
Environment" in Eclipse GlassFish Administration Guide.

For information about the asadmin list-timers and asadmin migrate-timers subcommands, see the
Eclipse GlassFish Reference Manual. For information about migrating EJB timers, see "Migrating
EJB Timers" in Eclipse GlassFish High Availability Administration Guide.

You can use the --keepstate option of the asadmin redeploy command to retain EJB timers between
redeployments.

The default for --keepstate is false. This option is supported only on the default server instance,
named server. It is not supported and ignored for any other target.

When the --keepstate is set to true, each application that uses an EJB timer is assigned an ID in the
timer database. The EJB object that is associated with a given application is assigned an ID that is
constructed from the application ID and a numerical suffix. To preserve active timer data, Eclipse
GlassFish stores the application ID and the EJB ID in the timer database. To restore the data, the
class loader of the newly redeployed application retrieves the EJB timers that correspond to these
IDs from the timer database.

For more information about the asadmin redeploy command, see the Eclipse GlassFish Reference
Manual.

154

https://glassfish.org/docs/latest/administration-guide.pdf#etjdbcdefault-cluster
https://glassfish.org/docs/latest/administration-guide.pdf#etjdbcdefault-cluster
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/ha-administration-guide.pdf#migrating-ejb-timers
https://glassfish.org/docs/latest/ha-administration-guide.pdf#migrating-ejb-timers
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

To Deploy an EJB Timer to a Cluster

This procedure explains how to deploy an EJB timer to a cluster.

By default, the Eclipse GlassFish 8 timer service points to the preconfigured jdbc/__TimerPool
resource, which uses an embedded Apache Derby database configuration that will not work in
clustered environments.

The problem is that embedded Apache Derby database runs in the Eclipse GlassFish Java VM, so
when you use the jdbc/__TimerPool resource, each DAS and each clustered server instance will have
its own database table. Because of this, clustered server instances will not be able to find the
database table on the DAS, and the DAS will not be able to find the tables on the clustered server
instances.

The solution is to use either a custom JDBC resource or the jdbc/default resource that is
preconfigured but not enabled by default in Eclipse GlassFish. The jdbc/default resource does
not use the embedded Apache Derby database by default.

Before You Begin

If creating a new timer resource, the resource should be created before deploying applications that
will use the timer.



Do not use the jdbc/__TimerPool resource for timers in clustered Eclipse GlassFish
environments. You must instead use a custom JDBC resource or the jdbc/__default
resource. See "Enabling the jdbc/__default Resource in a Clustered Environment" in
Eclipse GlassFish Administration Guide.

1. Execute the following command:

asadmin set configs.config.cluster_name-config.ejb-container.ejb-timer-
service.timer-
datasource=jdbc/my-timer-resource

2. Restart the DAS and the target cluster(s).

asadmin stop-cluster cluster-name
asadmin stop-domain domain-name
asadmin start-domain domain-name
asadmin start-cluster cluster-name

Troubleshooting

If you inadvertently used the jdbc/__TimerPool resource for your EJB timer in a clustered Eclipse
GlassFish environment, the DAS and the clustered server instances will be using separate Apache
Derby database tables that are running in individual Java VMs. For timers to work in a clustered
environment, the DAS and the clustered server instances must share a common database table.

155

https://glassfish.org/docs/latest/administration-guide.pdf#etjdbcdefault-cluster

If you attempt to deploy an application with EJB timers without setting the timer resource correctly,
the startup will fail, and you will be left with a marker file, named ejb-timer-service-app, on the
DAS that will prevent the Timer Service from correctly creating the database table.

The solution is to remove the marker file on the DAS, restart the DAS and the clusters, and then
redploy any applications that rely on the offending EJB timer. The marker file is located on the DAS
in domain-dir`/generated/ejb/`ejb-timer-service-app.

Using Session Beans
This section provides guidelines for creating session beans in the Eclipse GlassFish environment.

The following topics are addressed here:

• About the Session Bean Containers

• Stateful Session Bean Failover

• Session Bean Restrictions and Optimizations

Information on session beans is contained in the Enterprise JavaBeans Specification, v3.1.

About the Session Bean Containers

Like an entity bean, a session bean can access a database through Java Database Connectivity
(JDBC) calls. A session bean can also provide transaction settings. These transaction settings and
JDBC calls are referenced by the session bean’s container, allowing it to participate in transactions
managed by the container.

A container managing stateless session beans has a different charter from a container managing
stateful session beans.

The following topics are addressed here:

• Stateless Container

• Stateful Container

Stateless Container

The stateless container manages stateless session beans, which, by definition, do not carry client-
specific states. All session beans (of a particular type) are considered equal.

A stateless session bean container uses a bean pool to service requests. The Eclipse GlassFish
specific deployment descriptor file, glassfish-ejb-jar.xml, contains the properties that define the
pool:

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

156

For more information about glassfish-ejb-jar.xml, see "The glassfish-ejb-jar.xml File" in Eclipse
GlassFish Application Deployment Guide.

The Eclipse GlassFish provides the wscompile and wsdeploy tools to help you implement a web
service endpoint as a stateless session bean. For more information about these tools, see the Eclipse
GlassFish Reference Manual.

Stateful Container

The stateful container manages the stateful session beans, which, by definition, carry the client-
specific state. There is a one-to-one relationship between the client and the stateful session beans.
At creation, each stateful session bean (SFSB) is given a unique session ID that is used to access the
session bean so that an instance of a stateful session bean is accessed by a single client only.

Stateful session beans are managed using cache. The size and behavior of stateful session beans
cache are controlled by specifying the following glassfish-ejb-jar.xml parameters:

• max-cache-size

• resize-quantity

• cache-idle-timeout-in-seconds

• removal-timeout-in-seconds

• victim-selection-policy

The max-cache-size element specifies the maximum number of session beans that are held in cache.
If the cache overflows (when the number of beans exceeds max-cache-size), the container then
passivates some beans or writes out the serialized state of the bean into a file. The directory in
which the file is created is obtained from the EJB container using the configuration APIs.

For more information about glassfish-ejb-jar.xml, see "The glassfish-ejb-jar.xml File" in Eclipse
GlassFish Application Deployment Guide.

The passivated beans are stored on the file system. The Session Store Location setting in the EJB
container allows the administrator to specify the directory where passivated beans are stored. By
default, passivated stateful session beans are stored in application-specific subdirectories created
under domain-dir`/session-store`.


Make sure the delete option is set in the server.policy file, or expired file-based
sessions might not be deleted properly. For more information about server.policy,
see The server.policy File.

The Session Store Location setting also determines where the session state is persisted if it is not
highly available; see Choosing a Persistence Store.

Stateful Session Bean Failover

An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an SFSB
is saved to the persistent store at predefined points in its life cycle. This is called checkpointing. If
SFSB checkpointing is enabled, checkpointing generally occurs after any transaction involving the

157

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079

SFSB is completed, even if the transaction rolls back.

However, if an SFSB participates in a bean-managed transaction, the transaction might be
committed in the middle of the execution of a bean method. Since the bean’s state might be
undergoing transition as a result of the method invocation, this is not an appropriate instant to
checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end of
the corresponding method, provided the bean is not in the scope of another transaction when that
method ends. If a bean-managed transaction spans across multiple methods, checkpointing is
delayed until there is no active transaction at the end of a subsequent method.

The state of an SFSB is not necessarily transactional and might be significantly modified as a result
of non-transactional business methods. If this is the case for an SFSB, you can specify a list of
checkpointed methods. If SFSB checkpointing is enabled, checkpointing occurs after any
checkpointed methods are completed.

The following table lists the types of references that SFSB failover supports. All objects bound into
an SFSB must be one of the supported types. In the table, No indicates that failover for the object
type might not work in all cases and that no failover support is provided. However, failover might
work in some cases for that object type. For example, failover might work because the class
implementing that type is serializable.

Table 8-1 Object Types Supported for Jakarta EE Stateful Session Bean State Failover

Java Object Type Failover Support

Colocated or distributed stateless session,
stateful session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted,
any prepared global transactions are lost and might
not be correctly rolled back or committed.

JDBC DataSource No

Java Message Service (JMS)
ConnectionFactory, Destination

No

Jakarta Mail Session No

Connection Factory No

Administered Object No

Web service reference No

Serializable Java types Yes

Extended persistence context No

For more information about the InitialContext, see Accessing the Naming Context. For more
information about transaction recovery, see Using the Transaction Service. For more information
about Administered Objects, see "Administering JMS Physical Destinations" in Eclipse GlassFish
Administration Guide.

158

https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-physical-destinations



Idempotent URLs are supported along the HTTP path, but not the RMI-IIOP path.
For more information, see Configuring Idempotent URL Requests.

If a server instance to which an RMI-IIOP client request is sent crashes during the
request processing (before the response is prepared and sent back to the client), an
error is sent to the client. The client must retry the request explicitly. When the
client retries the request, the request is sent to another server instance in the
cluster, which retrieves session state information for this client.

HTTP sessions can also be saved in a persistent store in case a server instance fails.
In addition, if a distributable web application references an SFSB, and the web
application’s session fails over, the EJB reference is also failed over. For more
information, see Distributed Sessions and Persistence.

If an SFSB that uses session persistence is undeployed while the Eclipse GlassFish
instance is stopped, the session data in the persistence store might not be cleared.
To prevent this, undeploy the SFSB while the Eclipse GlassFish instance is running.

Configure SFSB failover by:

• Choosing a Persistence Store

• Enabling Checkpointing

• Specifying Methods to Be Checkpointed

Choosing a Persistence Store

The following types of persistent storage are supported for passivation and checkpointing of the
SFSB state:

• The local file system - Allows a single server instance to recover the SFSB state after a failure
and restart. This store also provides passivation and activation of the state to help control the
amount of memory used. This option is not supported in a production environment that
requires SFSB state persistence. This is the default storage mechanism if availability is not
enabled.

• Other servers - Uses other server instances in the cluster for session persistence. Clustered
server instances replicate session state. Each backup instance stores the replicated data in
memory. This is the default storage mechanism if availability is enabled.

Choose the persistence store in one of the following ways:

• To use the local file system, first disable availability. Select the Availability Service component
under the relevant configuration in the Administration Console. Uncheck the Availability
Service box. Then select the EJB Container component and edit the Session Store Location value.
The default is domain-dir`/session-store`.

• To use other servers, select the Availability Service component under the relevant configuration
in the Administration Console. Check the Availability Service box. To enable availability for the
EJB container, select the EJB Container Availability tab, then check the Availability Service box.
All instances in an Eclipse GlassFish cluster should have the same availability settings to ensure

159

consistent behavior.

For more information about SFSB state persistence, see the Eclipse GlassFish High Availability
Administration Guide.

Using the --keepstate Option

If you are using the file system for persistence, you can use the --keepstate option of the asadmin
redeploy command to retain the SFSB state between redeployments.

The default for --keepstate is false. This option is supported only on the default server instance,
named server. It is not supported and ignored for any other target.

Some changes to an application between redeployments prevent this feature from working
properly. For example, do not change the set of instance variables in the SFSB bean class.

If any active SFSB instance fails to be preserved or restored, none of the SFSB instances will be
available when the redeployment is complete. However, the redeployment continues and a
warning is logged.

To preserve active state data, Eclipse GlassFish serializes the data and saves it in memory. To
restore the data, the class loader of the newly redeployed application deserializes the data that was
previously saved.

For more information about the asadmin redeploy command, see the Eclipse GlassFish Reference
Manual.

Using the --asyncreplication Option

If you are using replication on other servers for persistence, you can use the --asyncreplication
option of the asadmin deploy command to specify that SFSB states are first buffered and then
replicated using a separate asynchronous thread. If --asyncreplication is set to true (default),
performance is improved but availability is reduced. If the instance where states are buffered but
not yet replicated fails, the states are lost. If set to false, performance is reduced but availability is
guaranteed. States are not buffered but immediately transmitted to other instances in the cluster.

For more information about the asadmin deploy command, see the Eclipse GlassFish Reference
Manual.

Enabling Checkpointing

The following sections describe how to enable SFSB checkpointing:

• Server Instance and EJB Container Levels

• Application and EJB Module Levels

• SFSB Level

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance or EJB container level, see Choosing a
Persistence Store.

160

https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/ha-administration-guide.pdf#GSHAG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Application and EJB Module Levels

To enable SFSB checkpointing at the application or EJB module level during deployment, use the
asadmin deploy or asadmin deploydir command with the --availabilityenabled option set to true.
For details, see the Eclipse GlassFish Reference Manual.

SFSB Level

To enable SFSB checkpointing at the SFSB level, set availability-enabled="true" in the ejb element
of the SFSB’s glassfish-ejb-jar.xml file as follows:

<glassfish-ejb-jar>
 ...
 <enterprise-beans>
 ...
 <ejb availability-enabled="true">
 <ejb-name>MySFSB</ejb-name>
 </ejb>
 ...
 </enterprise-beans>
</glassfish-ejb-jar>

Specifying Methods to Be Checkpointed

If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction involving
the SFSB is completed, even if the transaction rolls back.

To specify additional optional checkpointing of SFSBs at the end of non-transactional business
methods that cause important modifications to the bean’s state, use the checkpoint-at-end-of-
method element within the ejb element in glassfish-ejb-jar.xml.

For example:

<glassfish-ejb-jar>
 ...
 <enterprise-beans>
 ...
 <ejb availability-enabled="true">
 <ejb-name>ShoppingCartEJB</ejb-name>
 <checkpoint-at-end-of-method>
 <method>
 <method-name>addToCart</method-name>
 </method>
 </checkpoint-at-end-of-method>
 </ejb>
 ...
 </enterprise-beans>
</glassfish-ejb-jar>

161

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

For details, see "checkpoint-at-end-of-method" in Eclipse GlassFish Application Deployment Guide.

The non-transactional methods in the checkpoint-at-end-of-method element can be the following:

• create methods defined in the home or business interface of the SFSB, if you want to checkpoint
the initial state of the SFSB immediately after creation

• For SFSBs using container managed transactions only, methods in the remote interface of the
bean marked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER

• For SFSBs using bean managed transactions only, methods in which a bean managed
transaction is neither started nor committed

Any other methods mentioned in this list are ignored. At the end of invocation of each of these
methods, the EJB container saves the state of the SFSB to persistent store.



If an SFSB does not participate in any transaction, and if none of its methods are
explicitly specified in the checkpoint-at-end-of-method element, the bean’s state is
not checkpointed at all even if availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. The methods chosen
should accomplish a significant amount of work in the context of the Jakarta EE
application or should result in some important modification to the bean’s state.

Session Bean Restrictions and Optimizations

This section discusses restrictions on developing session beans and provides some optimization
guidelines.

• Optimizing Session Bean Performance

• Restricting Transactions

• EJB Singletons

Optimizing Session Bean Performance

For stateful session beans, colocating the stateful beans with their clients so that the client and bean
are executing in the same process address space improves performance.

Restricting Transactions

The following restrictions on transactions are enforced by the container and must be observed as
session beans are developed:

• A session bean can participate in, at most, a single transaction at a time.

• If a session bean is participating in a transaction, a client cannot invoke a method on the bean
such that the trans-attribute element (or @TransactionAttribute annotation) in the ejb-jar.xml
file would cause the container to execute the method in a different or unspecified transaction
context or an exception is thrown.

• If a session bean instance is participating in a transaction, a client cannot invoke the remove

162

https://glassfish.org/docs/latest/application-deployment-guide.pdf#checkpoint-at-end-of-method

method on the session object’s home or business interface object, or an exception is thrown.

EJB Singletons

EJB Singletons are created for each server instance in a cluster, and not once per cluster.

Using Read-Only Beans
A read-only bean is an EJB 2.1 entity bean that is never modified by an EJB client. The data that a
read-only bean represents can be updated externally by other enterprise beans, or by other means,
such as direct database updates.



Read-only beans are specific to the Eclipse GlassFish and are not part of the
Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean
results in a non-portable application.

To make an EJB 3.0 entity bean read-only, use @Column annotations to mark its
columns insertable=false and updatable=false.

Read-only beans are best suited for situations where the underlying data never changes, or changes
infrequently.

The following topics are addressed here:

• Read-Only Bean Characteristics and Life Cycle

• Read-Only Bean Good Practices

• Refreshing Read-Only Beans

• Deploying Read-Only Beans

Read-Only Bean Characteristics and Life Cycle

Read-only beans are best suited for situations where the underlying data never changes, or changes
infrequently. For example, a read-only bean can be used to represent a stock quote for a particular
company, which is updated externally. In such a case, using a regular entity bean might incur the
burden of calling ejbStore, which can be avoided by using a read-only bean.

Read-only beans have the following characteristics:

• Only entity beans can be read-only beans.

• Either bean-managed persistence (BMP) or container-managed persistence (CMP) is allowed. If
CMP is used, do not create the database schema during deployment. Instead, work with your
database administrator to populate the data into the tables. See Using Container-Managed
Persistence.

• Only container-managed transactions are allowed; read-only beans cannot start their own
transactions.

• Read-only beans don’t update any bean state.

163

• ejbStore is never called by the container.

• ejbLoad is called only when a transactional method is called or when the bean is initially created
(in the cache), or at regular intervals controlled by the bean’s refresh-period-in-seconds
element in the glassfish-ejb-jar.xml file.

• The home interface can have any number of find methods. The return type of the find methods
must be the primary key for the same bean type (or a collection of primary keys).

• If the data that the bean represents can change, then refresh-period-in-seconds must be set to
refresh the beans at regular intervals. ejbLoad is called at this regular interval.

A read-only bean comes into existence using the appropriate find methods.

Read-only beans are cached and have the same cache properties as entity beans. When a read-only
bean is selected as a victim to make room in the cache, ejbPassivate is called and the bean is
returned to the free pool. When in the free pool, the bean has no identity and is used only to serve
any finder requests.

Read-only beans are bound to the naming service like regular read-write entity beans, and clients
can look up read-only beans the same way read-write entity beans are looked up.

Read-Only Bean Good Practices

For best results, follow these guidelines when developing read-only beans:

• Avoid having any create or remove methods in the home interface.

• Use any of the valid EJB 2.1 transaction attributes for the trans-attribute element.

The reason for having TX_SUPPORTED is to allow reading uncommitted data in the same
transaction. Also, the transaction attributes can be used to force ejbLoad.

Refreshing Read-Only Beans

There are several ways of refreshing read-only beans, as addressed in the following sections:

• Invoking a Transactional Method

• Refreshing Periodically

• Refreshing Programmatically

Invoking a Transactional Method

Invoking any transactional method invokes ejbLoad.

Refreshing Periodically

Use the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file to refresh a read-only
bean periodically.

• If the value specified in refresh-period-in-seconds is zero or not specified, which is the default,
the bean is never refreshed (unless a transactional method is accessed).

164

• If the value is greater than zero, the bean is refreshed at the rate specified.


This is the only way to refresh the bean state if the data can be modified external
to the Eclipse GlassFish.

By default, a single timer is used for all instances of a read-only bean. When that timer fires, all
bean instances are marked as expired and are refreshed from the database the next time they are
used.

Use the -Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true flag to refresh each bean
instance independently upon access if its refresh period has expired. The default is false. Note that
each instance still has the same refresh period. This additional level of granularity can improve the
performance of read-only beans that do not need to be refreshed at the same time.

To set this flag, use the asadmin create-jvm-options command. For example:

asadmin create-jvm-options
-Dcom.sun.ejb.containers.readonly.relative.refresh.mode=true

Refreshing Programmatically

Typically, beans that update any data that is cached by read-only beans need to notify the read-only
beans to refresh their state. Use ReadOnlyBeanNotifier to force the refresh of read-only beans.

To do this, invoke the following methods on the ReadOnlyBeanNotifier bean:

public interface ReadOnlyBeanNotifier extends java.rmi.Remote {
 refresh(Object PrimaryKey) throws RemoteException;
 }

The implementation of the ReadOnlyBeanNotifier interface is provided by the container. The bean
looks up ReadOnlyBeanNotifier using a fragment of code such as the following example:

com.sun.appserv.ejb.ReadOnlyBeanHelper helper =
 new com.sun.appserv.ejb.ReadOnlyBeanHelper();
com.sun.appserv.ejb.ReadOnlyBeanNotifier notifier =
 helper.getReadOnlyBeanNotifier("java:comp/env/ejb/ReadOnlyCustomer");
notifier.refresh(PrimaryKey);

For a local read-only bean notifier, the lookup has this modification:

helper.getReadOnlyBeanLocalNotifier("java:comp/env/ejb/LocalReadOnlyCustomer");

Beans that update any data that is cached by read-only beans need to call the refresh methods. The
next (non-transactional) call to the read-only bean invokes ejbLoad.

165

For Javadoc tool pages relevant to read-only beans, go to
http://glassfish.java.net/nonav/docs/v3/api/ and click on the com.sun.appserv.ejb package.

Deploying Read-Only Beans

Read-only beans are deployed in the same manner as other entity beans. However, in the entry for
the bean in the glassfish-ejb-jar.xml file, the is-read-only-bean element must be set to true. That
is:

<is-read-only-bean>true</is-read-only-bean>

Also, the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file can be set to some
value that specifies the rate at which the bean is refreshed. If this element is missing, no refresh
occurs.

All requests in the same transaction context are routed to the same read-only bean instance. Set the
allow-concurrent-access element to either true (to allow concurrent accesses) or false (to serialize
concurrent access to the same read-only bean). The default is false.

For further information on these elements, refer to "The glassfish-ejb-jar.xml File" in Eclipse
GlassFish Application Deployment Guide.

Using Message-Driven Beans
This section describes message-driven beans and explains the requirements for creating them in
the Eclipse GlassFish environment.

The following topics are addressed here:

• Message-Driven Bean Configuration

• Message-Driven Bean Restrictions and Optimizations

Message-Driven Bean Configuration

The following topics are addressed here:

• Connection Factory and Destination

• Message-Driven Bean Pool

• Domain-Level Settings

For information about setting up load balancing for message-driven beans, see Load-Balanced
Message Inflow.

Connection Factory and Destination

A message-driven bean is a client to a Connector inbound resource adapter. The message-driven
bean container uses the JMS service integrated into the Eclipse GlassFish for message-driven beans
that are JMS clients. JMS clients use JMS Connection Factory- and Destination-administered objects.
A JMS Connection Factory administered object is a resource manager Connection Factory object

166

http://glassfish.java.net/nonav/docs/v3/api/
http://glassfish.java.net/nonav/docs/v3/api/
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079

that is used to create connections to the JMS provider.

The mdb-connection-factory element in the glassfish-ejb-jar.xml file for a message-driven bean
specifies the connection factory that creates the container connection to the JMS provider.

The jndi-name element of the ejb element in the glassfish-ejb-jar.xml file specifies the JNDI name
of the administered object for the JMS Queue or Topic destination that is associated with the
message-driven bean.

Message-Driven Bean Pool

The container manages a pool of message-driven beans for the concurrent processing of a stream of
messages. The glassfish-ejb-jar.xml file contains the elements that define the pool (that is, the
bean-pool element):

• steady-pool-size

• resize-quantity

• max-pool-size

• pool-idle-timeout-in-seconds

For more information about glassfish-ejb-jar.xml, see "The glassfish-ejb-jar.xml File" in Eclipse
GlassFish Application Deployment Guide.

Domain-Level Settings

You can control the following domain-level message-driven bean settings in the EJB container:

Initial and Minimum Pool Size

Specifies the initial and minimum number of beans maintained in the pool. The default is 0.

Maximum Pool Size

Specifies the maximum number of beans that can be created to satisfy client requests. The
default is 2.

Pool Resize Quantity

Specifies the number of beans to be created if a request arrives when the pool is empty (subject
to the Initial and Minimum Pool Size), or the number of beans to remove if idle for more than
the Idle Timeout. The default is 8.

Idle Timeout

Specifies the maximum time in seconds that a bean can remain idle in the pool. After this
amount of time, the bean is destroyed. The default is 600 (10 minutes). A value of 0 means a bean
can remain idle indefinitely.

For information on monitoring message-driven beans, click the Help button in the Administration
Console. Select the Stand-Alone Instances component, select the instance from the table, and select
the Monitor tab. Or select the Clusters component, select the cluster from the table, select the
Instances tab, select the instance from the table, and select the Monitor tab.

167

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079


Running monitoring when it is not needed might impact performance, so you
might choose to turn monitoring off when it is not in use. For details, see
"Administering the Monitoring Service" in Eclipse GlassFish Administration Guide.

Message-Driven Bean Restrictions and Optimizations

This section discusses the following restrictions and performance optimizations that pertain to
developing message-driven beans:

• Pool Tuning and Monitoring

• The onMessage Runtime Exception

Pool Tuning and Monitoring

The message-driven bean pool is also a pool of threads, with each message-driven bean instance in
the pool associating with a server session, and each server session associating with a thread.
Therefore, a large pool size also means a high number of threads, which impacts performance and
server resources.

When configuring message-driven bean pool properties, make sure to consider factors such as
message arrival rate and pattern, onMessage method processing time, overall server resources
(threads, memory, and so on), and any concurrency requirements and limitations from other
resources that the message-driven bean accesses.

When tuning performance and resource usage, make sure to consider potential JMS provider
properties for the connection factory used by the container (the mdb-connection-factory element in
the glassfish-ejb-jar.xml file). For example, you can tune the Open Message Queue flow control
related properties for connection factory in situations where the message incoming rate is much
higher than max-pool-size can handle.

Refer to "Administering the Monitoring Service" in Eclipse GlassFish Administration Guide for
information on how to get message-driven bean pool statistics.

The onMessage Runtime Exception

Message-driven beans, like other well-behaved MessageListeners, should not, in general, throw
runtime exceptions. If a message-driven bean’s onMessage method encounters a system-level
exception or error that does not allow the method to successfully complete, the Enterprise
JavaBeans Specification, v3.0 provides the following guidelines:

• If the bean method encounters a runtime exception or error, it should simply propagate the
error from the bean method to the container.

• If the bean method performs an operation that results in a checked exception that the bean
method cannot recover, the bean method should throw the javax.ejb.EJBException that wraps
the original exception.

• Any other unexpected error conditions should be reported using javax.ejb.EJBException
(javax.ejb.EJBException is a subclass of java.lang.RuntimeException).

168

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-monitoring-service

Under container-managed transaction demarcation, upon receiving a runtime exception from a
message-driven bean’s onMessage method, the container rolls back the container-started transaction
and the message is redelivered. This is because the message delivery itself is part of the container-
started transaction. By default, the Eclipse GlassFish container closes the container’s connection to
the JMS provider when the first runtime exception is received from a message-driven bean
instance’s onMessage method. This avoids potential message redelivery looping and protects server
resources if the message-driven bean’s onMessage method continues misbehaving. To change this
default container behavior, use the cmt-max-runtime-exceptions property of the MDB container.
Here is an example asadmin set command that sets this property:

asadmin set server-config.mdb-container.property.cmt-max-runtime-exceptions="5"

For more information about the asadmin set command, see the Eclipse GlassFish Reference Manual.

The cmt-max-runtime-exceptions property specifies the maximum number of runtime exceptions
allowed from a message-driven bean’s onMessage method before the container starts to close the
container’s connection to the message source. By default this value is 1; -1 disables this container
protection.

A message-driven bean’s onMessage method can use the jakarta.jms.Message.getJMSRedelivered
method to check whether a received message is a redelivered message.

 The cmt-max-runtime-exceptions property is deprecated.

169

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Chapter 15. Using Container-Managed
Persistence
This chapter contains information on how EJB 2.1 container-managed persistence (CMP) works in
Eclipse GlassFish.

The following topics are addressed here:

• Eclipse GlassFish Support for CMP

• CMP Mapping

• Automatic Schema Generation for CMP

• Schema Capture

• Configuring the CMP Resource

• Performance-Related Features

• Configuring Queries for 1.1 Finders

• CMP Restrictions and Optimizations



The Web Profile of the Eclipse GlassFish supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The
full Eclipse GlassFish supports the entire EJB 3.1 specification. For details, see JSR
318 (http://jcp.org/en/jsr/detail?id=318).

Eclipse GlassFish Support for CMP
Eclipse GlassFish support for EJB 2.1 CMP beans includes:

• Full support for the J2EE v1.4 specification’s CMP model. Extensive information on CMP is
contained in chapters 10, 11, and 14 of the Enterprise JavaBeans Specification, v2.1. This
includes the following:

◦ Support for commit options B and C for transactions. See Commit Options.

◦ The primary key class must be a subclass of java.lang.Object. This ensures portability, and is
noted because some vendors allow primitive types (such as int) to be used as the primary
key class.

• The Eclipse GlassFish CMP implementation, which provides the following:

◦ An Object/Relational (O/R) mapping tool that creates XML deployment descriptors for EJB
JAR files that contain beans that use CMP.

◦ Support for compound (multi-column) primary keys.

◦ Support for sophisticated custom finder methods.

◦ Standards-based query language (EJB QL).

◦ CMP runtime support. See Configuring the CMP Resource.

170

http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318

• Eclipse GlassFish performance-related features, including the following:

◦ Version column consistency checking

◦ Relationship prefetching

◦ Read-Only Beans
For details, see Performance-Related Features.

CMP Mapping
Implementation for entity beans that use CMP is mostly a matter of mapping CMP fields and CMR
fields (relationships) to the database.

The following topics are addressed here:

• Mapping Capabilities

• The Mapping Deployment Descriptor File

• Mapping Considerations

Mapping Capabilities

Mapping refers to the ability to tie an object-based model to a relational model of data, usually the
schema of a relational database. The CMP implementation provides the ability to tie a set of
interrelated beans containing data and associated behaviors to the schema. This object
representation of the database becomes part of the Java application. You can also customize this
mapping to optimize these beans for the particular needs of an application. The result is a single
data model through which both persistent database information and regular transient program
data are accessed.

The mapping capabilities provided by the Eclipse GlassFish include:

• Mapping a CMP bean to one or more tables

• Mapping CMP fields to one or more columns

• Mapping CMP fields to different column types

• Mapping tables with compound primary keys

• Mapping tables with unknown primary keys

• Mapping CMP relationships to foreign keys

• Mapping tables with overlapping primary and foreign keys

The Mapping Deployment Descriptor File

Each module with CMP beans must have the following files:

• ejb-jar.xml - The J2EE standard file for assembling enterprise beans. For a detailed description,
see the Enterprise JavaBeans Specification, v2.1.

• glassfish-ejb-jar.xml - The Eclipse GlassFish standard file for assembling enterprise beans. For

171

a detailed description, see "The glassfish-ejb-jar.xml File" in Eclipse GlassFish Application
Deployment Guide.

• sun-cmp-mappings.xml - The mapping deployment descriptor file, which describes the mapping of
CMP beans to tables in a database. For a detailed description, see "The sun-cmp-mappings.xml
File" in Eclipse GlassFish Application Deployment Guide.

The sun-cmp-mappings.xml file can be automatically generated and does not have to exist prior to
deployment. For details, see Generation Options for CMP.

The sun-cmp-mappings.xml file maps CMP fields and CMR fields (relationships) to the database. A
primary table must be selected for each CMP bean, and optionally, multiple secondary tables. CMP
fields are mapped to columns in either the primary or secondary table(s). CMR fields are mapped to
pairs of column lists (normally, column lists are the lists of columns associated with primary and
foreign keys).



Table names in databases can be case-sensitive. Make sure that the table names in
the sun-cmp-mappings.xml file match the names in the database.

Relationships should always be mapped to the primary key field(s) of the related
table.

The sun-cmp-mappings.xml file conforms to the sun-cmp-mapping_1_2.dtd file and is packaged with the
user-defined bean classes in the EJB JAR file under the META-INF directory.

The Eclipse GlassFish creates the mappings in the sun-cmp-mappings.xml file automatically during
deployment if the file is not present.

To map the fields and relationships of your entity beans manually, edit the sun-cmp-mappings.xml
deployment descriptor. Only do this if you are proficient in editing XML.

The mapping information is developed in conjunction with the database schema (.dbschema) file,
which can be automatically captured when you deploy the bean (see Automatic Database Schema
Capture). You can manually generate the schema using the capture-schema utility (Using the
capture-schema Utility).

Mapping Considerations

The following topics are addressed here:

• Join Tables and Relationships

• Automatic Primary Key Generation

• Fixed Length CHAR Primary Keys

• Managed Fields

• BLOB Support

• CLOB Support

The data types used in automatic schema generation are also suggested for manual mapping. These

172

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00079
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00080
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00080

data types are described in Supported Data Types for CMP.

Join Tables and Relationships

Use of join tables in the database schema is supported for all types of relationships, not just many-
to-many relationships. For general information about relationships, see section 10.3.7 of the
Enterprise JavaBeans Specification, v2.1.

Automatic Primary Key Generation

The Eclipse GlassFish supports automatic primary key generation for EJB 1.1, 2.0, and 2.1 CMP
beans. To specify automatic primary key generation, give the prim-key-class element in the ejb-
jar.xml file the value java.lang.Object. CMP beans with automatically generated primary keys can
participate in relationships with other CMP beans. The Eclipse GlassFish does not support database-
generated primary key values.

If the database schema is created during deployment, the Eclipse GlassFish creates the schema with
the primary key column, then generates unique values for the primary key column at runtime.

If the database schema is not created during deployment, the primary key column in the mapped
table must be of type NUMERIC with a precision of 19 or more, and must not be mapped to any CMP
field. The Eclipse GlassFish generates unique values for the primary key column at runtime.

Fixed Length CHAR Primary Keys

If an existing database table has a primary key column in which the values vary in length, but the
type is CHAR instead of VARCHAR, the Eclipse GlassFish automatically trims any extra spaces when
retrieving primary key values. It is not a good practice to use a fixed length CHAR column as a
primary key. Use this feature with schemas that cannot be changed, such as a schema inherited
from a legacy application.

Managed Fields

A managed field is a CMP or CMR field that is mapped to the same database column as another CMP
or CMR field. CMP fields mapped to the same column and CMR fields mapped to exactly the same
column lists always have the same value in memory. For CMR fields that share only a subset of their
mapped columns, changes to the columns affect the relationship fields in memory differently.
Basically, the Eclipse GlassFish always tries to keep the state of the objects in memory synchronized
with the database.

A managed field can have any fetched-with subelement. If the fetched-with subelement is
<default/>, the -DAllowManagedFieldsInDefaultFetchGroup flag must be set to true. See Default Fetch
Group Flags and "fetched-with" in Eclipse GlassFish Application Deployment Guide.

BLOB Support

Binary Large Object (BLOB) is a data type used to store values that do not correspond to other types
such as numbers, strings, or dates. Java fields whose types implement java.io.Serializable or are
represented as byte[] can be stored as BLOBs.

173

https://glassfish.org/docs/latest/application-deployment-guide.pdf#fetched-with

If a CMP field is defined as Serializable, it is serialized into a byte[] before being stored in the
database. Similarly, the value fetched from the database is deserialized. However, if a CMP field is
defined as byte[], it is stored directly instead of being serialized and deserialized when stored and
fetched, respectively.

To enable BLOB support in the Eclipse GlassFish environment, define a CMP field of type byte[] or a
user-defined type that implements the java.io.Serializable interface. If you map the CMP bean to an
existing database schema, map the field to a column of type BLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver for
Oracle Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the Eclipse GlassFish, see the Eclipse GlassFish
Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for
JDBC Drivers" in Eclipse GlassFish Administration Guide.

For automatic mapping, you might need to change the default BLOB column length for the
generated schema using the schema-generator-properties element in glassfish-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>
 <property>
 <name>Employee.voiceGreeting.jdbc-type</name>
 <value>BLOB</value>
 </property>
 <property>
 <name>Employee.voiceGreeting.jdbc-maximum-length</name>
 <value>10240</value>
 </property>
 ...
</schema-generator-properties>

CLOB Support

Character Large Object (CLOB) is a data type used to store and retrieve very long text fields. CLOBs
translate into long strings.

To enable CLOB support in the Eclipse GlassFish environment, define a CMP field of type
java.lang.String. If you map the CMP bean to an existing database schema, map the field to a
column of type CLOB.

To use BLOB or CLOB data types larger than 4 KB for CMP using the Inet Oraxo JDBC Driver for
Oracle Databases, you must set the streamstolob property value to true.

For a list of the JDBC drivers currently supported by the Eclipse GlassFish, see the Eclipse GlassFish
Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for
JDBC Drivers" in Eclipse GlassFish Administration Guide.

174

https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers

For automatic mapping, you might need to change the default CLOB column length for the
generated schema using the schema-generator-properties element in glassfish-ejb-jar.xml. See
your database vendor documentation to determine whether you need to specify the length. For
example:

<schema-generator-properties>
 <property>
 <name>Employee.resume.jdbc-type</name>
 <value>CLOB</value>
 </property>
 <property>
 <name>Employee.resume.jdbc-maximum-length</name>
 <value>10240</value>
 </property>
 ...
</schema-generator-properties>

Automatic Schema Generation for CMP
The automatic schema generation feature provided in the Eclipse GlassFish defines database tables
based on the fields in entity beans and the relationships between the fields. This insulates
developers from many of the database related aspects of development, allowing them to focus on
entity bean development. The resulting schema is usable as-is or can be given to a database
administrator for tuning with respect to performance, security, and so on.

The following topics are addressed here:

• Supported Data Types for CMP

• Generation Options for CMP



Automatic schema generation is supported on an all-or-none basis: it expects that
no tables exist in the database before it is executed. It is not intended to be used as
a tool to generate extra tables or constraints.

Deployment won’t fail if all tables are not created, and undeployment won’t fail if
not all tables are dropped. This is done to allow you to investigate the problem and
fix it manually. You should not rely on the partially created database schema to be
correct for running the application.

Supported Data Types for CMP

CMP supports a set of JDBC data types that are used in mapping Java data fields to SQL types.
Supported JDBC data types are as follows: BIGINT, BIT, BLOB, CHAR, CLOB, DATE, DECIMAL,
DOUBLE, FLOAT, INTEGER, NUMERIC, REAL, SMALLINT, TIME, TIMESTAMP, TINYINT, VARCHAR.

The following table contains the mappings of Java types to JDBC types when automatic mapping is
used.

175

Table 9-1 Java Type to JDBC Type Mappings for CMP

Java Type JDBC Type Nullability

boolean BIT No

java.lang.Boolean BIT Yes

byte TINYINT No

java.lang.Byte TINYINT Yes

double DOUBLE No

java.lang.Double DOUBLE Yes

float REAL No

java.lang.Float REAL Yes

int INTEGER No

java.lang.Integer INTEGER Yes

long BIGINT No

java.lang.Long BIGINT Yes

short SMALLINT No

java.lang.Short SMALLINT Yes

java.math.BigDecimal DECIMAL Yes

java.math.BigInteger DECIMAL Yes

char CHAR No

java.lang.Character CHAR Yes

java.lang.String VARCHAR or CLOB Yes

Serializable BLOB Yes

byte[] BLOB Yes

java.util.Date DATE (Oracle only)

TIMESTAMP (all other databases)

Yes

java.sql.Date DATE Yes

java.sql.Time TIME Yes

java.sql.Timestamp TIMESTAMP Yes



Java types assigned to CMP fields must be restricted to Java primitive types, Java
Serializable types, java.util.Date, java.sql.Date, java.sql.Time, or
java.sql.Timestamp. An entity bean local interface type (or a collection of such) can
be the type of a CMR field.

The following table contains the mappings of JDBC types to database vendor-specific types when
automatic mapping is used. For a list of the JDBC drivers currently supported by the Eclipse

176

GlassFish, see the Eclipse GlassFish Release Notes. For configurations of supported and other
drivers, see "Configuration Specifics for JDBC Drivers" in Eclipse GlassFish Administration Guide.

Table 9-2 Mappings of JDBC Types to Database Vendor Specific Types for CMP

JDBC Type Apache Derby,
CloudScape

Oracle DB2 Sybase ASE
12.5

MS-SQL Server

BIT SMALLINT SMALLINT SMALLINT TINYINT BIT

TINYINT SMALLINT SMALLINT SMALLINT TINYINT TINYINT

SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT

INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER

BIGINT BIGINT NUMBER BIGINT NUMERIC NUMERIC

REAL REAL REAL FLOAT FLOAT REAL

DOUBLE DOUBLE
PRECISION

DOUBLE
PRECISION

DOUBLE DOUBLE
PRECISION

FLOAT

DECIMAL(p,s) DECIMAL(p,s) NUMBER(p,s) DECIMAL(p,s) DECIMAL(p,s) DECIMAL(p,s)

VARCHAR VARCHAR VARCHAR2 VARCHAR VARCHAR VARCHAR

DATE DATE DATE DATE DATETIME DATETIME

TIME TIME DATE TIME DATETIME DATETIME

TIMESTAMP TIMESTAMP TIMESTAMP(9) TIMESTAMP DATETIME DATETIME

BLOB BLOB BLOB BLOB IMAGE IMAGE

CLOB CLOB CLOB CLOB TEXT NTEXT

Generation Options for CMP

Deployment descriptor elements or asadmin command line options can control automatic schema
generation by the following:

• Creating tables during deployment

• Dropping tables during undeployment

• Dropping and creating tables during redeployment

• Specifying the database vendor

• Specifying that table names are unique

• Specifying type mappings for individual CMP fields



Before using these options, make sure you have a properly configured CMP
resource. See Configuring the CMP Resource.

For a read-only bean, do not create the database schema during deployment.
Instead, work with your database administrator to populate the data into the
tables. See Using Read-Only Beans.

Automatic schema generation is not supported for beans with version column
consistency checking. Instead, work with your database administrator to create

177

https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers

the schema and add the required triggers. See Version Column Consistency
Checking.

The following optional data subelements of the cmp-resource element in the glassfish-ejb-jar.xml
file control the automatic creation of database tables at deployment. For more information about
the cmp-resource element, see "cmp-resource" in Eclipse GlassFish Application Deployment Guide
and Configuring the CMP Resource.

Table 9-3 The glassfish-ejb-jar.xml Generation Elements

Element Default Description

create-tables-at-
deploy

false If true, causes database tables to
be created for beans that are
automatically mapped by the
EJB container. No unique
constraints are created. If false,
does not create tables.

drop-tables-at-
undeploy

false If true, causes database tables
that were automatically created
when the bean(s) were last
deployed to be dropped when
the bean(s) are undeployed. If
false, does not drop tables.

database-vendor-
name

none Specifies the name of the
database vendor for which
tables are created. Allowed
values are javadb, db2, mssql,
mysql, oracle, postgresql,
pointbase, derby (also for
CloudScape), and sybase, case-
insensitive.

If no value is specified, a
connection is made to the
resource specified by the jndi-
name subelement of the cmp-
resource element in the
glassfish-ejb-jar.xml file, and
the database vendor name is
read. If the connection cannot
be established, or if the value is
not recognized, SQL-92
compliance is presumed.

178

https://glassfish.org/docs/latest/application-deployment-guide.pdf#cmp-resource
https://glassfish.org/docs/latest/application-deployment-guide.pdf#create-tables-at-deploy
https://glassfish.org/docs/latest/application-deployment-guide.pdf#create-tables-at-deploy
https://glassfish.org/docs/latest/application-deployment-guide.pdf#drop-tables-at-undeploy
https://glassfish.org/docs/latest/application-deployment-guide.pdf#drop-tables-at-undeploy
https://glassfish.org/docs/latest/application-deployment-guide.pdf#database-vendor-name
https://glassfish.org/docs/latest/application-deployment-guide.pdf#database-vendor-name

Element Default Description

schema-generator-
properties

none Specifies field-specific column
attributes in property
subelements. Each property
name is of the following format:

bean-name`.field-
name.`attribute

For example:

Employee.firstName.jdbc-type

Also allows you to set the use-
unique-table-names property. If
true, this property specifies that
generated table names are
unique within each Eclipse
GlassFish domain. The default is
false.

For further information and an
example, see "schema-
generator-properties" in Eclipse
GlassFish Application
Deployment Guide.

The following options of the asadmin deploy or asadmin deploydir command control the automatic
creation of database tables at deployment.

Table 9-4 The asadmin deploy and asadmin deploydir Generation Options for CMP

Option Default Description

--createtables none If true, causes database tables to be
created for beans that need them.
No unique constraints are created. If
false, does not create tables. If not
specified, the value of the create-
tables-at-deploy attribute in
glassfish-ejb-jar.xml is used.

179

https://glassfish.org/docs/latest/application-deployment-guide.pdf#schema-generator-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#schema-generator-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#schema-generator-properties
https://glassfish.org/docs/latest/application-deployment-guide.pdf#schema-generator-properties

Option Default Description

--dropandcreat
etables

none If true, and if tables were
automatically created when this
application was last deployed, tables
from the earlier deployment are
dropped and fresh ones are created.

If true, and if tables were not
automatically created when this
application was last deployed, no
attempt is made to drop any tables.
If tables with the same names as
those that would have been
automatically created are found, the
deployment proceeds, but a warning
indicates that tables could not be
created.

If false, settings of create-tables-
at-deploy or drop-tables-at-
undeploy in the glassfish-ejb-
jar.xml file are overridden.

--uniquetablen
ames

none If true, specifies that table names
are unique within each Eclipse
GlassFish domain. If not specified,
the value of the use-unique-table-
names property in glassfish-ejb-
jar.xml is used.

180

Option Default Description

--dbvendorname none Specifies the name of the database
vendor for which tables are created.
Allowed values are javadb, db2,
mssql, oracle, postgresql, pointbase,
derby (also for CloudScape), and
sybase, case-insensitive.

If not specified, the value of the
database-vendor-name attribute in
glassfish-ejb-jar.xml is used.

If no value is specified, a connection
is made to the resource specified by
the jndi-name subelement of the cmp-
resource element in the glassfish-
ejb-jar.xml file, and the database
vendor name is read. If the
connection cannot be established, or
if the value is not recognized, SQL-
92 compliance is presumed.

If one or more of the beans in the module are manually mapped and you use any of the asadmin
deploy or asadmin deploydir options, the deployment is not harmed in any way, but the options have
no effect, and a warning is written to the server log.

The following options of the asadmin undeploy command control the automatic removal of database
tables at undeployment.

Table 9-5 The asadmin undeploy Generation Options for CMP

Option Default Description

--dropta
bles

none If true, causes database tables that were
automatically created when the bean(s)
were last deployed to be dropped when
the bean(s) are undeployed. If false, does
not drop tables.

If not specified, the value of the drop-
tables-at-undeploy attribute in glassfish-
ejb-jar.xml is used.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy
commands, see the Eclipse GlassFish Reference Manual.

When command line and glassfish-ejb-jar.xml options are both specified, the asadmin options take
precedence.

181

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Schema Capture
The following topics are addressed here:

• Automatic Database Schema Capture

• Using the capture-schema Utility

Automatic Database Schema Capture

You can configure a CMP bean in Eclipse GlassFish to automatically capture the database metadata
and save it in a .dbschema file during deployment. If the sun-cmp-mappings.xml file contains an empty
<schema/> entry, the cmp-resource entry in the glassfish-ejb-jar.xml file is used to get a connection
to the database, and automatic generation of the schema is performed.


Before capturing the database schema automatically, make sure you have a
properly configured CMP resource. See Configuring the CMP Resource.

Using the capture-schema Utility

You can use the capture-schema command to manually generate the database metadata (.dbschema)
file. For details, see the Eclipse GlassFish Reference Manual.

The capture-schema utility does not modify the schema in any way. Its only purpose is to provide the
persistence engine with information about the structure of the database (the schema).

Keep the following in mind when using the capture-schema command:

• The name of a .dbschema file must be unique across all deployed modules in a domain.

• If more than one schema is accessible for the schema user, more than one table with the same
name might be captured if the -schemaname option of capture-schema is not set.

• The schema name must be upper case.

• Table names in databases are case-sensitive. Make sure that the table name matches the name
in the database.

• PostgreSQL databases internally convert all names to lower case. Before running the capture-
schema command on a PostgreSQL database, make sure table and column names are lower case
in the sun-cmp-mappings.xml file.

• An Oracle database user running the capture-schema command needs ANALYZE ANY TABLE
privileges if that user does not own the schema. These privileges are granted to the user by the
database administrator.

Configuring the CMP Resource
An EJB module that contains CMP beans requires the JNDI name of a JDBC resource in the jndi-name
subelement of the cmp-resource element in the glassfish-ejb-jar.xml file. Set
PersistenceManagerFactory properties as properties of the cmp-resource element in the glassfish-
ejb-jar.xml file. See "cmp-resource" in Eclipse GlassFish Application Deployment Guide.

182

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#cmp-resource

In the Administration Console, open the Resources component, then select JDBC. Click the Help
button in the Administration Console for information on creating a new JDBC resource.

For a list of the JDBC drivers currently supported by the Eclipse GlassFish, see the Eclipse GlassFish
Release Notes. For configurations of supported and other drivers, see "Configuration Specifics for
JDBC Drivers" in Eclipse GlassFish Administration Guide.

For example, if the JDBC resource has the JNDI name jdbc/MyDatabase, set the CMP resource in the
glassfish-ejb-jar.xml file as follows:

<cmp-resource>
 <jndi-name>jdbc/MyDatabase</jndi-name>
</cmp-resource>

Performance-Related Features
The Eclipse GlassFish provides the following features to enhance performance or allow more fine-
grained data checking. These features are supported only for entity beans with container managed
persistence.

The following topics are addressed here:

• Version Column Consistency Checking

• Relationship Prefetching

• Read-Only Beans

• Default Fetch Group Flags

 Use of any of these features results in a non-portable application.

Version Column Consistency Checking

The version consistency feature saves the bean state at first transactional access and caches it
between transactions. The state is copied from the cache instead of being read from the database.
The bean state is verified by primary key and version column values at flush for custom queries
(for dirty instances only) and at commit (for clean and dirty instances).

To Use Version Consistency

1. Create the version column in the primary table.

2. Give the version column a numeric data type.

3. Provide appropriate update triggers on the version column.
These triggers must increment the version column on each update of the specified row.

4. Specify the version column.
This is specified in the check-version-of-accessed-instances subelement of the consistency
element in the sun-cmp-mappings.xml file. See "consistency" in Eclipse GlassFish Application

183

https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/release-notes.pdf#GSRLN
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers
https://glassfish.org/docs/latest/administration-guide.pdf#configuration-specifics-for-jdbc-drivers
https://glassfish.org/docs/latest/application-deployment-guide.pdf#consistency

Deployment Guide.

5. Map the CMP bean to an existing schema.

Automatic schema generation is not supported for beans with version column consistency
checking. Instead, work with your database administrator to create the schema and add the
required triggers.

Relationship Prefetching

In many cases when an entity bean’s state is fetched from the database, its relationship fields are
always accessed in the same transaction. Relationship prefetching saves database round trips by
fetching data for an entity bean and those beans referenced by its CMR fields in a single database
round trip.

To enable relationship prefetching for a CMR field, use the default subelement of the fetched-with
element in the sun-cmp-mappings.xml file. By default, these CMR fields are prefetched whenever
findByPrimaryKey or a custom finder is executed for the entity, or when the entity is navigated to
from a relationship. (Recursive prefetching is not supported, because it does not usually enhance
performance.) See "fetched-with" in Eclipse GlassFish Application Deployment Guide.

To disable prefetching for specific custom finders, use the prefetch-disabled element in the
glassfish-ejb-jar.xml file. See "prefetch-disabled" in Eclipse GlassFish Application Deployment
Guide.

Multilevel relationship prefetching is supported for CMP 2.1 entity beans. To enable multilevel
relationship prefetching, set the following property using the asadmin create-jvm-options
command:

asadmin create-jvm-options
-Dcom.sun.jdo.spi.persistence.support.sqlstore.MULTILEVEL_PREFETCH=true

Read-Only Beans

Another feature that the Eclipse GlassFish provides is the read-only bean, an entity bean that is
never modified by an EJB client. Read-only beans avoid database updates completely.


Read-only beans are specific to the Eclipse GlassFish and are not part of the
Enterprise JavaBeans Specification, v2.1. Use of this feature for an EJB 2.1 bean
results in a non-portable application.

A read-only bean can be used to cache a database entry that is frequently accessed but rarely
updated (externally by other beans). When the data that is cached by a read-only bean is updated
by another bean, the read-only bean can be notified to refresh its cached data.

The Eclipse GlassFish provides a number of ways by which a read-only bean’s state can be
refreshed. By setting the refresh-period-in-seconds element in the glassfish-ejb-jar.xml file and
the trans-attribute element (or @TransactionAttribute annotation) in the ejb-jar.xml file, it is easy
to configure a read-only bean that is one of the following:

184

https://glassfish.org/docs/latest/application-deployment-guide.pdf#fetched-with
https://glassfish.org/docs/latest/application-deployment-guide.pdf#prefetch-disabled

• Always refreshed

• Periodically refreshed

• Never refreshed

• Programmatically refreshed

Access to CMR fields of read-only beans is not supported. Deployment will succeed, but an
exception will be thrown at runtime if a get or set method is invoked.

Read-only beans are best suited for situations where the underlying data never changes, or changes
infrequently. For further information and usage guidelines, see Using Read-Only Beans.

Default Fetch Group Flags
Using the following flags can improve performance.

Setting -DAllowManagedFieldsInDefaultFetchGroup=true allows CMP fields that by default cannot be
placed into the default fetch group to be loaded along with all other fields that are fetched when the
CMP state is loaded into memory. These could be multiple fields mapped to the same column in the
database table, for example, an instance field and a CMR. By default this flag is set to false.

For additional information, see "level" in Eclipse GlassFish Application Deployment Guide.

Setting -DAllowMediatedWriteInDefaultFetchGroup specifies how updated CMP fields are written back
to the database. If the flag is false, all fields in the CMP bean are written back to the database if at
least one field in the default fetch group has been changed in a transaction. If the flag is true, only
fields modified by the bean are written back to the database. Specifying true can improve
performance, particularly on database tables with many columns that have not been updated. By
default this flag is set to false.

To set one of these flags, use the asadmin create-jvm-options command. For example:

asadmin create-jvm-options -DAllowManagedFieldsInDefaultFetchGroup=true

Configuring Queries for 1.1 Finders
The following topics are addressed here:

• About JDOQL Queries

• Query Filter Expression

• Query Parameters

• Query Variables

• JDOQL Examples

185

https://glassfish.org/docs/latest/application-deployment-guide.pdf#level

About JDOQL Queries

The Enterprise JavaBeans Specification, v1.1 does not specify the format of the finder method
description. The Eclipse GlassFish uses an extension of Java Data Objects Query Language (JDOQL)
queries to implement finder and selector methods. You can specify the following elements of the
underlying JDOQL query:

• Filter expression - A Java-like expression that specifies a condition that each object returned by
the query must satisfy. Corresponds to the WHERE clause in EJB QL.

• Query parameter declaration - Specifies the name and the type of one or more query input
parameters. Follows the syntax for formal parameters in the Java language.

• Query variable declaration - Specifies the name and type of one or more query variables.
Follows the syntax for local variables in the Java language. A query filter might use query
variables to implement joins.

• Query ordering declaration - Specifies the ordering expression of the query. Corresponds to the
ORDER BY clause of EJB QL.

The Eclipse GlassFish specific deployment descriptor (glassfish-ejb-jar.xml) provides the following
elements to store the EJB 1.1 finder method settings:

query-filter
query-params
query-variables
query-ordering

The bean developer uses these elements to construct a query. When the finder method that uses
these elements executes, the values of these elements are used to execute a query in the database.
The objects from the JDOQL query result set are converted into primary key instances to be
returned by the EJB 1.1 ejbFind method.

The JDO specification, JSR 12 (http://jcp.org/en/jsr/detail?id=12), provides a comprehensive
description of JDOQL. The following information summarizes the elements used to define EJB 1.1
finders.

Query Filter Expression

The filter expression is a String containing a Boolean expression evaluated for each instance of the
candidate class. If the filter is not specified, it defaults to true. Rules for constructing valid
expressions follow the Java language, with the following differences:

• Equality and ordering comparisons between primitives and instances of wrapper classes are
valid.

• Equality and ordering comparisons of Date fields and Date parameters are valid.

• Equality and ordering comparisons of String fields and String parameters are valid.

• White space (non-printing characters space, tab, carriage return, and line feed) is a separator
and is otherwise ignored.

186

http://jcp.org/en/jsr/detail?id=12
http://jcp.org/en/jsr/detail?id=12

• The following assignment operators are not supported.

◦ Comparison operators such as =, +=, and so on

◦ Pre- and post-increment

◦ Pre- and post-decrement

• Methods, including object construction, are not supported, except for these methods.

Collection.contains(Object o)
Collection.isEmpty()
String.startsWith(String s)
String.endsWith(String e)

In addition, the Eclipse GlassFish supports the following nonstandard JDOQL methods.

String.like(String pattern)
String.like(String pattern, char escape)
String.substring(int start, int length)
String.indexOf(String str)
String.indexOf(String str, int start)
String.length()
Math.abs(numeric n)
Math.sqrt(double d)

• Navigation through a null-valued field, which throws a NullPointerException, is treated as if the
sub-expression returned false.



Comparisons between floating point values are by nature inexact. Therefore,
equality comparisons (== and !=) with floating point values should be used with
caution. Identifiers in the expression are considered to be in the name space of the
candidate class, with the addition of declared parameters and variables. As in the
Java language, this is a reserved word, and refers to the current instance being
evaluated.

The following expressions are supported.

• Relational operators (==, !=,>, <,>=, ⇐)

• Boolean operators (&, &&, |, ||, ~, !)

• Arithmetic operators (+, -, *, /)

• String concatenation, only for String + String

• Parentheses to explicitly mark operator precedence

• Cast operator

• Promotion of numeric operands for comparisons and arithmetic operations

The rules for promotion follow the Java rules extended by BigDecimal, BigInteger, and numeric

187

wrapper classes. See the numeric promotions of the Java language specification.

Query Parameters

The parameter declaration is a String containing one or more parameter type declarations
separated by commas. This follows the Java syntax for method signatures.

Query Variables

The type declarations follow the Java syntax for local variable declarations.

JDOQL Examples

This section provides a few query examples.

Example 1

The following query returns all players called Michael. It defines a filter that compares the name
field with a string literal:

name == "Michael"

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>
 <method-name>findPlayerByName</method-name>
 <query-filter>name == "Michael"</query-filter>
</finder>

Example 2

This query returns all products in a specified price range. It defines two query parameters which
are the lower and upper bound for the price: double low, double high. The filter compares the
query parameters with the price field:

low < price && price < high

Query ordering is set to price ascending.

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>
 <method-name>findInRange</method-name>
 <query-params>double low, double high</query-params>
 <query-filter>low < price && price < high</query-filter>
 <query-ordering>price ascending</query-ordering>

188

</finder>

Example 3

This query returns all players having a higher salary than the player with the specified name. It
defines a query parameter for the name java.lang.String name. Furthermore, it defines a variable
to which the player’s salary is compared. It has the type of the persistence capable class that
corresponds to the bean:

 mypackage.PlayerEJB_170160966_JDOState player

The filter compares the salary of the current player denoted by the this keyword with the salary of
the player with the specified name:

 (this.salary> player.salary) && (player.name == name)

The finder element of the glassfish-ejb-jar.xml file looks like this:

<finder>
 <method-name>findByHigherSalary</method-name>
 <query-params>java.lang.String name</query-params>
 <query-filter>
 (this.salary > player.salary) && (player.name == name)
 </query-filter>
 <query-variables>
 mypackage.PlayerEJB_170160966_JDOState player
 </query-variables>
</finder>

CMP Restrictions and Optimizations
This section discusses restrictions and performance optimizations that pertain to using CMP.

The following topics are addressed here:

• Disabling ORDER BY Validation

• Setting the Heap Size on DB2

• Eager Loading of Field State

• Restrictions on Remote Interfaces

• PostgreSQL Case Insensitivity

• No Support for lock-when-loaded on Sybase

• Sybase Finder Limitation

• Date and Time Fields

189

• Set RECURSIVE_TRIGGERS to false on MSSQL

• MySQL Database Restrictions

Disabling ORDER BY Validation

EJB QL as defined in the EJB 2.1 Specification defines certain restrictions for the SELECT clause of
an ORDER BY query (see section 11.2.8 ORDER BY Clause). This ensures that a query does not order
by a field that is not returned by the query. By default, the EJB QL compiler checks the above
restriction and throws an exception if the query does not conform.

However, some databases support SQL statements with an ORDER BY column that is not included in
the SELECT clause. To disable the validation of the ORDER BY clause against the SELECT clause, set
the DISABLE_ORDERBY_VALIDATION JVM option as follows:

asadmin create-jvm-options
-Dcom.sun.jdo.spi.persistence.support.ejb.ejbqlc.DISABLE_ORDERBY_VALIDATION=true

The DISABLE_ORDERBY_VALIDATION option is set to false by default. Setting it to true results in a non-
portable module or application.

Setting the Heap Size on DB2

On DB2, the database configuration parameter APPLHEAPSZ determines the heap size. If you are using
the Oracle or DataDirect database driver, set this parameter to at least 2048 for CMP. For more
information, see http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/
com.ibm.db2.udb.doc/opt/tsbp2024.html.

Eager Loading of Field State

By default, the EJB container loads the state for all persistent fields (excluding relationship, BLOB,
and CLOB fields) before invoking the ejbLoad method of the abstract bean. This approach might not
be optimal for entity objects with large state if most business methods require access to only parts
of the state.

Use the fetched-with element in sun-cmp-mappings.xml for fields that are used infrequently. See
"fetched-with" in Eclipse GlassFish Application Deployment Guide.

Restrictions on Remote Interfaces

The following restrictions apply to the remote interface of an EJB 2.1 bean that uses CMP:

• Do not expose the get and set methods for CMR fields or the persistence collection classes that
are used in container-managed relationships through the remote interface of the bean.

However, you are free to expose the get and set methods that correspond to the CMP fields of
the entity bean through the bean’s remote interface.

• Do not expose the container-managed collection classes that are used for relationships through

190

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.html
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/opt/tsbp2024.html
https://glassfish.org/docs/latest/application-deployment-guide.pdf#fetched-with

the remote interface of the bean.

• Do not expose local interface types or local home interface types through the remote interface
or remote home interface of the bean.

Dependent value classes can be exposed in the remote interface or remote home interface, and can
be included in the client EJB JAR file.

PostgreSQL Case Insensitivity

Case-sensitive behavior cannot be achieved for PostgreSQL databases. PostgreSQL databases
internally convert all names to lower case, which makes the following workarounds necessary:

• In the CMP 2.1 runtime, PostgreSQL table and column names are not quoted, which makes these
names case insensitive.

• Before running the capture-schema command on a PostgreSQL database, make sure table and
column names are lower case in the sun-cmp-mappings.xml file.

No Support for lock-when-loaded on Sybase

For EJB 2.1 beans, the lock-when-loaded consistency level is implemented by placing update locks on
the data corresponding to a bean when the data is loaded from the database. There is no suitable
mechanism available on Sybase databases to implement this feature. Therefore, the lock-when-
loaded consistency level is not supported on Sybase databases. See "consistency" in Eclipse
GlassFish Application Deployment Guide.

Sybase Finder Limitation

If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type TEXT
and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype
'TEXT' to 'VARCHAR' is not allowed. Use the CONVERT function to run this query.

To avoid this error, make sure the finder method input is less than 255 characters.

Date and Time Fields

If a field type is a Java date or time type (java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp), make sure that the field value exactly matches the value in the database.

For example, the following code uses a java.sql.Date type as a primary key field:

java.sql.Date myDate = new java.sql.Date(System.currentTimeMillis())
BeanA.create(myDate, ...);

191

https://glassfish.org/docs/latest/application-deployment-guide.pdf#consistency

For some databases, this code results in only the year, month, and date portion of the field value
being stored in the database. Later if the client tries to find this bean by primary key as follows, the
bean is not found in the database because the value does not match the one that is stored in the
database.

myBean = BeanA.findByPrimaryKey(myDate);

Similar problems can happen if the database truncates the timestamp value while storing it, or if a
custom query has a date or time value comparison in its WHERE clause.

For automatic mapping to an Oracle database, fields of type java.util.Date, java.sql.Date, and
java.sql.Time are mapped to Oracle’s DATE data type. Fields of type java.sql.Timestamp are mapped
to Oracle’s TIMESTAMP(9) data type.

Set RECURSIVE_TRIGGERS to false on MSSQL

For version consistency triggers on MSSQL, the property RECURSIVE_TRIGGERS must be set to false,
which is the default. If set to true, triggers throw a java.sql.SQLException.

Set this property as follows:

EXEC sp_dboption 'database-name', 'recursive triggers', 'FALSE'
go

You can test this property as follows:

SELECT DATABASEPROPERTYEX('database-name', 'IsRecursiveTriggersEnabled')
go

MySQL Database Restrictions

The following restrictions apply when you use a MySQL database with the Eclipse GlassFish for
persistence.

• MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields in
your table, use \`int1` and \`int2\` field names in your SQL file.

• When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an error
message, start the MySQL database in strict SQL mode.

• The order of fields in a foreign key index must match the order in the explicitly created index
on the primary table.

• The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

192

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having commit,
rollback, and crash recovery capabilities.

• For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four bytes
to store a FLOAT type that does not have an explicit precision definition. For example, this causes
a number such as 12345.67890123 to be rounded off to 12345.7 during an INSERT. To prevent
this, specify FLOAT(10,2) in the DDL file, which forces the database to use an eight-byte double-
precision column. For more information, see http://dev.mysql.com/doc/mysql/en/numeric-
types.html.

• To use || as the string concatenation symbol, start the MySQL server with the --sql
-mode="PIPES_AS_CONCAT" option. For more information, see http://dev.mysql.com/doc/refman/
5.0/en/server-sql-mode.html and http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

• MySQL always starts a new connection when autoCommit==true is set. This ensures that each SQL
statement forms a single transaction on its own. If you try to rollback or commit an SQL
statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:
Can't call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:
Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information, see
http://forums.mysql.com/read.php?39,31326,31404.

• Change the trigger create format from the following:

CREATE TRIGGER T_UNKNOWNPKVC1
BEFORE UPDATE ON UNKNOWNPKVC1
FOR EACH ROW
 WHEN (NEW.VERSION = OLD.VERSION)
BEGIN
 :NEW.VERSION := :OLD.VERSION + 1;
END;
/

To the following:

DELIMITER |
CREATE TRIGGER T_UNKNOWNPKVC1
BEFORE UPDATE ON UNKNOWNPKVC1
FOR EACH ROW
 WHEN (NEW.VERSION = OLD.VERSION)
BEGIN
 :NEW.VERSION := :OLD.VERSION + 1;
END

193

http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/mysql/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html
http://dev.mysql.com/doc/mysql/en/ansi-mode.html
http://forums.mysql.com/read.php?39,31326,31404

|
DELIMITER ;

For more information, see http://dev.mysql.com/doc/mysql/en/create-trigger.html.

• MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an example
that illustrates the issue.

create table EMPLOYEE (
 empId int NOT NULL,
 salary float(25,2) NULL,
 mgrId int NULL,
 PRIMARY KEY (empId),
 FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
) ENGINE=InnoDB;

 insert into Employee values (1, 1234.34, 1);
 delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:
a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (
 empId int NOT NULL,
 salary float(25,2) NULL,
 mgrId int NULL,
 PRIMARY KEY (empId),
 FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)
 ON DELETE SET NULL
) ENGINE=InnoDB;

 insert into Employee values (1, 1234.34, 1);
 delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html.

• When an SQL script has foreign key constraints defined, capture-schema fails to capture the table
information correctly. To work around the problem, remove the constraints and then run
capture-schema. Here is an example that illustrates the issue.

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)

194

http://dev.mysql.com/doc/mysql/en/create-trigger.html
http://dev.mysql.com/doc/mysql/en/innodb-foreign-key-constraints.html

 NOT NULL PRIMARY KEY,
CONNECTEDUSERS BLOB NULL,
OWNER VARCHAR(256),
FK_FOR_ACCESSPRIVILEGES VARCHAR(256),
CONSTRAINT FK_ACCESSPRIVILEGE FOREIGN KEY (FK_FOR_ACCESSPRIVILEGES)
 REFERENCES ACCESSPRIVILEGESBEANTABLE (ROOT)
) ENGINE=InnoDB;

To resolve this issue, change the table creation script to the following:

CREATE TABLE ADDRESSBOOKBEANTABLE (ADDRESSBOOKNAME VARCHAR(255)
 NOT NULL PRIMARY KEY,
CONNECTEDUSERS BLOB NULL,
OWNER VARCHAR(256),
FK_FOR_ACCESSPRIVILEGES VARCHAR(256)
) ENGINE=InnoDB;

195

Chapter 16. Developing Java Clients
This chapter describes how to develop, assemble, and deploy Java clients.

The following topics are addressed here:

• Introducing the Application Client Container

• Developing Clients Using the ACC

• Developing Clients Without the ACC



The Web Profile of the OracleEclipse GlassFish supports the EJB 3.1 Lite
specification, which allows enterprise beans within web applications, among other
features. The full Eclipse GlassFish supports the entire EJB 3.1 specification. For
details, see JSR 318.

Accordingly, the Application Client Container is supported only in the full Eclipse
GlassFish, not in the Web Profile.

JMS resources are supported only in the full Eclipse GlassFish, not in the Web
Profile. See Using the Java Message Service.

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and other files that
are required for and distributed with Java client programs that execute in their own Java Virtual
Machine (JVM). The ACC manages the execution of Jakarta EE application client components
(application clients), which are used to access a variety of Jakarta EE services (such as JMS
resources, EJB components, web services, security, and so on.) from a JVM outside the Eclipse
GlassFish.

The ACC communicates with the Eclipse GlassFish using RMI-IIOP protocol and manages the details
of RMI-IIOP communication using the client ORB that is bundled with it. Compared to other Jakarta
EE containers, the ACC is lightweight.

For information about debugging application clients, see Application Client Debugging.


Interoperability between application clients and Eclipse GlassFishs running under
different major versions is not supported.

ACC Security

The ACC determines when authentication is needed. This typically occurs when the client refers to
an EJB component that requires authorization or when annotations in the client’s main class trigger
injection which, in turn, requires contact with the Eclipse GlassFish’s naming service. To
authenticate the end user, the ACC prompts for any required information, such as a username and
password. The ACC itself provides a very simple dialog box to prompt for and read these values.

196

http://jcp.org/en/jsr/detail?id=318

The ACC integrates with the Eclipse GlassFish’s authentication system. It also supports SSL (Secure
Socket Layer)/IIOP if configured and when necessary; see Using RMI/IIOP Over SSL.

You can provide an alternate implementation to gather authentication information, tailored to the
needs of the application client. To do so, include the class to perform these duties in the application
client and identify the fully-qualified name of this class in the callback-handler element of the
application-client.xml descriptor for the client. The ACC uses this class instead of its default class
for asking for and reading the authentication information. The class must implement the
javax.security.auth.callback.CallbackHandler interface. See the Jakarta EE specification, section 9.2,
Application Clients: Security, for more details.

Application clients can use Programmatic Login Using the ProgrammaticLogin Class.

ACC Naming

The client container enables the application clients to use the Java Naming and Directory Interface
(JNDI) to look up Jakarta EE services (such as JMS resources, EJB components, web services,
security, and so on.) and to reference configurable parameters set at the time of deployment.

Application Client Annotation

Annotation is supported for the main class and the optional callback handler class in application
clients. For more information, see "Deployment Descriptors and Annotations" in Eclipse GlassFish
Application Deployment Guide.

Java Web Start

Java Web Start allows your application client to be easily launched and automatically downloaded
and updated. It is enabled for all application clients by default. For more information, see Using
Java Web Start.

Application Client JAR File

In Eclipse GlassFish 8, the downloaded appclient JAR file is smaller than in previous releases, with
dependent classes in separate JAR files. When copying the downloaded appclient to another
location, make sure to include the JAR files containing the dependent classes as well. You can also
use the asadmin get-client-stubs command to retrieve the appclient and all associated application
JAR files and place them in another location.

Developing Clients Using the ACC
This section describes the procedure to develop, assemble, and deploy client applications using the
ACC.

The following topics are addressed here:

• To Access an EJB Component From an Application Client

• To Access a JMS Resource From an Application Client

197

https://glassfish.org/docs/latest/application-deployment-guide.pdf#deployment-descriptors-and-annotations

• Using Java Web Start

• Using the Embeddable ACC

• Running an Application Client Using the appclient Script

• Using the package-appclient Script

• The client.policy File

• Using RMI/IIOP Over SSL

• Connecting to a Remote EJB Module Through a Firewall

• Specifying a Splash Screen

• Setting Login Retries

• Using Libraries with Application Clients

To Access an EJB Component From an Application Client

1. In your client code, reference the EJB component by using an @EJB annotation or by looking up
the JNDI name as defined in the ejb-jar.xml file.
For more information about naming and lookups, see Accessing the Naming Context.
If load balancing is enabled as in Step 7 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

2. Define the @EJB annotations or the ejb-ref elements in the application-client.xml file. Define
the corresponding ejb-ref elements in the glassfish-application-client.xml file.
For more information on the glassfish-application-client.xml file, see "The glassfish-
application-client.xml file" in Eclipse GlassFish Application Deployment Guide. For a general
explanation of how to map JNDI names using reference elements, see Mapping References.

3. Deploy the application client and EJB component together in an application.
For more information on deployment, see the Eclipse GlassFish Application Deployment Guide.
To get the client JAR file, use the --retrieve option of the asadmin deploy command.
To retrieve the stubs and ties generated during deployment, use the asadmin get-client-stubs
command.
For details, see the Eclipse GlassFish Reference Manual.

4. Ensure that the client JAR file includes the following files:

◦ A Java class to access the bean.

◦ application-client.xml - (optional) Jakarta EE application client deployment descriptor.

◦ glassfish-application-client.xml - (optional) Eclipse GlassFish specific client deployment
descriptor. For information on the glassfish-application-client.xml file, see "The glassfish-
application-client.xml file" in Eclipse GlassFish Application Deployment Guide.

◦ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

5. Prepare the client machine.

198

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081

This step is not needed for Java Web Start. This step is not needed if the client and server
machines are the same.
If you are using the appclient script, package the Eclipse GlassFish system files required to
launch application clients on remote systems using the package-appclient script, then retrieve
the application client itself using the asadmin get-client-stubs command.
For more information, see Using the package-appclient Script and the Eclipse GlassFish
Reference Manual.

6. To access EJB components that are residing in a remote system, make the following changes to
the sun-acc.xml file or the appclient script. This step is not needed for Java Web Start.

◦ Define the target-server element’s address and port attributes to reference the remote
server machine and its ORB port. See "target-server" in Eclipse GlassFish Application
Deployment Guide.

◦ Use the -targetserver option of the appclient script to reference the remote server machine
and its ORB port. For more information, see Running an Application Client Using the
appclient Script.

To determine the ORB port on the remote server, use the asadmin get command. For
example:

asadmin --host rmtsrv get server-config.iiop-service.iiop-listener.iiop-
listener1.port

For more information about the asadmin get command, see the Eclipse GlassFish Reference
Manual.

7. To set up load balancing and failover of remote EJB references, define at least two target-server
elements in the sun-acc.xml file or the appclient script. This step is not needed for Java Web
Start.
If the Eclipse GlassFish instance on which the application client is deployed participates in a
cluster, the ACC finds all currently active IIOP endpoints in the cluster automatically. However,
a client should have at least two endpoints specified for bootstrapping purposes, in case one of
the endpoints has failed.
The target-server elements in the sun-acc.xml file specify one or more IIOP endpoints used for
load balancing. The address attribute is an IPv4 address or host name, and the port attribute
specifies the port number. See "client-container" in Eclipse GlassFish Application Deployment
Guide.
The --targetserver option of the appclient script specifies one or more IIOP endpoints used for
load balancing. For more information, see Running an Application Client Using the appclient
Script.

Next Steps

• For instructions on running the application client, see Using Java Web Start or Running an
Application Client Using the appclient Script.

• For more information about RMI-IIOP load balancing and failover, see "RMI-IIOP Load
Balancing and Failover" in Eclipse GlassFish High Availability Administration Guide.

199

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#target-server
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#client-container
https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover
https://glassfish.org/docs/latest/ha-administration-guide.pdf#rmi-iiop-load-balancing-and-failover

To Access a JMS Resource From an Application Client

1. Create a JMS client.

For detailed instructions on developing a JMS client, see Java Message Service Examples" in The
Jakarta EE Tutorial.

2. Next, configure a JMS resource on the Eclipse GlassFish.

For information on configuring JMS resources, see "Administering JMS Connection Factories
and Destinations" in Eclipse GlassFish Administration Guide.

3. Define the @Resource or @Resources annotations or the resource-ref elements in the application-
client.xml file. Define the corresponding resource-ref elements in the glassfish-application-
client.xml file.

For more information on the glassfish-application-client.xml file, see "The glassfish-
application-client.xml file" in Eclipse GlassFish Application Deployment Guide. For a general
explanation of how to map JNDI names using reference elements, see Mapping References.

4. Ensure that the client JAR file includes the following files:

◦ A Java class to access the resource.

◦ application-client.xml - (optional) Jakarta EE application client deployment descriptor.

◦ glassfish-application-client.xml - (optional) Eclipse GlassFish specific client deployment
descriptor. For information on the glassfish-application-client.xml file, see "The glassfish-
application-client.xml file" in Eclipse GlassFish Application Deployment Guide.

◦ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

5. Prepare the client machine.

This step is not needed for Java Web Start. This step is not needed if the client and server
machines are the same.

If you are using the appclient script, package the Eclipse GlassFish system files required to
launch application clients on remote systems using the package-appclient script, then retrieve
the application client itself using the asadmin get-client-stubs command.

For more information, see Using the package-appclient Script and the Eclipse GlassFish
Reference Manual.

6. Run the application client.

See Using Java Web Start or Running an Application Client Using the appclient Script.

Using Java Web Start

Java Web Start allows your application client to be easily launched and automatically downloaded
and updated.

200

https://eclipse-ee4j.github.io/jakartaee-tutorial/#jakarta-messaging-examples
https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-connection-factories-and-destinations
https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-connection-factories-and-destinations
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG00081
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

The following topics are addressed here:

• Enabling and Disabling Java Web Start

• Downloading and Launching an Application Client

• The Application Client URL

• Signing JAR Files Used in Java Web Start

• Error Handling

• Vendor Icon, Splash Screen, and Text

• Creating a Custom JNLP File

Enabling and Disabling Java Web Start

Java Web Start is enabled for all application clients by default.

The application developer or deployer can specify that Java Web Start is always disabled for an
application client by setting the value of the eligible element to false in the glassfish-application-
client.xml file. See the Eclipse GlassFish Application Deployment Guide.

The Eclipse GlassFish administrator can disable Java Web Start for a previously deployed eligible
application client using the asadmin set command.

To disable Java Web Start for all eligible application clients in an application, use the following
command:

asadmin set applications.application.app-name.property.java-web-start-enabled="false"

To disable Java Web Start for a stand-alone eligible application client, use the following command:

asadmin set applications.application.module-name.property.java-web-start-
enabled="false"

Setting java-web-start-enabled="true" re-enables Java Web Start for an eligible application client.
For more information about the asadmin set command, see the Eclipse GlassFish Reference Manual.

Downloading and Launching an Application Client

If Java Web Start is enabled for your deployed application client, you can launch it for testing.
Simply click on the Launch button next to the application client or application’s listing on the App
Client Modules page in the Administration Console.

On other machines, you can download and launch the application client using Java Web Start in the
following ways:

• Using a web browser, directly enter the URL for the application client. See The Application
Client URL.

201

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

• Click on a link to the application client from a web page.

• Use the Java Web Start command javaws, specifying the URL of the application client as a
command line argument.

• If the application has previously been downloaded using Java Web Start, you have additional
alternatives.

◦ Use the desktop icon that Java Web Start created for the application client. When Java Web
Start downloads an application client for the first time it asks you if such an icon should be
created.

◦ Use the Java Web Start control panel to launch the application client.

When you launch an application client, Java Web Start contacts the server to see if a newer client
version is available. This means you can redeploy an application client without having to worry
about whether client machines have the latest version.

The Application Client URL

The default URL for an application or module generally is as follows:

http://host:port/context-root

The default URL for a stand-alone application client module is as follows:

http://host:port/appclient-module-id

The default URL for an application client module embedded within an application is as follows.
Note that the relative path to the application client JAR file is included.

http://host:port/application-id/appclient-path

If the context-root, appclient-module-id, or application-id is not specified during deployment, the
name of the JAR or EAR file without the extension is used. If the application client module or
application is not in JAR or EAR file format, an appclient-module-id or application-id is generated.

Regardless of how the context-root or id is determined, it is written to the server log when you
deploy the application. For details about naming, see "Naming Standards" in Eclipse GlassFish
Application Deployment Guide.

To set a different URL for an application client, use the context-root subelement of the java-web-
start-access element in the glassfish-application-client.xml file. This overrides the appclient-
module-id or application-id. See the Eclipse GlassFish Application Deployment Guide.

You can also pass arguments to the ACC or to the application client’s main method as query
parameters in the URL. If multiple application client arguments are specified, they are passed in the
order specified.

202

https://glassfish.org/docs/latest/application-deployment-guide.pdf#naming-standards
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

A question mark separates the context root from the arguments. Ampersands (&) separate the
arguments and their values. Each argument and each value must begin with arg=. Here is an
example URL with a -color argument for a stand-alone application client. The -color argument is
passed to the application client’s main method.

http://localhost:8080/testClient?arg=-color&arg=red


If you are using the javaws URL command to launch Java Web Start with a URL that
contains arguments, enclose the URL in double quotes (") to avoid breaking the
URL at the ampersand (&) symbol.

Ideally, you should build your production application clients with user-friendly interfaces that
collect information which might otherwise be gathered as command-line arguments. This
minimizes the degree to which users must customize the URLs that launch application clients using
Java Web Start. Command-line argument support is useful in a development environment and for
existing application clients that depend on it.

Signing JAR Files Used in Java Web Start

Java Web Start enforces a security sandbox. By default it grants any application, including
application clients, only minimal privileges. Because Java Web Start applications can be so easily
downloaded, Java Web Start provides protection from potentially harmful programs that might be
accessible over the network. If an application requires a higher privilege level than the sandbox
permits, the code that needs privileges must be in a JAR file that was signed.

When Java Web Start downloads such a signed JAR file, it displays information about the certificate
that was used to sign the JAR if that certificate is not trusted. It then asks you whether you want to
trust that signed code. If you agree, the code receives elevated permissions and runs. If you reject
the signed code, Java Web Start does not start the downloaded application.

Your first Java Web Start launch of an application client is likely to involve this prompting because
by default Eclipse GlassFish uses a self-signed certificate that is not linked to a trusted authority.

The Eclipse GlassFish serves two types of signed JAR files in response to Java Web Start requests.
One type is a JAR file installed as part of the Eclipse GlassFish, which starts an application client
during a Java Web Start launch: as-install/lib/gf-client.jar.

The other type is a generated application client JAR file. As part of deployment, the Eclipse
GlassFish generates a new application client JAR file that contains classes, resources, and
descriptors needed to run the application client on end-user systems. When you deploy an
application with the asadmin deploy command’s --retrieve option, use the asadmin get-client-stubs
command, or select the Generate RMIStubs option from the EJB Modules deployment page in the
Administration Console, this is one of the JAR files retrieved to your system. Because application
clients need access beyond the minimal sandbox permissions to work in the Java Web Start
environment, the generated application client JAR file must be signed before it can be downloaded
to and executed on an end-user system.

A JAR file can be signed automatically or manually.

203

The following topics are addressed here:

• Automatically Signing JAR Files

• Using the jar-signing-alias Deployment Property

Automatically Signing JAR Files

The Eclipse GlassFish automatically creates a signed version of the required JAR file if none exists.
When a Java Web Start request for the gf-client.jar file arrives, the Eclipse GlassFish looks for
domain-dir`/java-web-start/gf-client.jar`. When a request for an application’s generated
application client JAR file arrives, the Eclipse GlassFish looks in the directory domain-dir`/java-
web-start/`app-name for a file with the same name as the generated JAR file created during
deployment.

In either case, if the requested signed JAR file is absent or older than its unsigned counterpart, the
Eclipse GlassFish creates a signed version of the JAR file automatically and deposits it in the
relevant directory. Whether the Eclipse GlassFish just signed the JAR file or not, it serves the file
from the domain-dir`/java-web-start` directory tree in response to the Java Web Start request.

To sign these JAR files, by default the Eclipse GlassFish uses its self-signed certificate. When you
create a new domain, either by installing the Eclipse GlassFish or by using the asadmin create-
domain command, the Eclipse GlassFish creates a self-signed certificate and adds it to the domain’s
key store.

A self-signed certificate is generally untrustworthy because no certification authority vouches for
its authenticity. The automatic signing feature uses the same certificate to create all required signed
JAR files.

Starting with Java SE 7 Update 21, stricter security is enforced for applications launched using Java
Web Start. Application users will see various security messages, depending on their Java security
settings. If Java security is set to Very High on their systems, users will not be able to launch
application clients signed using the Eclipse GlassFish self-signed certificate.

To minimize impacts to application users, all Java Web Start applications should be signed with a
trusted certificate instead of the Eclipse GlassFish self-signed certificate. If you use the Eclipse
GlassFish Java Web Start feature or deploy applications that provide their own Java Web Start
applications, perform the following steps:

1. Obtain a trusted certificate from a certification authority if your organization does not already
have one.

2. Stop Eclipse GlassFish.

3. Replace the Eclipse GlassFish self-signed certificate with the trusted certificate by importing the
trusted certificate into the Eclipse GlassFish keystore using the s1as alias. By default, the
keystore is located at domain-dir`/config/keystore.p12` (PKCS12 format, recommended). For
legacy compatibility, JKS format keystores (keystore.jks) are also supported.

For more information about importing a trusted certificate into the domain keystore, see
"Administering JSSE Certificates" in Eclipse GlassFish Security Guide.

204

https://glassfish.org/docs/latest/security-guide.pdf#administering-jsse-certificates

4. Delete any signed JARs already generated by Eclipse GlassFish:

a. At the command prompt, type:
rm -rf domain-dir/java_web_start

b. For each application that contains an application client launched using Java Web Start, type:
rm -rf domain-dir/generated/xml/app-name/signed

c. Restart Eclipse GlassFish.

5. Ensure that the Java security setting on user systems is set to Very High.

After you perform these steps, the first time a user launches an application client on their system,
Java Web Start detects that the server’s signed JARs are newer than those cached on the user’s
system and downloads them again. This happens on the first launch only, regardless of the client.
Even though the application client is now signed using a trusted certificate, users will again be
asked whether to trust the downloaded application and can choose to skip that prompt for future
launches.

Using the jar-signing-alias Deployment Property

The asadmin deploy command property jar-signing-alias specifies the alias for the security
certificate with which the application client container JAR file is signed.

Java Web Start won’t execute code requiring elevated permissions unless it resides in a JAR file
signed with a certificate that the user’s system trusts. For your convenience, Eclipse GlassFish signs
the JAR file automatically using the self-signed certificate from the domain, s1as. Java Web Start
then asks the user whether to trust the code and displays the Eclipse GlassFish certificate
information.

To sign this JAR file with a different certificate, first add the certificate to the domain keystore. You
can use a certificate from a trusted authority, which avoids the Java Web Start prompt. To add a
certificate to the domain keystore, see "Administering JSSE Certificates" in Eclipse GlassFish
Security Guide.

Next, deploy your application using the jar-signing-alias property. For example:

asadmin deploy --property jar-signing-alias=MyAlias MyApp.ear

For more information about the asadmin deploy command, see the Eclipse GlassFish Reference
Manual.

Error Handling

When an application client is launched using Java Web Start, any error that the application client
logic does not catch and handle is written to System.err and displayed in a dialog box. This display
appears if an error occurs even before the application client logic receives control. It also appears if
the application client code does not catch and handle errors itself.

205

https://glassfish.org/docs/latest/security-guide.pdf#administering-jsse-certificates
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Vendor Icon, Splash Screen, and Text

To specify a vendor-specific icon, splash screen, text string, or a combination of these for Java Web
Start download and launch screens, use the vendor element in the glassfish-application-client.xml
file. The complete format of this element’s data is as follows:

<vendor>icon-image-URI::splash-screen-image-URI::vendor-text</vendor>

The following example vendor element contains an icon, a splash screen, and a text string:

<vendor>images/icon.jpg::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains an icon and a text string:

<vendor>images/icon.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains a splash screen and a text string; note the initial
double colon:

<vendor>::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains only a text string:

<vendor>MyCorp, Inc.</vendor>

The default value is the text string Application Client.

For more information about the glassfish-application-client.xml file, see the Eclipse GlassFish
Application Deployment Guide.

You can also specify a vendor-specific icon, splash screen, text string, or a combination by using a
custom JNLP file; see Creating a Custom JNLP File.

Creating a Custom JNLP File

You can partially customize the Java Network Launching Protocol (JNLP) file that Eclipse GlassFish
uses for Java Web Start.

The following topics are addressed here:

• Specifying the JNLP File in the Deployment Descriptor

• Referring to JAR Files from the JNLP File

• Referring to Other JNLP Files

• Combining Custom and Automatically Generated Content

206

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

For more information about JNLP, see the Java Web Start Architecture JNLP Specification and API
Documentation (http://java.sun.com/javase/technologies/desktop/javawebstart/download-
spec.html).

Specifying the JNLP File in the Deployment Descriptor

To specify a custom JNLP file for Java Web Start, use the jnlp-doc element in the glassfish-
application-client.xml file. If none is specified, a default JNLP file is generated.

The value of the jnlp-doc element is a relative path with the following format:

[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR

The default path-to-JAR-in-EAR is the current application client JAR file. For example, if the JNLP file
is in the application client JAR file at custom/myInfo.jnlp, the element value would look like this:

<java-web-start-access>
 <jnlp-doc>custom/myInfo.jnlp</jnlp-doc>
</java-web-start-access>

If the application client is inside an EAR file, you can place the custom JNLP file inside another JAR
file in the EAR. For example, if the JNLP file is in a JAR file at other/myLib.jar, the element value
would look like this, with an exclamation point (!) separating the path to the JAR from the path in
the JAR:

<java-web-start-access>
 <jnlp-doc>other/myLib.jar!custom/myInfo.jnlp</jnlp-doc>
</java-web-start-access>

For more information about the glassfish-application-client.xml file, see the Eclipse GlassFish
Application Deployment Guide.

Referring to JAR Files from the JNLP File

As with any JNLP document, the custom JNLP file can refer to JAR files the application client
requires.

Do not specify every JAR on which the client depends. Eclipse GlassFish automatically handles JAR
files that the Jakarta EE specification requires to be available to the application client. This includes
JAR files listed in the application client JAR file’s manifest Class-Path and JAR files in the EAR file’s
library directory (if any) and their transitive closures. The custom JNLP file should specify only
those JAR files the client needs that Eclipse GlassFish would not otherwise include.

Package these JAR files in the EAR file, as with any JAR file required by an application client. Use
relative URIs in the <jar href="…"> and <nativelib href="…"> elements to point to the JAR files.
The codebase that Eclipse GlassFish assigns for the final client JNLP file corresponds to the top level
of the EAR file. Therefore, relative href references correspond directly to the relative path to the

207

http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html
http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html
http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html
http://java.sun.com/javase/technologies/desktop/javawebstart/download-spec.html

JAR files within the EAR file.

Neither the Jakarta EE specification nor Eclipse GlassFish supports packaging JAR files inside the
application client JAR file itself. Nothing prevents this, but Eclipse GlassFish does no special
processing of such JAR files. They do not appear in the runtime class path and they cannot be
referenced from the custom JNLP file.

Referring to Other JNLP Files

The JNLP file can also refer to other custom JNLP files using <extension href="…"/> elements. To be
consistent with relative href references to JAR files, the relative href references to JNLP files are
resolved within the EAR file. You can place these JNLP files directly in the EAR file or inside JAR
files that the EAR file contains. Use one of these formats for these href references:

[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR

path-to-JNLP-in-EAR

Note that these formats are not equivalent to the format of the jnlp-doc element in the glassfish-
application-client.xml file.

These formats follow the standard entry-within-a-JAR URI syntax and semantics. Support for this
syntax comes from the automated Java Web Start support in Eclipse GlassFish. This is not a feature
of Java Web Start or the JNLP standard.

Combining Custom and Automatically Generated Content

Eclipse GlassFish recognizes these types of content in the JNLP file:

• Owned — Eclipse GlassFish owns the content and ignores any custom content

• Merged — Automatically generated content and custom content are merged

• Defaulted — Custom content is used if present, otherwise default content is provided

You can compose a complete JNLP file and package it with the application client. Eclipse GlassFish
then combines it with its automatically generated JNLP file. You can also provide content that only
adds to or replaces what Eclipse GlassFish generates. The custom content must conform to the
general structure of the JNLP format so that Eclipse GlassFish can properly place it in the final JNLP
file.

For example, to specify a single native library to be included only for Windows systems, the new
element to add might be as follows:

<nativelib href="windows/myLib.jar"/>

However, you must indicate where in the overall document this element belongs. The actual
custom JNLP file should look like this:

208

<jnlp>
 <resources os="Windows">
 <nativelib href="windows/myLib.jar"/>
 </resources>
</jnlp>

Eclipse GlassFish provides default <information> and <resources> elements, without specifying
attributes such as os, arch, platform, or locale. Eclipse GlassFish merges its own content within
those elements with custom content under those elements. Further, you can provide your own
<information> and <resources> elements (and fragments within them) that specify at least one of
these attributes.

In general, you can perform the following customizations:

• Override the Eclipse GlassFish defaults for the child elements of <information> elements that
have no attribute settings for os, arch, platform, and locale. Among these child elements are
<title>, <vendor>, <description>, <icon>, and so on.

• Add <information> elements with os, arch, platform, or locale settings. You can also add child
elements.

• Add child elements of <resources> elements that have no attribute settings for os, arch, or locale.
Among these child elements are <jar>, <property>, <nativelib>, and so on. You can also
customize attributes of the <java> child element.

• Add <resources> elements that specify at least one of os, arch, or locale. You can also add child
elements.

This flexibility allows you to add JAR files to the application (including platform-specific native
libraries) and set properties to control the behavior of your application clients.

The following tables provide more detail about what parts of the JNLP file you can add to and
modify.

Table 10-1 Owned JNLP File Content

JNLP File Fragment Description

<jnlp codebase="xxx"
...>

Eclipse GlassFish controls this content for application clients
packaged in EAR files. The developer controls this content for
application clients packaged in WAR files.

<jnlp href="xxx" ...>
Eclipse GlassFish controls this content for application clients
packaged in EAR files. The developer controls this content for
application clients packaged in WAR files.

<jnlp>
 <security>

Eclipse GlassFish must control the permissions requested for each
JNLP file. All permissions are needed for the main file, which
launches the ACC. The permissions requested for other JNLP
documents depend on whether the JAR files referenced in those
documents are signed.

209

JNLP File Fragment Description

<jnlp>
 <application-desc>
 <argument> ...

Eclipse GlassFish sets the main-class and the arguments to be
passed to the client.

Table 10-2 Defaulted JNLP File Content

JNLP File Fragment Description

<jnlp spec="xxx" ...>
Specifies the JNLP specification version.

<jnlp>
 <information [no-attributes
]>

Specifies the application title, vendor, home page, various
description text values, icon images, and whether offline
execution is allowed.

<jnlp>
 <resources [no-attributes]>
 <java version="xxx"
 java-vm-args="yyy"
...>

Specifies the Java SE version or selected VM parameter
settings.

Table 10-3 Merged JNLP File Content

JNLP File Fragment Description

<jnlp>
 <information [attributes]>

You can specify one or more of the os, arch, platform, and
locale attributes for the <information> element. You can also
specify child elements; Eclipse GlassFish provides no default
children.

<jnlp>
 <resources [attributes]>

You can specify one or more of the os, arch, platform, and
locale attributes for the <resources> element. You can also
specify child elements; Eclipse GlassFish provides no default
children.

<jnlp>
 <resources [no-attributes
]>
 <jar ...>

Adds JAR files to be included in the application to the JAR files
provided by Eclipse GlassFish.

<jnlp>
 <resources [no-attributes
]>
 <nativelib ...>

Adds native libraries to be included in the application. Each
entry in a JAR listed in a <nativelib> element must be a
native library for the correct platform. The full syntax of the
<nativelib> element lets the developer specify the platform
for that native library.

210

JNLP File Fragment Description

<jnlp>
 <resources [no-attributes
]>
 <property ...>

Adds system properties to be included in the application to
the system properties defined by Eclipse GlassFish.

<jnlp>
 <resources [no-attributes
]>
 <extension ...>

Specifies another custom JNLP file.

<jnlp>
 <component-desc ...>

Includes another custom JNLP file that specifies a component
extension.

<jnlp>
 <installer-desc ...>

Includes another custom JNLP file that specifies an installer
extension.

Using the Embeddable ACC

You can embed the ACC into your application client. If you place the as-install/lib/gf-client.jar
file in your runtime classpath, your application creates the ACC after your application code has
started, then requests that the ACC start the application client portion. The basic model for coding is
as follows:

1. Create a builder object.

2. Operate on the builder to configure the ACC.

3. Obtain a new ACC instance from the builder.

4. Present a client archive or class to the ACC instance.

5. Start the client running within the newly created ACC instance.

Your code should follow this general pattern:

// one TargetServer for each ORB endpoint for bootstrapping
TargetServer[] servers = ...;

// Get a builder to set up the ACC
AppClientContainer.Builder builder = AppClientContainer.newBuilder(servers);

// Fine-tune the ACC's configuration. Note ability to "chain" invocations.
builder.callbackHandler("com.acme.MyHandler").authRealm("myRealm"); // Modify config

// Get a container for a client.
URI clientURI = ...; // URI to the client JAR

211

AppClientContainer acc = builder.newContainer(clientURI);

or

Class mainClass = ...;
AppClientContainer acc = builder.newContainer(mainClass);

// In either case, start the client running.
String[] appArgs = ...;
acc.startClient(appArgs); // Start the client

...

acc.close(); // close the ACC(optional)

The ACC loads the application client’s main class, performs any required injection, and transfers
control to the static main method. The ACC’s run method returns to the calling application as soon
as the client’s main method returns to the ACC.

If the application client’s main method starts any asynchronous activity, that work continues after
the ACC returns. The ACC has no knowledge of whether the client’s main method triggers
asynchronous work. Therefore, if the client causes work on threads other than the calling thread,
and if the embedding application needs to know when the client’s asynchronous work completes,
the embedding application and the client must agree on how this happens.

The ACC’s shutdown handling is invoked from the ACC’s close method. The calling application can
invoke acc.close() to close down any services started by the ACC. If the application client code
started any asynchronous activity that might still depend on ACC services, invoking close before
that asynchronous activity completes could cause unpredictable and undesirable results. The
shutdown handling is also run automatically at VM shutdown if the code has not invoked close
before then.

The ACC does not prevent the calling application from creating or running more than one ACC
instance during a single execution of the application either serially or concurrently. However, other
services used by the ACC (transaction manager, security, ORB, and so on) might or might not
support such serial or concurrent reuse.

Running an Application Client Using the appclient Script

To run an application client, you can launch the ACC using the appclient script, whether or not Java
Web Start is enabled. This is optional. This script is located in the as-install/bin directory. For
details, see the Eclipse GlassFish Reference Manual.

Using the package-appclient Script

You can package the Eclipse GlassFish system files required to launch application clients on remote
systems into a single JAR file using the package-appclient script. This is optional. This script is
located in the as-install/bin directory. For details, see the Eclipse GlassFish Reference Manual.

212

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

The client.policy File

The client.policy file is the J2SE policy file used by the application client. Each application client
has a client.policy file. The default policy file limits the permissions of Jakarta EE deployed
application clients to the minimal set of permissions required for these applications to operate
correctly. If an application client requires more than this default set of permissions, edit the
client.policy file to add the custom permissions that your application client needs. Use the J2SE
standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, see http://docs.oracle.com/javase/tutorial/
security/tour2/index.html.

For more information about the permissions you can set in the client.policy file, see
http://docs.oracle.com/javase/7/docs/technotes/guides/security/permissions.html.

Using RMI/IIOP Over SSL

You can configure RMI/IIOP over SSL in two ways: using a username and password, or using a
client certificate.

To use a username and password, configure the ior-security-config element in the glassfish-ejb-
jar.xml file. The following configuration establishes SSL between an application client and an EJB
component using a username and password. The user has to login to the ACC using either the sun-
acc.xml mechanism or the Programmatic Login Using the ProgrammaticLogin Class mechanism.

<ior-security-config>
 <transport-config>
 <integrity>required</integrity>
 <confidentiality>required</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>none</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>none</caller-propagation>
 </sas-context>
</ior-security-config>

For more information about the glassfish-ejb-jar.xml and sun-acc.xml files, see the Eclipse
GlassFish Application Deployment Guide.

To use a client certificate, configure the ior-security-config element in the glassfish-ejb-jar.xml
file. The following configuration establishes SSL between an application client and an EJB

213

http://docs.oracle.com/javase/tutorial/security/tour2/index.html
http://docs.oracle.com/javase/tutorial/security/tour2/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/permissions.html
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

component using a client certificate.

<ior-security-config>
 <transport-config>
 <integrity>required</integrity>
 <confidentiality>required</confidentiality>
 <establish-trust-in-target>supported</establish-trust-in-target>
 <establish-trust-in-client>required</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>none</auth-method>
 <realm>default</realm>
 <required>false</required>
 </as-context>
 <sas-context>
 <caller-propagation>none</caller-propagation>
 </sas-context>
</ior-security-config>

To use a client certificate, you must also specify the system properties for the keystore and
truststore to be used in establishing SSL. To use SSL with the Application Client Container (ACC),
you need to set these system properties in one of the following ways:

• Use the new syntax of the appclient script and specify the system properties as JVM options. See
Running an Application Client Using the appclient Script.

• Set the environment variable VMARGS in the shell. For example, in the ksh or bash shell, the
command to set this environment variable would be as follows:

export VMARGS="-Djavax.net.ssl.keyStore=${keystore.db.file}
-Djavax.net.ssl.trustStore=${truststore.db.file}
-Djavax.net.ssl.keyStorePass word=${ssl.password}
-Djavax.net.ssl.trustStorePassword=${ssl.password}"

• Optionally, you can set the env element using Ant. For example:

<target name="runclient">
 <exec executable="${S1AS_HOME}/bin/appclient">
 <env key="VMARGS" value=" -Djavax.net.ssl.keyStore=${keystore.db.file}
 -Djavax.net.ssl.trustStore=${truststore.db.file}
 -Djavax.net.ssl.keyStorePasword=${ssl.password}
 -Djavax.net.ssl.trustStorePassword=${ssl.password}"/>
 <arg value="-client"/>
 <arg value="${appClient.jar}"/>
 </exec>
</target>

214

Connecting to a Remote EJB Module Through a Firewall

To deploy and run an application client that connects to an EJB module on a Eclipse GlassFish
instance that is behind a firewall, you must set ORB Virtual Address Agent Implementation
(ORBVAA) options. Use the asadmin create-jvm-options command as follows:

asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAHost=public-IP-adress
asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAPort=public-port
asadmin create-jvm-options
-Dcom.sun.corba.ee.ORBUserConfigurators.com.sun.corba.ee.impl.plugin.hwlb.VirtualAddre
ssAgentImpl=x

Set the ORBVAAHost and ORBVAAPort options to the host and port of the public address. The
ORBUserConfigurators option tells the ORB to create an instance of the VirtualAddressAgentImpl class
and invoke the configure method on the resulting object, which must implement the
com.sun.corba.ee.spi.orb.ORBConfigurator interface. The ORBUserConfigurators value doesn’t
matter. Together, these options create an ORB that in turn creates Object references (the underlying
implementation of remote EJB references) containing the public address, while the ORB listens on
the private address specified for the IIOP port in the Eclipse GlassFish configuration.

Specifying a Splash Screen

Java SE 6 offers splash screen support, either through a Java command-line option or a manifest
entry in the application’s JAR file. To take advantage of this Java SE feature in your application
client, you can do one of the following:

• Create the appclient JAR file so that its manifest contains a SplashScreen-Image entry that
specifies the path to the image in the client. The java command displays the splash screen
before starting the ACC or your client, just as with any Java application.

• Use the new appclient … -jar launch format, using the -splash command-line option at
runtime or the SplashScreen-Image manifest entry at development time. See Running an
Application Client Using the appclient Script.

• In the environment that runs the appclient script, set the VMOPTS environment variable to
include the -splash option before invoking the appclient script to launch the client.

• Build an application client that uses the embeddable ACC feature and specify the splash screen
image using one of the following:

◦ The -splash option of the java command

◦ SplashScreen-Image in the manifest for your program (not the manifest for the application
client)

See Using the Embeddable ACC.

During application (EAR file) deployment, the Eclipse GlassFish generates façade JAR files, one for
the application and one for each application client in the application. During application client
module deployment, the Eclipse GlassFish generates a single facade JAR for the application client.
The appclient script supports splash screens inside the application client JAR only if you launch an

215

application client facade or appclient client JAR. If you launch the facade for an application or the
undeployed application itself, the appclient script cannot take advantage of the Java SE 6 splash
screen feature.

Setting Login Retries

You can set a JVM option using the appclient script that determines the number of login retries
allowed. This option is `-Dorg.glassfish.appclient.acc.maxLoginRetries=`n where n is a positive
integer. The default number of retries is 3.

This retry loop happens when the ACC attempts to perform injection if you annotated the client’s
main class (for example, using @Resource). If instead of annotations your client uses the
InitialContext explicitly to look up remote resources, the retry loop does not apply. In this case, you
could write logic to catch an exception around the lookup and retry explicitly.

For details about the appclient script syntax, see the Eclipse GlassFish Reference Manual.

Using Libraries with Application Clients

The Libraries field in the Administration Console’s deployment page and the --libraries option of
the asadmin deploy command do not apply to application clients. Neither do the as-install/lib,
domain-dir/lib, and domain-dir`/lib/classes` directories comprising the Common Class Loader.
These apply only to applications and modules deployed to the server. For more information, see
Class Loaders.

To use libraries with an application client, package the application client in an application (EAR
file). Then, either place the libraries in the /lib directory of the EAR file or specify their location in
the application client JAR file’s manifest Class-Path.

Developing Clients Without the ACC
This section describes the procedure to create, assemble, and deploy a Java-based client that is not
packaged using the Application Client Container (ACC).

The following topics are addressed here:

• To access an EJB component from a stand-alone client

• To access an EJB component from a server-side module

• To access a JMS resource from a stand-alone client

For information about using the ACC, see Developing Clients Using the ACC.

To access an EJB component from a stand-alone client

1. In your client code, instantiate the InitialContext:

InitialContext ctx = new InitialContext();

216

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

2. In the client code, look up the home object by specifying the JNDI name of the home object.

Here is an EJB 2.x example:

Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Here is an EJB 3.x example:

BeanRemoteBusiness bean =(BeanRemoteBusiness) ctx.lookup(
"com.acme.BeanRemoteBusiness");

If load balancing is enabled as in Step 6 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

For more information about naming and lookups, see Accessing the Naming Context.

3. Deploy the EJB component to be accessed.

For more information on deployment, see "About Deployment Tools" in Eclipse GlassFish
Application Deployment Guide.

4. Copy the as-install/lib/gf-client.jar file to the client machine and include it in the classpath on
the client side.

The gf-client.jar file references Eclipse GlassFish JAR files in its MANIFEST.MF file. If there is no
Eclipse GlassFish installation on the client machine, you must also copy the as-install/modules
directory to the client machine and maintain its directory structure relative to the as-
install/lib/gf-client.jar file. Or you can use the package-appclient script; see Using the
package-appclient Script.

5. To access EJB components that are residing in a remote system, set the following system
properties for the Java Virtual Machine startup options:

-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Eclipse GlassFish hostname and ORBport is the ORB port number (default is
3700 for the default server instance, named server).

You can use the asadmin get command to get the IIOP port numbers. For example:

217

https://glassfish.org/docs/latest/application-deployment-guide.pdf#about-deployment-tools

asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-
1.*"

6.

To set up load balancing and remote EJB reference failover, define the endpoints property as
follows:

-Dcom.sun.appserv.iiop.endpoints=host1:port1,host2:port2,...

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used for
load balancing. An IIOP endpoint is in the form host`:`port, where the host is an IPv4 address
or host name, and the port specifies the port number.

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

7. Make sure the etc/hosts file on the client machine maps the Eclipse GlassFish hostname and
external IP address.

8. Run the stand-alone client.

As long as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

To access an EJB component from a server-side module

A server-side module can be a servlet, another EJB component, or another type of module.

1.

In your module code, instantiate the InitialContext:

InitialContext ctx = new InitialContext();

It is not necessary to explicitly instantiate a naming context that points to the CosNaming
service.

To set up load balancing and remote EJB reference failover, define the endpoints property as
follows:

Hashtable env = new Hashtable();
env.put("com.sun.appserv.iiop.endpoints","host1:port1,host2:port2,...");
InitialContext ctx = new InitialConext(env);

The endpoints property specifies a comma-separated list of one or more IIOP endpoints used for
load balancing. An IIOP endpoint is in the form host`:`port, where the host is an IPv4 address

218

or host name, and the port specifies the port number.

You can use the asadmin get command to get the IIOP port numbers. For example:

asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-
1.*"

If the endpoints list is changed dynamically in the code, the new list is used only if a new
InitialContext is created.

2. In the module code, look up the home object by specifying the JNDI name of the home object.

Here is an EJB 2.x example:

Object ref = ctx.lookup("jndi-name");
BeanAHome = (BeanAHome)PortableRemoteObject.narrow(ref,BeanAHome.class);

Here is an EJB 3.x example:

BeanRemoteBusiness bean =(BeanRemoteBusiness) ctx.lookup(
"com.acme.BeanRemoteBusiness");

If load balancing is enabled as in Step 1 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:

corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

For more information about naming and lookups, see Accessing the Naming Context.

3. Deploy the EJB component to be accessed.

For more information on deployment, see "About Deployment Tools" in Eclipse GlassFish
Application Deployment Guide.

4. To access EJB components that are residing in a remote system, set the following system
properties for the Java Virtual Machine startup options:

-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Application Server hostname and ORBport is the ORB port number (default
is 3700 for the default server instance, named server).

5. Deploy the module.

219

https://glassfish.org/docs/latest/application-deployment-guide.pdf#about-deployment-tools

For more information on deployment, see "About Deployment Tools" in Eclipse GlassFish
Application Deployment Guide.

To access a JMS resource from a stand-alone client

1. Create a JMS client.

For detailed instructions on developing a JMS client, see Java Message Service Examples in The
Jakarta EE Tutorial.

2. Configure a JMS resource on Eclipse GlassFish.

For information on configuring JMS resources, see " Administering JMS Connection Factories
and Destinations" in Eclipse GlassFish Administration Guide.

3. Copy the following JAR files to the client machine and include them in the classpath on the
client side:

◦ gf-client.jar - available at as-install/lib

◦ imqjmsra.jar - available at as-install/lib/install/aplications/jmsra

The gf-client.jar file references Eclipse GlassFish JAR files in its MANIFEST.MF file. If there is
no Eclipse GlassFish installation on the client machine, you must also copy the as-
install/modules directory to the client machine and maintain its directory structure relative
to the as-install/lib/gf-client.jar file. Or you can use the package-appclient script; see
Using the package-appclient Script.

4. To access EJB components that are residing in a remote system, set the following system
properties for the Java Virtual Machine startup options:

-Dorg.omg.CORBA.ORBInitialHost=${ORBhost}
-Dorg.omg.CORBA.ORBInitialPort=${ORBport}

Here ORBhost is the Application Server hostname and ORBport is the ORB port number (default
is 3700 for the default server instance, named server).

You can use the asadmin get command to get the IIOP port numbers. For example:

asadmin get "configs.config.server-config.iiop-service.iiop-listener.orb-listener-
1.*"

5. Run the stand-alone client.

As long as the client environment is set appropriately and the JVM is compatible, you merely
need to run the main class.

220

https://glassfish.org/docs/latest/application-deployment-guide.pdf#about-deployment-tools
https://eclipse-ee4j.github.io/jakartaee-tutorial/#jakarta-messaging-examples
https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-connection-factories-and-destinations
https://glassfish.org/docs/latest/administration-guide.pdf#administering-jms-connection-factories-and-destinations

Chapter 17. Developing Connectors
This chapter describes Eclipse GlassFish support for the Jakarta EE Connector Architecture, also
known as JSR 322 (http://jcp.org/en/jsr/detail?id=322).

The Jakarta EE Connector Architecture provides a Java solution to the problem of connectivity
between multiple application servers and existing enterprise information systems (EISs). By using
the Jakarta EE Connector architecture, EIS vendors no longer need to customize their product for
each application server. Application server vendors who conform to the Jakarta EE Connector
architecture do not need to write custom code to add connectivity to a new EIS.

This chapter uses the terms connector and resource adapter interchangeably. Both terms refer to a
resource adapter module that is developed in conformance with the Jakarta EE Connector
Architecture Specification.



If you installed the Web Profile, connector modules that use only outbound
communication features and work-management that does not involve inbound
communication features are supported. Other connector features are supported
only in the full Eclipse GlassFish.

For more information about connectors, see Resource Adapters and Contracts in The Jakarta EE
Tutorial.

For information about deploying a connector to the Eclipse GlassFish, see the Eclipse GlassFish
Application Deployment Guide.

The following topics are addressed here:

• Connector Support in the Eclipse GlassFish

• Advanced Connector Configuration Options

• Inbound Communication Support

• Outbound Communication Support

• Configuring a Message Driven Bean to Use a Resource Adapter

Connector Support in the Eclipse GlassFish
The Eclipse GlassFish supports the development and deployment of resource adapters that are
compatible with the Connector 1.6 specification (and, for backward compatibility, the Connector 1.0
and 1.5 specifications).

The Connector 1.0 specification defines the outbound connectivity system contracts between the
resource adapter and the Eclipse GlassFish. The Connector 1.5 specification introduces major
additions in defining system level contracts between the Eclipse GlassFish and the resource adapter
with respect to inbound connectivity, life cycle management, and thread management. The
Connector 1.6 specification introduces further additions in defining system level contracts between
the Eclipse GlassFish and the resource adapter with respect to the following:

221

http://jcp.org/en/jsr/detail?id=322
http://jcp.org/en/jsr/detail?id=322
https://eclipse-ee4j.github.io/jakartaee-tutorial/#resource-adapters-and-contracts
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

• Generic work context contract — A generic contract that enables a resource adapter to control
the execution context of a Work instance that it has submitted to the Eclipse GlassFish for
execution. The Generic work contract provides the mechanism for a resource adapter to
augment the runtime context of a Work instance with additional contextual information flown-in
from the EIS. This contract enables a resource adapter to control, in a more flexible manner, the
contexts in which the Work instances submitted by it are executed by the application server’s
WorkManager.

• Security work context — A standard contract that enables a resource adapter to establish
security information while submitting a Work instance for execution to a WorkManager and while
delivering messages-to-message endpoints residing in the Eclipse GlassFish. This contract
provides a mechanism to support the execution of a Work instance in the context of an
established identity. It also supports the propagation of user information or Principal
information from an EIS to a MessageEndpoint during message inflow.

• Transaction context — The transaction context contract between the resource adapter and the
application server leverages the Generic Work Context mechanism by describing a standard
WorkContext, the TransactionContext. It represents the standard interface a resource adapter can
use to propagate transaction context information from the EIS to the application server.

Connector Architecture for JMS and JDBC

In the Administration Console, connector, JMS, and JDBC resources are handled differently, but they
use the same underlying Connector architecture. In the Eclipse GlassFish, all communication to an
EIS, whether to a message provider or an RDBMS, happens through the Connector architecture. To
provide JMS infrastructure to clients, the Eclipse GlassFish uses the Open Message Queue software.
To provide JDBC infrastructure to clients, the Eclipse GlassFish uses its own JDBC system resource
adapters. The Eclipse GlassFish automatically makes these system resource adapters available to
any client that requires them.

For more information about JMS in the Eclipse GlassFish, see Using the Java Message Service. For
more information about JDBC in the Eclipse GlassFish, see Using the JDBC API for Database Access.

Connector Configuration

The Eclipse GlassFish does not need to use sun-ra.xml, which previous Eclipse GlassFish versions
used, to store server-specific deployment information inside a Resource Adapter Archive (RAR) file.
(However, the sun-ra.xml file is still supported for backward compatibility.) Instead, the
information is stored in the server configuration. As a result, you can create multiple connector
connection pools for a connection definition in a functional resource adapter instance, and you can
create multiple user-accessible connector resources (that is, registering a resource with a JNDI
name) for a connector connection pool. In addition, dynamic changes can be made to connector
connection pools and the connector resource properties without restarting the Eclipse GlassFish.

Advanced Connector Configuration Options
The following topics are addressed here:

• Thread Associations

222

• Security Maps

• Work Security Maps

• Overriding Configuration Properties

• Testing a Connector Connection Pool

• Flushing a Connector Connection Pool

• Handling Invalid Connections

• Setting the Shutdown Timeout

• Specifying the Class Loading Policy

• Using Last Agent Optimization of Transactions

• Disabling Pooling for a Connection

• Using Application-Scoped Connectors

Thread Associations

Connectors can submit work instances to the Eclipse GlassFish for execution. By default, the Eclipse
GlassFish services work requests for all connectors from its default thread pool. However, you can
associate a specific user-created thread pool to service work requests from a connector. A thread
pool can service work requests from multiple resource adapters. To create a thread pool:

• In the Administration Console, select Thread Pools under the relevant configuration. For details,
click the Help button in the Administration Console.

• Use the asadmin create-threadpool command. For details, see the Eclipse GlassFish Reference
Manual.

To associate a connector with a thread pool:

• In the Administration Console, open the Applications component and select Resource Adapter
Configs. Specify the name of the thread pool in the Thread Pool ID field. For details, click the
Help button in the Administration Console.

• Use the --threadpoolid option of the asadmin create-resource-adapter-config command. For
details, see the Eclipse GlassFish Reference Manual.

If you create a resource adapter configuration for a connector module that is already deployed, the
connector module deployment is restarted with the new configuration properties.

Security Maps

Create a security map for a connector connection pool to map an application principal or a user
group to a back end EIS principal. The security map is usually used in situations where one or more
EIS back end principals are used to execute operations (on the EIS) initiated by various principals
or user groups in the application.

To create or update security maps for a connector connection pool:

• In the Administration Console, open the Resources component, select Connectors, select

223

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Connector Connection Pools, and select the Security Maps tab. For details, click the Help button
in the Administration Console.

• Use the asadmin create-connector-security-map command. For details, see the Eclipse GlassFish
Reference Manual.

If a security map already exists for a connector connection pool, the new security map is appended
to the previous one. The connector security map configuration supports the use of the wildcard
asterisk (*) to indicate all users or all user groups.

When an application principal initiates a request to an EIS, the Eclipse GlassFish first checks for an
exact match to a mapped back end EIS principal using the security map defined for the connector
connection pool. If there is no exact match, the Eclipse GlassFish uses the wild card character
specification, if any, to determined the mapped back end EIS principal.

Work Security Maps

A work security map for a resource adapter maps an EIS principal or group to a application
principal or group. A work security map is useful in situations where one or more application
principals execute operations initiated by principals or user groups in the EIS. A resource adapter
can have multiple work security maps. A work security map can map either principals or groups,
but not both.

To create a work security map, use the asadmin create-connector-work-security-map command. For
details, see the Eclipse GlassFish Reference Manual.

The work security map configuration supports the wildcard asterisk (*) character to indicate all
users or all user groups. When an EIS principal sends a request to the Eclipse GlassFish, the Eclipse
GlassFish first checks for an exact match to a mapped application principal using the work security
map defined for the resource adapter. If there is no exact match, the Eclipse GlassFish uses the wild
card character specification, if any, to determine the application principal.

Overriding Configuration Properties

You can override the properties (config-property elements) specified in the ra.xml file of a resource
adapter:

• In the Administration Console, open the Resources component and select Resource Adapter
Configs. Create a new resource adapter configuration or select an existing one to edit. Then
enter property names and values in the Additional Properties table. For details, click the Help
button in the Administration Console.

• Use the asadmin create-resource-adapter-config command to create a configuration for a
resource adapter. Use this command’s --property option to specify a name-value pair for a
resource adapter property. For details, see the Eclipse GlassFish Reference Manual.

You can specify configuration properties either before or after resource adapter deployment. If you
specify properties after deploying the resource adapter, the existing resource adapter is restarted
with the new properties.

You can also use token replacement for overriding resource adapter configuration properties in

224

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

individual server instances when the resource adapter is deployed to a cluster. For example, for a
property called inboundPort, you can assign the value ${inboundPort}. You can then assign a
different value to this property for each server instance. Changes to system properties take effect
upon server restart.

Testing a Connector Connection Pool

You can test a connector connection pool for usability in one of these ways:

• In the Administration Console, open the Resources component, open the Connector component,
select Connection Pools, and select the connection pool you want to test. Then select the Ping
button in the top right corner of the page. For details, click the Help button in the
Administration Console.

• Use the asadmin ping-connection-pool command. For details, see the Eclipse GlassFish Reference
Manual.

Both these commands fail and display an error message unless they successfully connect to the
connection pool.

You can also specify that a connection pool is automatically tested when created or reconfigured by
setting the Ping attribute to true (the default is false) in one of the following ways:

• Enter a Ping value in the Connector Connection Pools page in the Administration Console. For
more information, click the Help button in the Administration Console.

• Specify the --ping option in the asadmin create-connector-connection-pool command. For more
information, see the Eclipse GlassFish Reference Manual.

Flushing a Connector Connection Pool

Flushing a connector connection pool recreates all the connections in the pool and brings the pool
to the steady pool size without the need for reconfiguring the pool. Connection pool reconfiguration
can result in application redeployment, which is a time-consuming operation. Flushing destroys
existing connections, and any existing transactions are lost and must be retired.

You can flush a connector connection pool in one of these ways:

• In the Administration Console, open the Resources component, open the Connector component,
select Connection Pools, and select the connection pool you want to flush. Then select the Flush
button in the top right corner of the page. For details, click the Help button in the
Administration Console.

• Use the asadmin flush-connection-pool command. For details, see the Eclipse GlassFish
Reference Manual.

Handling Invalid Connections

If a resource adapter generates a ConnectionErrorOccured event, the Eclipse GlassFish considers the
connection invalid and removes the connection from the connection pool. Typically, a resource
adapter generates a ConnectionErrorOccured event when it finds a ManagedConnection object

225

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

unusable. Reasons can be network failure with the EIS, EIS failure, fatal problems with the resource
adapter, and so on.

If the fail-all-connections setting in the connection pool configuration is set to true, and a single
connection fails, all connections are closed and recreated. If this setting is false, individual
connections are recreated only when they are used. The default is false.

The is-connection-validation-required setting specifies whether connections have to be validated
before being given to the application. If a resource’s validation fails, it is destroyed, and a new
resource is created and returned. The default is false.

The prefer-validate-over-recreate property specifies that validating idle connections is preferable
to closing them. This property has no effect on non-idle connections. If set to true, idle connections
are validated during pool resizing, and only those found to be invalid are destroyed and recreated.
If false, all idle connections are destroyed and recreated during pool resizing. The default is false.

You can set the fail-all-connections, is-connection-validation-required, and prefer-validate-over-
recreate configuration settings during creation of a connector connection pool. Or, you can use the
asadmin set command to dynamically reconfigure a setting. For example:

asadmin set server.resources.connector-connection-pool.CCP1.fail-all-
connections="true"
asadmin set server.resources.connector-connection-pool.CCP1.is-connection-validation-
required="true"
asadmin set server.resources.connector-connection-pool.CCP1.property.prefer-validate-
over-recreate="true"

For details, see the Eclipse GlassFish Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method getInvalidConnections to
allow retrieval of the invalid connections. The Eclipse GlassFish checks if the resource adapter
implements this interface, and if it does, invalid connections are removed when the connection
pool is resized.

Setting the Shutdown Timeout

According to the Connector specification, while an application server shuts down, all resource
adapters should be stopped. A resource adapter might hang during shutdown, since shutdown is
typically a resource intensive operation. To avoid such a situation, you can set a timeout that aborts
resource adapter shutdown if exceeded. The default timeout is 30 seconds per resource adapter
module. To configure this timeout:

• In the Administration Console, select Connector Service under the relevant configuration and
edit the shutdown Timeout field. For details, click the Help button in the Administration
Console.

• Use the following asadmin set command:

226

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

asadmin set server.connector-service.shutdown-timeout-in-seconds="num-secs"

For details, see the Eclipse GlassFish Reference Manual.

The Eclipse GlassFish deactivates all message-driven bean deployments before stopping a resource
adapter.

Specifying the Class Loading Policy

Use the class-loading-policy setting to determine which resource adapters accessible to
applications. Allowed values are:

• derived — Applications access resource adapters based on references in their deployment
descriptors. These references can be resource-ref, resource-env-ref, resource-adapter-mid, or
equivalent annotations.

• global — All stand-alone resource adapters are available to all applications.

To configure this setting, use the asadmin set command. For example:

asadmin set server.connector-service.class-loading-policy="global"

For details, see the Eclipse GlassFish Reference Manual.

Using Last Agent Optimization of Transactions

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent optimization
is enabled. Otherwise, all resources must be XA. For more information about transactions in the
Eclipse GlassFish, see Using the Transaction Service.

The Connector specification requires that if a resource adapter supports XATransaction, the
ManagedConnection created from that resource adapter must support both distributed and local
transactions. Therefore, even if a resource adapter supports XATransaction, you can configure its
connector connection pools as non-XA or without transaction support for better performance. A
non-XA resource adapter becomes the last agent in the transactions in which it participates.

The value of the connection pool configuration property transaction-support defaults to the value
of the transaction-support property in the ra.xml file. The connection pool configuration property
can override the ra.xml file property if the transaction level in the connection pool configuration
property is lower. If the value in the connection pool configuration property is higher, it is ignored.

Disabling Pooling for a Connection

To disable connection pooling, set the Pooling attribute to false. The default is true. You can enable
or disable connection pooling in one of the following ways:

• Enter a Pooling value in the Connector Connection Pools page in the Administration Console.

227

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

For more information, click the Help button in the Administration Console.

• Specify the --pooling option in the asadmin create-connector-connection-pool command. For
more information, see the Eclipse GlassFish Reference Manual.

Using Application-Scoped Connectors

You can define an application-scoped connector or other resource for an enterprise application,
web module, EJB module, connector module, or application client module by supplying a glassfish-
resources.xml deployment descriptor file. For details, see "Application-Scoped Resources" in Eclipse
GlassFish Application Deployment Guide.

Inbound Communication Support
The Connector specification defines the transaction and message inflow system contracts for
achieving inbound connectivity from an EIS. The message inflow contract also serves as a standard
message provider pluggability contract, thereby allowing various message providers to seamlessly
plug in their products with any application server that supports the message inflow contract. In the
inbound communication model, the EIS initiates all communication to an application. An
application can be composed of enterprise beans (session, entity, or message-driven beans), which
reside in an EJB container.

Incoming messages are received through a message endpoint, which is a message-driven bean. This
message-driven bean asynchronously consumes messages from a message provider. An application
can also synchronously send and receive messages directly using messaging style APIs.

A resource adapter supporting inbound communication provides an instance of an ActivationSpec
JavaBean class for each supported message listener type. Each class contains a set of configurable
properties that specify endpoint activation configuration information during message-driven bean
deployment. The required config-property element in the ra.xml file provides a list of configuration
property names required for each activation specification. An endpoint activation fails if the
required property values are not specified. Values for the properties that are overridden in the
message-driven bean’s deployment descriptor are applied to the ActivationSpec JavaBean when the
message-driven bean is deployed.

Administered objects can also be specified for a resource adapter, and these JavaBeans are specific
to a messaging style or message provider. For example, some messaging styles may need
applications to use special administered objects (such as Queue and Topic objects in JMS).
Applications use these objects to send and synchronously receive messages using connection
objects using messaging style APIs. For more information about administered objects, see Using the
Java Message Service.

Outbound Communication Support
The Connector specification defines the system contracts for achieving outbound connectivity from
an EIS. A resource adapter supporting outbound communication provides an instance of a
ManagedConnectionFactory JavaBean class. A ManagedConnectionFactory JavaBean represents
outbound connectivity information to an EIS instance from an application.

228

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources

The 1.6 Connector specification introduces a mechanism through which the transaction level of a
ManagedConnectionFactory can be detected at runtime. During the configuration of a
ManagedConnectionFactory in the Connector Connection Pools page in the Administration Console,
the Administration Console can instantiate the ManagedConnectionFactory and show the level of
transaction support. The three levels are no-tx, local-tx, xa-tx. If a ManagedConnectionFactory
returns local-tx as the level it can support, it is assumed that xa-tx is not supported, and the
Administration Console shows only no-tx and local-tx as the available support levels.

For more information, click the Help button in the Administration Console.

Configuring a Message Driven Bean to Use a Resource
Adapter
The Connectors specification’s message inflow contract provides a generic mechanism to plug in a
wide-range of message providers, including JMS, into a Java-EE-compatible application server.
Message providers use a resource adapter and dispatch messages to message endpoints, which are
implemented as message-driven beans.

The message-driven bean developer provides activation configuration information in the message-
driven bean’s ejb-jar.xml file. Configuration information includes messaging-style-specific
configuration details, and possibly message-provider-specific details as well. The message-driven
bean deployer uses this configuration information to set up the activation specification JavaBean.
The activation configuration properties specified in ejb-jar.xml override configuration properties
in the activation specification definition in the ra.xml file.

According to the EJB specification, the messaging-style-specific descriptor elements contained
within the activation configuration element are not specified because they are specific to a
messaging provider. In the following sample message-driven bean ejb-jar.xml, a message-driven
bean has the following activation configuration property names: destinationType,
SubscriptionDurability, and MessageSelector.

<!-- A sample MDB that listens to a JMS Topic -->
<!-- message-driven bean deployment descriptor -->
...
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 destinationType
 </activation-config-property-name>
 <activation-config-property-value>
 jakarta.jms.Topic
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 SubscriptionDurability
 </activation-config-property-name>
 <activation-config-property-value>

229

 Durable
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 MessageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 JMSType = 'car' AND color = 'blue'
 </activation-config-property-value>
 </activation-config-property>
 ...
 </activation-config>
...

When the message-driven bean is deployed, the value for the resource-adapter-mid element in the
glassfish-ejb-jar.xml file is set to the resource adapter module name that delivers messages to the
message endpoint (to the message-driven bean). In the following example, the jmsra JMS resource
adapter, which is the bundled resource adapter for the Message Queue message provider, is
specified as the resource adapter module identifier for the SampleMDB bean.

<glassfish-ejb-jar>
<enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>SampleMDB</ejb-name>
 <jndi-name>SampleQueue</jndi-name>
 <!-- JNDI name of the destination from which messages would be
 delivered from MDB needs to listen to -->
 ...
 <mdb-resource-adapter>
 <resource-adapter-mid>jmsra</resource-adapter-mid>
 <!-- Resource Adapter Module Id that would deliver messages to
 this message endpoint -->
 </mdb-resource-adapter>
 ...
 </ejb>
 ...
</enterprise-beans>
...
</glassfish-ejb-jar>

When the message-driven bean is deployed, the Eclipse GlassFish uses the resourceadapter-mid
setting to associate the resource adapter with a message endpoint through the message inflow
contract. This message inflow contract with the Eclipse GlassFish gives the resource adapter a
handle to the MessageEndpointFactory and the ActivationSpec JavaBean, and the adapter uses this
handle to deliver messages to the message endpoint instances (which are created by the
MessageEndpointFactory).

230

When a message-driven bean first created for use on the Eclipse GlassFish 7 is deployed, the
Connector runtime transparently transforms the previous deployment style to the current
connector-based deployment style. If the deployer specifies neither a resource-adapter-mid element
nor the Message Queue resource adapter’s activation configuration properties, the Connector
runtime maps the message-driven bean to the jmsra system resource adapter and converts the JMS-
specific configuration to the Message Queue resource adapter’s activation configuration properties.

231

Chapter 18. Developing Lifecycle Listeners
Lifecycle listener modules provide a means of running short or long duration Java-based tasks
within the Eclipse GlassFish environment, such as instantiation of singletons or RMI servers. These
modules are automatically initiated at server startup and are notified at various phases of the
server life cycle.


Lifecycle listener modules are deprecated. Support for them is included for
backward compatibility. Implementing the org.glassfish.api.Startup interface
instead is recommended.

All lifecycle module classes and interfaces are in the as-install/modules/glassfish-api.jar file.

For Javadoc tool pages relevant to lifecycle modules, see the com.sun.appserv.server package.

The following topics are addressed here:

• Server Life Cycle Events

• The LifecycleListener Interface

• The LifecycleEvent Class

• The Server Lifecycle Event Context

• Deploying a Lifecycle Module

• Considerations for Lifecycle Modules

Server Life Cycle Events
A lifecycle module listens for and performs its tasks in response to the following events in the
server life cycle:

• After the INIT_EVENT, the server reads the configuration, initializes built-in subsystems (such as
security and logging services), and creates the containers.

• After the STARTUP_EVENT, the server loads and initializes deployed applications.

• After the READY_EVENT, the server is ready to service requests.

• After the SHUTDOWN_EVENT, the server destroys loaded applications and stops.

• After the TERMINATION_EVENT, the server closes the containers, the built-in subsystems, and the
server runtime environment.

These events are defined in the LifecycleEvent class.

The lifecycle modules that listen for these events implement the LifecycleListener interface.

The LifecycleListener Interface
To create a lifecycle module is to configure a customized class that implements the

232

com.sun.appserv.server.LifecycleListener interface. You can create and simultaneously execute
multiple lifecycle modules.

The LifecycleListener interface defines this method:

public void handleEvent(com.sun.appserv.server.LifecycleEvent event)
throws ServerLifecycleException

This method responds to a lifecycle event and throws a
com.sun.appserv.server.ServerLifecycleException if an error occurs.

A sample implementation of the LifecycleListener interface is the LifecycleListenerImpl.java file,
which you can use for testing lifecycle events.

The LifecycleEvent Class
The com.sun.appserv.server.LifecycleEvent class defines a server life cycle event. The following
methods are associated with the event:

• public java.lang.Object.getData()

This method returns an instance of java.util.Properties that contains the properties defined
for the lifecycle module.

• public int getEventType()

This method returns the type of the last event, which is INIT_EVENT, STARTUP_EVENT, READY_EVENT,
SHUTDOWN_EVENT, or TERMINATION_EVENT.

• public com.sun.appserv.server.LifecycleEventContext.getLifecycleEventContext()

This method returns the lifecycle event context, described next.

A LifecycleEvent instance is passed to the LifecycleListener.handleEvent method.

The Server Lifecycle Event Context
The com.sun.appserv.server.LifecycleEventContext interface exposes runtime information about
the server. The lifecycle event context is created when the LifecycleEvent class is instantiated at
server initialization. The LifecycleEventContext interface defines these methods:

• public java.lang.String[].getCmdLineArgs()

This method returns the server startup command-line arguments.

• public java.lang.String.getInstallRoot()

This method returns the server installation root directory.

• public java.lang.String.getInstanceName()

233

This method returns the server instance name.

• public javax.naming.InitialContext.getInitialContext()

This method returns the initial JNDI naming context. The naming environment for lifecycle
modules is installed after the STARTUP_EVENT. A lifecycle module can look up any resource by its
jndi-name attribute after the READY_EVENT.

If a lifecycle module needs to look up resources, it can do so after the READY_EVENT. It can use the
getInitialContext method to get the initial context to which all the resources are bound.

Deploying a Lifecycle Module
For instructions on how to deploy a lifecycle module, see the Eclipse GlassFish Application
Deployment Guide, or see the asadmin create-lifecycle-module command in the Eclipse GlassFish
Reference Manual.

You do not need to specify a classpath for the lifecycle module if you place it in the domain-dir/lib
or domain-dir`/lib/classes` directory for the Domain Administration Server. Do not place it in the
lib directory for a particular instance, or it will be deleted when that instance synchronizes with
the Domain Administration Server.

Considerations for Lifecycle Modules
The resources allocated at initialization or startup should be freed at shutdown or termination. The
lifecycle module classes are called synchronously from the main server thread, therefore it is
important to ensure that these classes don’t block the server. Lifecycle modules can create threads
if appropriate, but these threads must be stopped in the shutdown and termination phases.

The LifeCycleModule class loader is the parent class loader for lifecycle modules. Each lifecycle
module’s classpath is used to construct its class loader. All the support classes needed by a lifecycle
module must be available to the LifeCycleModule class loader or its parent, the Connector class
loader.

You must ensure that the server.policy file is appropriately set up, or a lifecycle module trying to
perform a System.exec() might cause a security access violation. For details, see The server.policy
File.

The configured properties for a lifecycle module are passed as properties after the INIT_EVENT. The
JNDI naming context is not available before the STARTUP_EVENT. If a lifecycle module requires the
naming context, it can get this after the STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT.

234

https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Chapter 19. Developing OSGi-enabled
Jakarta EE Applications
This chapter describes the features and interfaces that Eclipse GlassFish provides to develop OSGi-
enabled enterprise applications. This chapter includes the following sections:

• Overview of OSGi Application and Eclipse GlassFish

• Developing OSGi Application Bundles for Eclipse GlassFish

• Deploying OSGi Bundles in Eclipse GlassFish

Overview of OSGi Application and Eclipse GlassFish
Eclipse GlassFish is fully-compliant with Jakarta EE 10, so it provides the latest Jakarta EE APIs and
frameworks. It is built using OSGi technology, and includes as its OSGi module management
subsystem the Apache Felix OSGi framework (http://felix.apache.org), which is a fully-compliant
implementation of the OSGi Service Platform R4 Version 4.3 specification. Eclipse GlassFish
supports deployment of OSGi-based applications using this framework. OSGi applications can make
use of core as well as enterprise OSGi features. Eclipse GlassFish makes available many of its
Jakarta EE platform services, such as the transaction service, HTTP service, JDBC Service and JMS,
as OSGi services. It also enables use of Jakarta EE programming model in OSGi applications, so
enterprise Java application developers can continue to leverage their existing skills in OSGi-based
applications. See Benefits of Using OSGi in Enterprise Java Applications for more information.

OSGi applications are deployed as one or more OSGi bundles, and the Eclipse GlassFish deployment
and administration infrastructure enables you to deploy and manage your OSGi bundles. This
chapter classifies OSGi bundles into two categories based on the features they use:

• Plain OSGi Application Bundles - bundles that do not contain any Jakarta EE components. See
Developing Plain OSGi Bundles.

• Hybrid Application Bundles - bundles that are an OSGi bundle as wells as a Jakarta EE module.
At runtime, such modules have both an OSGi bundle context and a Jakarta EE context. Eclipse
GlassFish supports the following hybrid application bundles:

◦ Web Application Bundles (or WABs) , see Developing Web Application Bundles.

◦ EJB Application Bundles, see Developing EJB Application Bundles.

Benefits of Using OSGi in Enterprise Java Applications

Enterprise applications typically need transactional, secured access to data stores, messaging
systems and other such enterprise information systems, and have to cater to a wide variety of
clients such as web browsers and desktop applications, and so on. Jakarta EE makes development
of such applications easier with a rich set of APIs and frameworks. It also provides a scalable,
reliable and easy to administer runtime to host such applications.

The OSGi platform complements these features with modularity. It enables applications to be
separated into smaller, reusable modules with a well defined and robust dependency specification.

235

http://felix.apache.org
http://felix.apache.org

A module explicitly specifies its capabilities and requirements. This explicit dependency
specification encourages developers to visualize dependencies among their modules and help them
make their modules highly cohesive and less coupled. The OSGi module system is dynamic: it
allows modules to be added and removed at runtime. OSGi has very good support for versioning: it
supports package versioning as well module versioning. In fact, it allows multiple versions of the
same package to coexist in the same runtime, thus allowing greater flexibility to deployers. The
service layer of the OSGi platform encourages a more service-oriented approach to build a system.
The service-oriented approach and dynamic module system used together allow a system to be
more agile during development as well as in production. It makes them better suited to run in an
Platform-as-a-Service (PaaS) environment.

With Eclipse GlassFish, you do not have to chose one of the two platforms. A hybrid approach like
OSGi enabling your Jakarta EE applications allows new capabilities to applications hitherto
unavailable to applications built using just one of the two platforms.

Developing OSGi Application Bundles for Eclipse
GlassFish
Eclipse GlassFish enables interaction between OSGi components and Jakarta EE components. OSGi
services managed by the OSGi framework can invoke Jakarta EE components managed by the
Jakarta EE container and vice versa. For example, developers can declaratively export EJBs as OSGi
services without having to write any OSGi code. This allows any plain OSGi component, which is
running without the Jakarta EE context, to discover the EJB and invoke it. Similarly, Jakarta EE
components can locate OSGi services provided by plain OSGi bundles and use them as well. Eclipse
GlassFish extends the Jakarta EE Context and Dependency Injection (CDI) framework to make it
easier for Jakarta EE components to consume dynamic OSGi services in a type-safe manner.

• Developing Plain OSGi Bundles

• Developing Web Application Bundles

• Developing EJB Application Bundles

Developing Plain OSGi Bundles

Jakarta EE components (like an EJB or Servlet) can look up Jakarta EE platform services using JNDI
names in the associated Jakarta EE naming context. Such code can rely on the Jakarta EE container
to inject the required services as well. Unfortunately, neither of them works when the code runs
outside a Jakarta EE context. An example of such code is the BundleActivator of an OSGi bundle. For
such code to access Jakarta EE platform services, Eclipse GlassFish makes key services and
resources of the underlying Jakarta EE platform available as OSGi services. Thus, an OSGi bundle
deployed in Eclipse GlassFish can access these services using OSGi Service look-up APIs or by using
a white board pattern. The following Jakarta EE services are available as OSGi services:

• HTTP Service

• Transaction Service

• JDBC Data Source Service

• JMS Resource Service

236

HTTP Service

The Eclipse GlassFish web container is made available as a service for OSGi users who do not use
OSGi Web Application Bundles (WABs). This service is made available using the standard
OSGi/HTTP service specification, which is a light API that predates the concept of a web application
as we know it today. This simple API allows users to register servlets and static resources
dynamically and draw a boundary around them in the form of a HttpContext. This simple API can
be used to build feature-rich web application, such as the Felix Web Console for example.

The Eclipse GlassFish web container has one or more virtual servers. A virtual server has one or
more web application deployed in it. Each web application has a distinct context path. Each virtual
server has a set of HTTP listeners. Each HTTP listener listens on a particular port. When multiple
virtual servers are present, one of them is treated as the default virtual server. Every virtual server
comes configured with a default web application. The default web application is used to serve static
content from the docroot of Eclipse GlassFish. This default web application uses / as the context
path. A web application contains static and dynamic resources. Each virtual server is mapped to an
org.osgi.services.http.HttpService instance. When there are multiple virtual servers present,
there will be multiple occurrences of HttpService registered in the service registry. In order to
distinguish one service from another, each service is registered with a service property named
VirtualServer, whose value is the name of the virtual server. The service corresponding to default
virtual server has the highest ranking, so when looking up a service of type HttpService without any
additional criteria returns the HttpService corresponding to the default virtual server. In a typical
Eclipse GlassFish installation, the default virtual server is configured to listen on port 8080 for the
HTTP protocol and port 8181 for the HTTPS protocol.

The context path / is reserved for the default web application. Every resource and servlet
registered using the registerResource() and registerServlet() methods of HttpService are made
available under a special context path named /osgi in the virtual server. The /osgi context path can
be changed to some other value by setting an appropriate value in the OSGi configuration property
or in a system property called org.glassfish.osgihttp.ContextPath.

For example, HelloWorldServlet will be available at http://localhost:8080/osgi/helloworld when
the following code is executed:

HttpService httpService = getHttpService(); // Obtain HttpService
httpService.registerServlet(httpService.registerServlet("/helloworld",
new HelloWorldServlet(), null, ctx);

Transaction Service

The Java Transaction API (JTA) defines three interfaces to interact with the transaction
management system: UserTransaction, TransactionManager, and TransactionSynchronizationRegistry.
They all belong to the javax.transaction package. TransactionManager and
TransactionSynchronizationRegistry are intended for system level code, such as a persistence
provider. Whereas, UserTransaction is the entity that you should use to control transactions. All the
objects of the underlying JTA layer are made available in the OSGi service registry using the
following service interfaces:

237

http://localhost:8080/osgi/helloworld

• javax.transaction.UserTransaction

• javax.transaction.TransactionManager

• javax.transaction.TransactionSynchronisationRegistry

There is no additional service property associated with them. Although UserTransaction appears to
be a singleton, in reality any call to it gets rerouted to the actual transaction associated with the
calling thread. Code that runs in the context of a Jakarta EE component typically gets a handle on
UserTransaction by doing a JNDI lookup in the component naming context or by using injection, as
shown here:

(UserTransaction)(new InitialContext().lookup("java:comp/UserTransaction"));

or

@Resource UserTransaction utx;

When certain code (such as an OSGi Bundle Activator), which does not have a Jakarta EE
component context, wants to get hold of UserTransaction, or any of the other JTA artifacts, then they
can look it up in the service registry. Here is an example of such code:

BundleContext context;
ServiceReference txRef =
 context.getServiceReference(UserTransaction.class.getName());
UserTransaction utx = (UserTransaction);
context.getService(txRef);

JDBC Data Source Service

Any JDBC data source created in Eclipse GlassFish is automatically made available as an OSGi
Service; therefore, OSGi bundles can track availability of JDBC data sources using the
ServiceTracking facility of the OSGi platform. The life of the OSGi service matches that of the
underlying data source created in Eclipse GlassFish. For instructions on administering JDBC
resources in Eclipse GlassFish, see the Eclipse GlassFish Administration Guide.

Eclipse GlassFish registers each JDBC data source as an OSGi service with objectClass =
"javax.sql.DataSource" and a service property called jndi-name, which is set to the JNDI name of the
data source. Here is a code sample that looks up a data source service:

 @Inject
 @OSGiService(true, "(jndi-name=jdbc/MyDS)")
 private DataSource ds;

238

https://glassfish.org/docs/latest/administration-guide.pdf#GSADG

JMS Resource Service

Like JDBC data sources, JMS administered objects, such as destinations and connection factories,
are also automatically made available as OSGi services. Their service mappings are as follows.

JMS
Object

Service Interface Service
Propertie
s

Comments

JMS Queue
destinatio
n

jakarta.jms.Queue jndi-name jndi-name is set to the JNDI name of
the queue

JMS Topic
destinatio
n

jakarta.jms.Topic jndi-name jndi-name is set to the JNDI name of
the topic

JMS
connectio
n factory

jakarta.jms.QueueConnectionFactory
or
jakarta.jms.TopicConnectionFactory
or
jakarta.jms.ConnectionFactory

jndi-name jndi-name is set to the JNDI name of
the topic.
The actual service interface
depends on which type of
connection factory was created.

Developing Web Application Bundles

When a web application is packaged and deployed as an OSGi bundle, it is called a Web Application
Bundle (WAB). WAB support is based on the OSGi Web Application specification , which is part of
the OSGi Service Platform, Enterprise Specification, Release 4, Version 4.3. A WAB is packaged as an
OSGi bundle, so all the OSGi packaging rules apply to WAB packaging. When a WAB is not packaged
like a WAR, the OSGi Web Container of Eclipse GlassFish maps the WAB to the hierarchical
structure of web application using the following rules:

• The root of the WAB corresponds to the docroot of the web application.

• Every JAR in the Bundle-ClassPath of the WAB is treated like a JAR in WEB-INF/lib/.

• Every directory except "." in Bundle-ClassPath of the WAB is treated like WEB-INF/classes/.

• Bundle-ClassPath entry of type "." is treated as if the entire WAB is a JAR in WEB-INF/lib/.

• Bundle-ClassPath includes the Bundle-ClassPath entries of any attached fragment bundles.

The simplest way to avoid knowing these mapping rules is to avoid the problem in the first place.
Moreover, there are many packaging tools and development time tools that understand WAR
structure. Therefore, we strongly recommend that you package the WAB exactly like a WAR, with
only additional OSGi metadata.

Required WAB Metadata

In addition to the standard OSGi metadata, the main attributes of META-INF/MANIFEST.MF of the WAB
must have an additional attribute called Web-ContextPath. The Web-ContextPath attribute specifies the
value of the context path of the web application. Since the root of a WAB is mapped to the docroot of
the web application, it should not be used in the Bundle-ClassPath. Moreover, WEB-INF/classes/

239

should be specified ahead of WEB-INF/lib/ in the Bundle-ClassPath in order to be compliant with the
search order used for traditional WAR files.

Assuming the WAB is structured as follows:

 foo.war/
 index.html
 foo.jsp
 WEB-INF/classes/
 foo/BarServlet.class
 WEB-INF/lib/lib1.jar
 WEB-INF/lib/lib2.jar

Then the OSGi metadata for the WAB as specified in META-INF/MANIFEST.MF of the WAB would appear
as follows:

 MANIFEST.MF:Manifest-Version: 1.0
 Bundle-ManifestVersion: 2
 Bundle-SymbolicName: com.acme.foo
 Bundle-Version: 1.0
 Bundle-Name: Foo Web Application Bundle Version 1.0
 Import-Package: javax.servlet; javax.servlet.http, version=[3.0, 4.0, 5.0)
 Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/lib1.jar, WEB-INF/lib/lib2.jar
 Web-ContextPath: /foo

How WABs Consume OSGi Services

Since a WAB has a valid Bundle-Context, it can consume OSGi services. Although you are free to use
any OSGi API to locate OSGi services, Eclipse GlassFish makes it easy for WAB users to use OSGi
services by virtue of extending the Context and Dependency Injection (CDI) framework. Here’s an
example of the injection of an OSGi Service into a Servlet:

 @WebServlet
 public class MyServlet extends HttpServlet {
 @Inject @OSGiService(dynamic=true)
 FooService fooService;
 }

To learn more about this feature, refer to OSGi CDI Extension for WABs.

OSGi CDI Extension for WABs

Eclipse GlassFish includes a CDI extension that enables web applications, such as servlets, that are
part of WABs to express a type-safe dependency on an OSGi service using CDI APIs. An OSGi service
can be provided by any OSGi bundle without any knowledge of Jakarta EE/CDI, and they are
allowed to be injected transparently in a type-safe manner into a web application.

240

A custom CDI Qualifier, @org.glassfish.osgicdi.OSGiService, is used by the component to represent
dependency on an OSGi service. The qualifier has additional metadata to customize the service
discovery and injection behavior. The following @OsgiService attributes are currently available:

• serviceCriteria — An LDAP filter query used for service selection in the OSGi service registry.

• waitTimeout — Waits the specified duration for a service that matches the criteria specified to
appear in the OSGi service registry.

• dynamic — Dynamically obtain a service reference (true/false).

Since OSGi services are dynamic, they may not match the life cycle of the application
component that has injected a reference to the service. Through this attribute, you could
indicate that a service reference can be obtained dynamically or not. For stateless or
idempotent services, a dynamic reference to a service implementation would be useful. The
container then injects a proxy to the service and dynamically switches to an available
implementation when the current service reference is invalid.

Example 13-1 Example of a WAB Using CDI

In this example, Bundle B0 defines a service contract called com.acme.Foo and exports the com.acme
package for use by other bundles. Bundle B1 in turn provides a service implementation, FooImpl, of
the com.acme.Foo interface. It then registers the service FooImpl service with the OSGi service
registry with com.acme.Foo as the service interface.

Bundle B2 is a hybrid application bundle that imports the com.acme package. It has a component
called BarServlet that expresses a dependency to com.acme.Foo by adding a field/setter method and
qualifies that injection point with @OsgiService. For instance, BarServlet could look like:

 @Servlet
 public void BarServlet extends HttpServlet{
 @Inject @OSGiService(dynamic=true)
 private com.acme.Foo f;
 }

Developing EJB Application Bundles

Another type of hybrid application bundle is the EJB Application Bundle. When an EJB Jar is
packaged with additional OSGi metadata and deployed as an OSGi bundle it is called an EJB
Application Bundle. Eclipse GlassFishsupports only packaging the OSGi bundle as a simple JAR file
with required OSGi metadata, just as you would package an ejb-jar file.

Required EJB Metadata

An EJB Application Bundle must have a manifest metadata called Export-EJB in order to be
considered as an EJB Bundle. For syntax of Export-EJB header, please refer to the Publishing EJB as
OSGi Service section. Here’s an example of an EJB Application Bundle with its metadata:

 myEjb.jar/

241

 com/acme/Foo
 com/acme/impl/FooEJB
 META-INF/MANIFEST.MF

MANIFEST.MF:

 Manifest-Version: 1.0
 Bundle-ManifestVersion: 2
 Bundle-SymbolicName: com.acme.foo EJB bundle
 Bundle-Version: 1.0.0.BETA
 Bundle-Name: com.acme.foo EJB bundle version 1.0.0.BETA
 Export-EJB: ALL
 Export-Package: com.acme; version=1.0
 Import-Package: javax.ejb; version=[3.0, 4.0), com.acme; version=[1.0, 1.1)

How EJB Bundles Consume OSGi Services

Since an EJB has a valid Bundle-Context, it can consume OSGi services. Although you are free to use
any OSGi API to locate OSGi services, Eclipse GlassFish makes it easy to use OSGi services by virtue
of extending the Context and Dependency Injection (CDI) framework. Here’s an example of
injection of an OSGi Service into a servlet:

 @Stateless
 public class MyEJB {
 @Inject @OSGiService(dynamic=true)
 Foo foo;
 ...
 }

To learn more about this feature, refer to Using the OSGi CDI Extension With EJB Bundles.

Using the OSGi CDI Extension With EJB Bundles

Eclipse GlassFish includes a CDI extension that enables EJB application bundles to express a type-
safe dependency on an OSGi Service using CDI APIs. An OSGi service can be provided by any OSGi
bundle without any knowledge of Jakarta EE/CDI, and they are allowed to be injected transparently
in a type-safe manner into an EJB bundle.

A custom CDI Qualifier, @org.glassfish.osgicdi.OSGiService, is used by the component to represent
dependency on an OSGi service. The qualifier has additional metadata to customize the service
discovery and injection behavior. The following @OsgiService attributes are currently available:

• dynamic — Dynamically obtain a service reference (true/false).

• waitTimeout — Waits for specified duration for a service to appear in the OSGi service registry.

• serviceCriteria — An LDAP filter query used for service selection.

242

Deploying OSGi Bundles in Eclipse GlassFish
For instruction on deploying OSGi bundle, see " OSGi Bundle Deployment Guidelines" in Eclipse
GlassFish Application Deployment Guide.

243

https://glassfish.org/docs/latest/application-deployment-guide.pdf#osgi-bundle-deployment-guidelines

Part III

244

Chapter 20. Using Services and APIs

245

Chapter 21. Using the JDBC API for Database
Access
This chapter describes how to use the Java Database Connectivity (JDBC) API for database access
with the Eclipse GlassFish. This chapter also provides high level JDBC implementation instructions
for servlets and EJB components using the Eclipse GlassFish.

The JDBC specifications are available at https://www.oracle.com/java/technologies/javase/javase-
tech-database.html.

A useful JDBC tutorial is located at https://docs.oracle.com/javase/tutorial/jdbc/index.html.


The Eclipse GlassFish does not support connection pooling or transactions for an
application’s database access if it does not use standard Jakarta EE DataSource
objects.

The following topics are addressed here:

• Statements

• Connections

• Connection Wrapping

• Allowing Non-Component Callers

• Using Application-Scoped JDBC Resources

• Restrictions and Optimizations

Statements
The following topics are addressed here:

• Using an Initialization Statement

• Setting a Statement Timeout

• Statement Leak Detection and Leaked Statement Reclamation

• Statement Caching

• Statement Tracing

Using an Initialization Statement

You can specify a statement that executes each time a physical connection to the database is created
(not reused) from a JDBC connection pool. This is useful for setting request or session specific
properties and is suited for homogeneous requests in a single application. Set the Init SQL attribute
of the JDBC connection pool to the SQL string to be executed in one of the following ways:

• Enter an Init SQL value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration

246

https://www.oracle.com/java/technologies/javase/javase-tech-database.html
https://www.oracle.com/java/technologies/javase/javase-tech-database.html
https://docs.oracle.com/javase/tutorial/jdbc/index.html

Console.

• Specify the --initsql option in the asadmin create-jdbc-connection-pool command. For more
information, see the Eclipse GlassFish Reference Manual.

• Specify the init-sql option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.init-sql="sql-string"

For more information, see the Eclipse GlassFish Reference Manual.

Setting a Statement Timeout

An abnormally long running JDBC query executed by an application may leave it in a hanging state
unless a timeout is explicitly set on the statement. Setting a statement timeout guarantees that all
queries automatically time out if not completed within the specified period. When statements are
created, the queryTimeout is set according to the statement timeout setting. This works only when
the underlying JDBC driver supports queryTimeout for Statement, PreparedStatement,
CallableStatement, and ResultSet.

You can specify a statement timeout in the following ways:

• Enter a Statement Timeout value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --statementtimeout option in the asadmin create-jdbc-connection-pool command. For
more information, see the Eclipse GlassFish Reference Manual.

Statement Leak Detection and Leaked Statement Reclamation

If statements are not closed by an application after use, it is possible for the application to run out
of cursors. Enabling statement leak detection causes statements to be considered as leaked if they
are not closed within a specified period. Additionally, leaked statements can reclaimed
automatically.

To enable statement leak detection, set Statement Leak Timeout In Seconds for the JDBC connection
pool to a positive, nonzero value in one of the following ways:

• Specify the --statementleaktimeout option in the create-jdbc-connection-pool subcommand. For
more information, see create-jdbc-connection-pool(1).

• Specify the statement-leak-timeout-in-seconds option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-timeout-in-
seconds=300

When selecting a value for Statement Leak Timeout In Seconds, make sure that:

• It is less than the Connection Leak Timeout; otherwise, the connection could be closed before

247

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

the statement leak is recognized.

• It is greater than the Statement Timeout; otherwise, a long running query could be mistaken as
a statement leak.

After enabling statement leak detection, enable leaked statement reclamation by setting Reclaim
Leaked Statements for the JDBC connection pool to a true value in one of the following ways:

• Specify the --statementleakreclaim=true option in the create-jdbc-connection-pool
subcommand. For more information, see create-jdbc-connection-pool(1).

• Specify the statement-leak-reclaim option in the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.statement-leak-reclaim=true

Statement Caching

Statement caching stores statements, prepared statements, and callable statements that are
executed repeatedly by applications in a cache, thereby improving performance. Instead of the
statement being prepared each time, the cache is searched for a match. The overhead of parsing
and creating new statements each time is eliminated.

Statement caching is usually a feature of the JDBC driver. The Eclipse GlassFish provides caching
for drivers that do not support caching. To enable this feature, set the Statement Cache Size for the
JDBC connection pool in one of the following ways:

• Enter a Statement Cache Size value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --statementcachesize option in the asadmin create-jdbc-connection-pool command.
For more information, see the Eclipse GlassFish Reference Manual.

• Specify the statement-cache-size option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.statement-cache-
size=10

For more information, see the Eclipse GlassFish Reference Manual.

By default, this attribute is set to zero and the statement caching is turned off. To enable statement
caching, you can set any positive nonzero value. The built-in cache eviction strategy is LRU-based
(Least Recently Used). When a connection pool is flushed, the connections in the statement cache
are recreated.

Statement Tracing

You can trace the SQL statements executed by applications that use a JDBC connection pool. Set the
SQL Trace Listeners attribute to a comma-separated list of trace listener implementation classes in
one of the following ways:

248

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

• Enter an SQL Trace Listeners value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --sqltracelisteners option in the asadmin create-jdbc-connection-pool command.
For more information, see the Eclipse GlassFish Reference Manual.

• Specify the sql-trace-listeners option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.sql-trace-
listeners=listeners

For more information, see the Eclipse GlassFish Reference Manual.

The Eclipse GlassFish provides a public interface, org.glassfish.api.jdbc.SQLTraceListener , that
implements a means of recording SQLTraceRecord objects. To make custom implementations of this
interface available to the Eclipse GlassFish, place the implementation classes in as-install/lib.

The Eclipse GlassFish provides an SQL tracing logger to log the SQL operations in the form of
SQLTraceRecord objects in the server.log file. The module name under which the SQL operation is
logged is jakarta.enterprise.resource.sqltrace. SQL traces are logged as FINE messages along with
the module name to enable easy filtering of the SQL logs. A sample SQL trace record looks like this:

[#|2009-11-27T15:46:52.202+0530|FINE|glassfish
6.0|jakarta.enterprise.resource.sqltrace.com.sun.gjc.util
|_ThreadID=29;_ThreadName=Thread-
1;ClassName=com.sun.gjc.util.SQLTraceLogger;MethodName=sqlTrace;
|ThreadID=77 | ThreadName=p: thread-pool-1; w: 6 | TimeStamp=1259317012202
| ClassName=com.sun.gjc.spi.jdbc40.PreparedStatementWrapper40 |
MethodName=executeUpdate
| arg[0]=insert into table1(colName) values(100) | arg[1]=columnNames | |#]

This trace shows that an executeUpdate(String sql, String columnNames) operation is being done.

When SQL statement tracing is enabled and JDBC connection pool monitoring is enabled, Eclipse
GlassFish maintains a tracing cache of recent queries and their frequency of use. The following
JDBC connection pool properties can be configured to control this cache and the monitoring
statistics available from it:

time-to-keep-queries-in-minutes

Specifies how long in minutes to keep a query in the tracing cache, tracking its frequency of use.
The default value is 5 minutes.

number-of-top-queries-to-report

Specifies how many of the most used queries, in frequency order, are listed the monitoring
report. The default value is 10 queries.

Set these parameters in one of the following ways:

249

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

• Add them as properties in the Edit JDBC Connection Pool Properties page in the Administration
Console. For more information, click the Help button in the Administration Console.

• Specify them using the --property option in the create-jdbc-connection-pool subcommand. For
more information, see create-jdbc-connection-pool(1).

• Set them using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.time-to-keep-queries-
in-minutes=10

Connections
The following topics are addressed here:

• Transparent Pool Reconfiguration

• Disabling Pooling

• Associating Connections with Threads

• Custom Connection Validation

• Sharing Connections

• Marking Bad Connections

• Handling Invalid Connections

Transparent Pool Reconfiguration

When the properties or attributes of a JDBC connection pool are changed, the connection pool is
destroyed and re-created. Normally, applications using the connection pool must be redeployed as a
consequence. This restriction can be avoided by enabling transparent JDBC connection pool
reconfiguration. When this feature is enabled, applications do not need to be redeployed. Instead,
requests for a new connections are blocked until the reconfiguration operation completes.
Connection requests from any in-flight transactions are served using the old pool configuration so
as to complete the transaction. Then, connections are created using the pool’s new configuration,
and any blocked connection requests are served with connections from the re-created pool..

To enable transparent JDBC connection pool reconfiguration, set the dynamic-reconfiguration-wait-
timeout-in-seconds property of the JDBC connection pool to a positive, nonzero value in one of the
following ways:

• Add it as a property in the Edit JDBC Connection Pool Properties page in the Administration
Console. For more information, click the Help button in the Administration Console.

• Specify it using the --property option in the create-jdbc-connection-pool subcommand. For
more information, see create-jdbc-connection-pool(1).

• Set it using the set subcommand. For example:

asadmin set resources.jdbc-connection-pool.pool-name.property.dynamic-

250

https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool
https://glassfish.org/docs/latest/reference-manual.pdf#create-jdbc-connection-pool

reconfiguration-wait-timeout-in-seconds=15

This property specifies the time in seconds to wait for in-use connections to close and in-flight
transactions to complete. Any connections in use or transaction in flight past this time must be
retried.

Disabling Pooling

To disable connection pooling, set the Pooling attribute to false. The default is true. You can enable
or disable connection pooling in one of the following ways:

• Enter a Pooling value in the Edit Connection Pool Advanced Attributes page in the
Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --pooling option in the asadmin create-jdbc-connection-pool command. For more
information, see the Eclipse GlassFish Reference Manual.

• Specify the pooling option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.pooling=false

For more information, see the Eclipse GlassFish Reference Manual.

The pooling option and the system property
com.sun.enterprise.connectors.SwitchoffACCConnectionPooling, which turns off connection pooling
in the Application Client Container, do not affect each other.

An exception is thrown if associate-with-thread is set to true and pooling is disabled. An exception
is thrown if you attempt to flush a connection pool when pooling is disabled. A warning is logged if
the following attributes are used, because they are useful only in a pooled environment:

• connection-validation

• validate-atmost-once-period

• match-connections

• max-connection-usage-count

• idle-timeout

Associating Connections with Threads

To associate connections with a thread, set the Associate With Thread attribute to true. The default
is false. A true setting allows connections to be saved as ThreadLocal in the calling thread.
Connections get reclaimed only when the calling thread dies or when the calling thread is not in
use and the pool has run out of connections. If the setting is false, the thread must obtain a
connection from the pool each time the thread requires a connection.

The Associate With Thread attribute associates connections with a thread such that when the same

251

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

thread is in need of connections, it can reuse the connections already associated with that thread.
In this case, the overhead of getting connections from the pool is avoided. However, when this
value is set to true, you should verify that the value of the Max Pool Size attribute is comparable to
the Max Thread Pool Size attribute of the thread pool. If the Max Thread Pool Size value is much
higher than the Max Pool Size value, a lot of time is spent associating connections with a new
thread after dissociating them from an older one. Use this attribute in cases where the thread pool
should reuse connections to avoid this overhead.

You can set the Associate With Thread attribute in the following ways:

• Enter an Associate With Thread value in the Edit Connection Pool Advanced Attributes page in
the Administration Console. For more information, click the Help button in the Administration
Console.

• Specify the --associatewiththread option in the asadmin create-jdbc-connection-pool command.
For more information, see the Eclipse GlassFish Reference Manual.

• Specify the associate-with-thread option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.associate-with-
thread=true

For more information, see the Eclipse GlassFish Reference Manual.

Custom Connection Validation

You can specify a custom implementation for Connection Validation that is faster or optimized for a
specific database. Set the Validation Method attribute to the value custom-validation. (Other
validation methods available are table (the default), auto-commit, and meta-data.) The Eclipse
GlassFish provides a public interface, org.glassfish.api.jdbc.ConnectionValidation, which you can
implement to plug in your implementation. A new attribute, Validation Classname, specifies the
fully qualified name of the class that implements the ConnectionValidation interface. The
Validation Classname attribute is required if Connection Validation is enabled and Validation
Method is set to Custom Validation.

To enable this feature, set Connection Validation, Validation Method, and Validation Classname for
the JDBC connection pool in one of the following ways:

• Enter Connection Validation, Validation Method, and Validation Classname values in the Edit
Connection Pool Advanced Attributes page in the Administration Console. You can select from
among validation class names for common databases in the Validation Classname field. For
more information, click the Help button in the Administration Console.

• Specify the --isconnectionvalidatereq, --validationmethod, and --validationclassname options in
the asadmin create-jdbc-connection-pool command. For more information, see the Eclipse
GlassFish Reference Manual.

• Specify the is-connection-validation-required, connection-validation-method, and validation-
classname options in the asadmin set command. For example:

252

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

asadmin set domain1.resources.jdbc-connection-pool.MyPool.is-connection-validation-
required=true
asadmin set domain1.resources.jdbc-connection-pool.MyPool.connection-validation-
method=custom-validation
asadmin set domain1.resources.jdbc-connection-pool.MyPool.validation-
classname=impl-class

For more information, see the Eclipse GlassFish Reference Manual.

By default, optimized validation mechanisms are provided for DB2, Apache Derby, MSSQL, MySQL,
Oracle, PostgreSQL and Sybase databases. Additionally, for JDBC 4.0 compliant database drivers, a
validation mechanism is provided that uses the Connection.isValid(0) implementation.

Sharing Connections

When multiple connections acquired by an application use the same JDBC resource, the connection
pool provides connection sharing within the same transaction scope. For example, suppose Bean A
starts a transaction and obtains a connection, then calls a method in Bean B. If Bean B acquires a
connection to the same JDBC resource with the same sign-on information, and if Bean A completes
the transaction, the connection can be shared.

Connections obtained through a resource are shared only if the resource reference declared by the
Jakarta EE component allows it to be shareable. This is specified in a component’s deployment
descriptor by setting the res-sharing-scope element to Shareable for the particular resource
reference. To turn off connection sharing, set res-sharing-scope to Unshareable.

For general information about connections and JDBC URLs, see "Administering Database
Connectivity" in Eclipse GlassFish Administration Guide.

Marking Bad Connections

The DataSource implementation in the Eclipse GlassFish provides a markConnectionAsBad method. A
marked bad connection is removed from its connection pool when it is closed. The method
signature is as follows:

public void markConnectionAsBad(java.sql.Connection con)

For example:

com.sun.appserv.jdbc.DataSource ds=
 (com.sun.appserv.jdbc.DataSource)context.lookup("dataSource");
Connection con = ds.getConnection();
Statement stmt = null;
try{
 stmt = con.createStatement();
 stmt.executeUpdate("Update");
}

253

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/administration-guide.pdf#administering-database-connectivity
https://glassfish.org/docs/latest/administration-guide.pdf#administering-database-connectivity

catch (BadConnectionException e){
 ds.markConnectionAsBad(con) //marking it as bad for removal
}
finally{
 stmt.close();
 con.close(); //Connection will be destroyed during close.
}

Handling Invalid Connections

If a ConnectionErrorOccured event occurs, the Eclipse GlassFish considers the connection invalid and
removes the connection from the connection pool. Typically, a JDBC driver generates a
ConnectionErrorOccured event when it finds a ManagedConnection object unusable. Reasons can be
database failure, network failure with the database, fatal problems with the connection pool, and
so on.

If the fail-all-connections setting in the connection pool configuration is set to true, and a single
connection fails, all connections are closed and recreated. If this setting is false, individual
connections are recreated only when they are used. The default is false.

The is-connection-validation-required setting specifies whether connections have to be validated
before being given to the application. If a resource’s validation fails, it is destroyed, and a new
resource is created and returned. The default is false.

The prefer-validate-over-recreate property specifies that validating idle connections is preferable
to closing them. This property has no effect on non-idle connections. If set to true, idle connections
are validated during pool resizing, and only those found to be invalid are destroyed and recreated.
If false, all idle connections are destroyed and recreated during pool resizing. The default is false.

You can set the fail-all-connections, is-connection-validation-required, and prefer-validate-over-
recreate configuration settings during creation of a JDBC connection pool. Or, you can use the
asadmin set command to dynamically reconfigure a setting. For example:

asadmin set server.resources.jdbc-connection-pool.JCPool1.fail-all-connections="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.is-connection-validation-
required="true"
asadmin set server.resources.jdbc-connection-pool.JCPool1.property.prefer-validate-
over-recreate="true"

For details, see the Eclipse GlassFish Reference Manual.

The interface ValidatingManagedConnectionFactory exposes the method getInvalidConnections to
allow retrieval of the invalid connections. The Eclipse GlassFish checks if the JDBC driver
implements this interface, and if it does, invalid connections are removed when the connection
pool is resized.

254

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Connection Wrapping
The following topics are addressed here:

• Wrapping Connections

• Obtaining a Physical Connection From a Wrapped Connection

• Using the Connection.unwrap() Method

Wrapping Connections

If the Wrap JDBC Objects option is true (the default), wrapped JDBC objects are returned for
Statement, PreparedStatement, CallableStatement, ResultSet, and DatabaseMetaData.

This option ensures that Statement.getConnection() is the same as DataSource.getConnection().
Therefore, this option should be true when both Statement.getConnection() and
DataSource.getConnection() are done.

You can specify the Wrap JDBC Objects option in the following ways:

• Check or uncheck the Wrap JDBC Objects box on the Edit Connection Pool Advanced Attributes
page in the Administration Console. For more information, click the Help button in the
Administration Console.

• Specify the --wrapjdbcobjects option in the asadmin create-jdbc-connection-pool command. For
more information, see the Eclipse GlassFish Reference Manual.

Obtaining a Physical Connection From a Wrapped Connection

The DataSource implementation in the Eclipse GlassFish provides a getConnection method that
retrieves the JDBC driver’s SQLConnection from the Eclipse GlassFish’s Connection wrapper. The
method signature is as follows:

public java.sql.Connection getConnection(java.sql.Connection con)
throws java.sql.SQLException

For example:

InitialContext ctx = new InitialContext();
com.sun.appserv.jdbc.DataSource ds = (com.sun.appserv.jdbc.DataSource)
 ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();
Connection drivercon = ds.getConnection(con); //get physical connection from wrapper
// Do db operations.
// Do not close driver connection.
con.close(); // return wrapped connection to pool.

255

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Using the Connection.unwrap() Method

Using the Connection.unwrap() method on a vendor-provided interface returns an object or a
wrapper object implementing the vendor-provided interface, which the application can make use
of to do vendor-specific database operations. Use the Connection.isWrapperFor() method on a
vendor-provided interface to check whether the connection can provide an implementation of the
vendor-provided interface. Check the JDBC driver vendor’s documentation for information on these
interfaces.

Allowing Non-Component Callers
You can allow non-Java-EE components, such as servlet filters, lifecycle modules, and third party
persistence managers, to use this JDBC connection pool. The returned connection is automatically
enlisted with the transaction context obtained from the transaction manager. Standard Jakarta EE
components can also use such pools. Connections obtained by non-component callers are not
automatically closed at the end of a transaction by the container. They must be explicitly closed by
the caller.

You can enable non-component callers in the following ways:

• Check the Allow Non Component Callers box on the Edit Connection Pool Advanced Attributes
page in the Administration Console. The default is false. For more information, click the Help
button in the Administration Console.

• Specify the --allownoncomponentcallers option in the asadmin create-jdbc-connection-pool
command. For more information, see the Eclipse GlassFish Reference Manual.

• Specify the allow-non-component-callers option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.allow-non-component-
callers=true

For more information, see the Eclipse GlassFish Reference Manual.

• Create a JDBC resource with a __pm suffix.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires setting Allow
Non Component Callers to true. For more information about the Transaction Synchronization
Registry, see The Transaction Manager, the Transaction Synchronization Registry, and
UserTransaction.

Using Application-Scoped JDBC Resources
You can define an application-scoped database or other resource for an enterprise application, web
module, EJB module, connector module, or application client module by supplying a glassfish-
resources.xml deployment descriptor file. For details, see "Application-Scoped Resources" in Eclipse
GlassFish Application Deployment Guide.

256

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the JDBC API.

Disabling Stored Procedure Creation on Sybase

By default, DataDirect and Oracle JDBC drivers for Sybase databases create a stored procedure for
each parameterized PreparedStatement. On the Eclipse GlassFish, exceptions are thrown when
primary key identity generation is attempted. To disable the creation of these stored procedures, set
the property PrepareMethod=direct for the JDBC connection pool.

257

Chapter 22. Using the Transaction Service
The Jakarta EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses Jakarta EE transactions and
transaction support in the Eclipse GlassFish.

The following topics are addressed here:

• Handling Transactions with Databases

• Handling Transactions with Enterprise Beans

• Handling Transactions with the Java Message Service

• The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

For more information about the Java Transaction API (JTA), see "Administering Transactions" in
Eclipse GlassFish Administration Guide and the following site: https://jakarta.ee/specifications/
transactions/.

You might also want to read "Transactions" in The Jakarta EE Tutorial.

Handling Transactions with Databases
The following topics are addressed here:

• Using JDBC Transaction Isolation Levels

• Using Non-Transactional Connections

Using JDBC Transaction Isolation Levels

Not all database vendors support all transaction isolation levels available in the JDBC API. The
Eclipse GlassFish permits specifying any isolation level your database supports. The following table
defines transaction isolation levels.

Table 15-1 Transaction Isolation Levels

Transaction Isolation
Level

getTransactionIsolation
Return Value

Description

read-uncommitted 1 Dirty reads, non-repeatable reads, and
phantom reads can occur.

read-committed 2 Dirty reads are prevented; non-repeatable
reads and phantom reads can occur.

repeatable-read 4 Dirty reads and non-repeatable reads are
prevented; phantom reads can occur.

serializable 8 Dirty reads, non-repeatable reads and
phantom reads are prevented.

258

https://glassfish.org/docs/latest/administration-guide.pdf#administering-transactions
https://jakarta.ee/specifications/transactions/
https://jakarta.ee/specifications/transactions/
https://eclipse-ee4j.github.io/jakartaee-tutorial/#transactions

By default, the transaction isolation level is undefined (empty), and the JDBC driver’s default
isolation level is used. You can specify the transaction isolation level in the following ways:

• Select the value from the Transaction Isolation drop-down list on the New JDBC Connection Pool
or Edit Connection Pool page in the Administration Console. For more information, click the
Help button in the Administration Console.

• Specify the --isolationlevel option in the asadmin create-jdbc-connection-pool command. For
more information, see the Eclipse GlassFish Reference Manual.

• Specify the transaction-isolation-level option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.transaction-isolation-
level=serializable

For more information, see the Eclipse GlassFish Reference Manual.

Note that you cannot call setTransactionIsolation during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see "To
Create a JDBC Connection Pool" in Eclipse GlassFish Administration Guide.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel method in
java.sql.DatabaseMetaData, as shown in the following example:

InitialContext ctx = new InitialContext();
DataSource ds = (DataSource)
ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();
DatabaseMetaData dbmd = con.getMetaData();
if (dbmd.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)
{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC API
specification.

Setting or resetting the transaction isolation level for every getConnection call can degrade
performance. So by default the isolation level is not guaranteed.

Applications that change the transaction isolation level on a pooled connection programmatically
risk polluting the JDBC connection pool, which can lead to errors. If an application changes the
isolation level, enabling the is-isolation-level-guaranteed setting in the pool can minimize such
errors.

You can guarantee the transaction isolation level in the following ways:

• Check the Isolation Level Guaranteed box on the New JDBC Connection Pool or Edit Connection
Pool page in the Administration Console. For more information, click the Help button in the

259

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/administration-guide.pdf#to-create-a-jdbc-connection-pool
https://glassfish.org/docs/latest/administration-guide.pdf#to-create-a-jdbc-connection-pool

Administration Console.

• Specify the --isisolationguaranteed option in the asadmin create-jdbc-connection-pool
command. For more information, see the Eclipse GlassFish Reference Manual.

• Specify the is-isolation-level-guaranteed option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.is-isolation-level-
guaranteed=true

For more information, see the Eclipse GlassFish Reference Manual.

Using Non-Transactional Connections

You can specify a non-transactional database connection in any of these ways:

• Check the Non-Transactional Connections box on the New JDBC Connection Pool or Edit
Connection Pool page in the Administration Console. The default is unchecked. For more
information, click the Help button in the Administration Console.

• Specify the --nontransactionalconnections option in the asadmin create-jdbc-connection-pool
command. For more information, see the Eclipse GlassFish Reference Manual.

• Specify the non-transactional-connections option in the asadmin set command. For example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.non-transactional-
connections=true

For more information, see the Eclipse GlassFish Reference Manual.

• Use the DataSource implementation in the Eclipse GlassFish, which provides a
getNonTxConnection method. This method retrieves a JDBC connection that is not in the scope of
any transaction. There are two variants.

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)
 throws java.sql.SQLException

• Create a resource with the JNDI name ending in __nontx. This forces all connections looked up
using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection call is
invoked. However, a non-transactional connection is not enlisted in a transaction context even if a
transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the database

260

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

while a transaction is in progress that modifies the database, the query retrieves the unmodified
data in the database. This is because the in-progress transaction hasn’t committed. For another
example, if a non-transactional connection modifies the database and a transaction that is running
simultaneously rolls back, the changes made by the non-transactional connection are not rolled
back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached data
by using a non-transactional connection to read data before the transaction commits.

Handling Transactions with Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans programming
model for the Eclipse GlassFish.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors.

The following topics are addressed here:

• Flat Transactions

• Global and Local Transactions

• Commit Options

• Bean-Level Container-Managed Transaction Timeouts

Flat Transactions

The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the current
transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions

Both local and global transactions are demarcated using the javax.transaction.UserTransaction
interface, which the client must use. Local transactions bypass the XA commit protocol and are
faster. For more information, see The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction.

Commit Options

The EJB protocol is designed to give the container the flexibility to select the disposition of the
instance state at the time a transaction is committed. This allows the container to best manage
caching an entity object’s state and associating an entity object identity with the EJB instances.

261

There are three commit-time options:

• Option A - The container caches a ready instance between transactions. The container ensures
that the instance has exclusive access to the state of the object in persistent storage.

In this case, the container does not have to synchronize the instance’s state from the persistent
storage at the beginning of the next transaction.

 Commit option A is not supported for this Eclipse GlassFish release.

• Option B - The container caches a ready instance between transactions, but the container does
not ensure that the instance has exclusive access to the state of the object in persistent storage.
This is the default.

In this case, the container must synchronize the instance’s state by invoking ejbLoad from
persistent storage at the beginning of the next transaction.

• Option C - The container does not cache a ready instance between transactions, but instead
returns the instance to the pool of available instances after a transaction has completed.

The life cycle for every business method invocation under commit option C looks like this.

ejbActivate ejbLoad business method ejbStore ejbPassivate

If there is more than one transactional client concurrently accessing the same entity, the first
client gets the ready instance and subsequent concurrent clients get new instances from the
pool.

The glassfish-ejb-jar.xml deployment descriptor has an element, commit-option, that specifies the
commit option to be used. Based on the specified commit option, the appropriate handler is
instantiated.

Bean-Level Container-Managed Transaction Timeouts

The transaction timeout for the domain is specified using the Transaction Timeout setting of the
Transaction Service. A transaction started by the container must commit (or rollback) within this
time, regardless of whether the transaction is suspended (and resumed), or the transaction is
marked for rollback. The default value, 0, specifies that the server waits indefinitely for a
transaction to complete.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds element in
glassfish-ejb-jar.xml. The default value, 0, specifies that the Transaction Service timeout is used.
The value of cmt-timeout-in-seconds is used for all methods in the bean that start a new container-
managed transaction. This value is not used if the bean joins a client transaction.

Handling Transactions with the Java Message Service
The following topics are addressed here:

262

• Transactions and Non-Persistent Messages

• Using the ConfigurableTransactionSupport Interface

Transactions and Non-Persistent Messages

During transaction recovery, non-persistent messages might be lost. If the broker fails between the
transaction manager’s prepare and commit operations, any non-persistent message in the
transaction is lost and cannot be delivered. A message that is not saved to a persistent store is not
available for transaction recovery.

Using the ConfigurableTransactionSupport Interface

The Jakarta EE Connector 1.6 specification allows a resource adapter to use the transaction-support
attribute to specify the level of transaction support that the resource adapter handles. However, the
resource adapter vendor does not have a mechanism to figure out the current transactional context
in which a ManagedConnectionFactory is used.

If a ManagedConnectionFactory implements an optional interface called
com.sun.appserv.connectors.spi.ConfigurableTransactionSupport , the Eclipse GlassFish notifies the
ManagedConnectionFactory of the transaction-support configured for the connector connection pool
when the ManagedConnectionFactory instance is created for the pool. Connections obtained from the
pool can then be used with a transaction level at or lower than the configured value. For example, a
connection obtained from a pool that is set to XA_TRANSACTION could be used as a LOCAL resource in
a last-agent-optimized transaction or in a non-transactional context.

The Transaction Manager, the Transaction
Synchronization Registry, and UserTransaction
To access a UserTransaction instance, you can either look it up using the
java:comp/``UserTransaction JNDI name or inject it using the @Resource annotation.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires setting Allow
Non Component Callers to true. The default is false. For more information about non-component
callers, see Allowing Non-Component Callers.

If possible, you should use the javax.transaction.TransactionSynchronizationRegistry interface
instead of javax.transaction.TransactionManager , for portability. You can look up the
implementation of this interface by using the JNDI name
java:comp/``TransactionSynchronizationRegistry. For details, see the
TransactionSynchronizationRegistryInterface API documentation and Java Specification Request
(JSR) 907

If accessing the javax.transaction.TransactionManager implementation is absolutely necessary, you
can look up the Eclipse GlassFish implementation of this interface using the JNDI name
java:appserver/TransactionManager . This lookup should not be used by the application code.

263

https://jakarta.ee/specifications/transactions/2.0/apidocs/jakarta/transaction/transactionsynchronizationregistry
http://www.jcp.org/en/jsr/detail?id=907
http://www.jcp.org/en/jsr/detail?id=907

Chapter 23. Using the Java Naming and
Directory Interface
A naming service maintains a set of bindings, which relate names to objects. The Jakarta EE naming
service is based on the Java Naming and Directory Interface (JNDI) API. The JNDI API allows
application components and clients to look up distributed resources, services, and EJB components.
For general information about the JNDI API, see https://docs.oracle.com/javase/tutorial/jndi/
overview/index.html. You can also see the JNDI tutorial at https://docs.oracle.com/javase/jndi/
tutorial/.

The following topics are addressed here:

• Accessing the Naming Context

• Configuring Resources

• Using a Custom jndi.properties File

• Mapping References



The Web Profile of the Eclipse GlassFish supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The
full Eclipse GlassFish supports the entire EJB 3.1 specification. For details, see JSR
318 (http://jcp.org/en/jsr/detail?id=318).

Accessing the Naming Context
The Eclipse GlassFish provides a naming environment, or context, which is compliant with
standard Jakarta EE requirements. A Context object provides the methods for binding names to
objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the Jakarta EE naming service that application components and
clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a file system, a
subcontext is a context within a context. This hierarchical structure permits better organization of
information. For naming services that support subcontexts, the Context class also provides methods
for creating and destroying subcontexts.

The following topics are addressed here:

• Portable Global JNDI Names

• Eclipse GlassFish V2 Vendor-Specific Global JNDI Names

• Disabling Eclipse GlassFish V2 JNDI Names

• Accessing EJB Components Using the CosNaming Naming Context

• Accessing EJB Components in a Remote Eclipse GlassFish

• Naming Environment for Lifecycle Modules

264

https://docs.oracle.com/javase/tutorial/jndi/overview/index.html
https://docs.oracle.com/javase/tutorial/jndi/overview/index.html
https://docs.oracle.com/javase/jndi/tutorial/
https://docs.oracle.com/javase/jndi/tutorial/
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318


Each resource within a server instance must have a unique name. However, two
resources in different server instances or different domains can have the same
name.

Portable Global JNDI Names

If an EJB component is a kind of session bean and it is deployed to any implementation supporting
the EJB 3.1specification (for example, Eclipse GlassFish 8), it automatically has one or more portable
JNDI names defined based on the syntax in the specification. Note that this is true of existing EJB 3.0
and 2.x applications that are deployed to an implementation supporting EJB 3.1. No code changes
are required to the bean class itself in order to have the portable global JNDI name automatically
assigned when deployed to an EJB 3.1 container.

For more information, see the Jakarta EE Platform Specification, section EE.5.2.2, "Application
Component Environment Namespaces" (http://jcp.org/en/jsr/detail?id=366), and the EJB 3.1
Specification, section 4.4, "Global JNDI Access" (http://jcp.org/en/jsr/detail?id=318).

If the disable-nonportable-jndi-names property is set to false (the default), a Eclipse GlassFish V2-
specific JNDI name is assigned in addition to a portable global JNDI name. For more information,
see Eclipse GlassFish V2 Vendor-Specific Global JNDI Names and Disabling Eclipse GlassFish V2
JNDI Names.

Eclipse GlassFish V2 Vendor-Specific Global JNDI Names

Eclipse GlassFish v2 vendor-specific global JNDI names are assigned according to the following
precedence rules:

1. A global JNDI name assigned in the glassfish-ejb-jar.xml, glassfish-web.xml, or glassfish-
application-client.xml deployment descriptor file has the highest precedence. See Mapping
References.

2. A global JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml, or
application-client.xml deployment descriptor file has the second highest precedence. The
following elements have mapped-name subelements: resource-ref, resource-env-ref, ejb-ref,
message-destination, message-destination-ref, session, message-driven, and entity.

3. A global JNDI name assigned in a mappedName attribute of an annotation has the third highest
precedence. The following annotations have mappedName attributes:
@jakarta.annotation.Resource, @javax.ejb.EJB, @javax.ejb.Stateless, @javax.ejb.Singleton,
@javax.ejb.Stateful, and @javax.ejb.MessageDriven.

4. In most cases, a default global JNDI name is assigned (and recorded in the server log) if no name
is assigned in deployment descriptors or annotations.

◦ For a session or entity bean, a Eclipse GlassFish V2-specific JNDI name is assigned as follows:

▪ For an EJB 2.x dependency or a session or entity bean with a remote interface, the
default is the fully qualified name of the home interface.

▪ For an EJB 3.0 dependency or a session bean with a remote interface, the default is the
fully qualified name of the remote business interface.

265

http://jcp.org/en/jsr/detail?id=366
http://jcp.org/en/jsr/detail?id=318

▪ If both EJB 2.x and EJB 3.0 remote interfaces are specified, or if more than one 3.0 remote
interface is specified, there is no Eclipse GlassFish V2-specific default. For an entity bean,
a global JNDI name must be assigned.

◦ For all other component dependencies that must be mapped to global JNDI names, the
default is the name of the dependency relative to java:comp/env. For example, in the
@Resource(name="jdbc/Foo") DataSource ds; annotation, the global JNDI name is jdbc/Foo.

Disabling Eclipse GlassFish V2 JNDI Names

The EJB 3.1 specification supported by Eclipse GlassFish 8 defines portable EJB JNDI names for
session beans. Because of this, there is less need to continue to use older vendor-specific JNDI
names.

By default, Eclipse GlassFish V2-specific JNDI names are applied automatically by Eclipse GlassFish
8 for backward compatibility. However, this can lead to some ease-of-use issues. For example,
deploying two different applications containing a remote EJB component that exposes the same
remote interface causes a conflict between the default JNDI names.

The default handling of V2-specific JNDI names in Eclipse GlassFish 8 can be managed by using the
asadmin command:

asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

The disable-nonportable-jndi-names property is a boolean flag that can take the following values:

false

Enables the automatic use of Eclipse GlassFish V2-specific JNDI names in addition to portable
global JNDI names. This is the default setting.

true

Disables the automatic use of V2-specific JNDI names. In all cases, only portable global JNDI
names are used.

Note that this setting applies to all session beans deployed to the server.

Accessing EJB Components Using the CosNaming Naming Context

The preferred way of accessing the naming service, even in code that runs outside of a Jakarta EE
container, is to use the no-argument InitialContext constructor. However, if EJB client code
explicitly instantiates an InitialContext that points to the CosNaming naming service, it is necessary
to set the java.naming.factory.initial property to org.glassfish.jndi.cosnaming.CNCtxFactory in the
client JVM software when accessing EJB components. You can set this property using the asadmin
create-jvm-options command, as follows:

asadmin> create-jvm-options
-Djava.naming.factory.initial=org.glassfish.jndi.cosnaming.CNCtxFactory

266

For details about asadmin create-jvm-options, see the Eclipse GlassFish Reference Manual.

Or you can set this property in the code, as follows:

Properties properties = null;
 try {
 properties = new Properties();
 properties.put("java.naming.factory.initial",
 "org.glassfish.jndi.cosnaming.CNCtxFactory");
 ...
 }
 ...

The java.naming.factory.initial property applies to only one instance. The property is not cluster-
aware.

Accessing EJB Components in a Remote Eclipse GlassFish

The recommended approach for looking up an EJB component in a remote Eclipse GlassFish from a
client that is a servlet or EJB component is to use the Interoperable Naming Service syntax. Host
and port information is prepended to any global JNDI names and is automatically resolved during
the lookup. The syntax for an interoperable global name is as follows:

corbaname:iiop:host:port#a/b/name

This makes the programming model for accessing EJB components in another Eclipse GlassFish
exactly the same as accessing them in the same server. The deployer can change the way the EJB
components are physically distributed without having to change the code.

For Jakarta EE components, the code still performs a java:comp/env lookup on an EJB reference. The
only difference is that the deployer maps the ejb-ref element to an interoperable name in a Eclipse
GlassFish deployment descriptor file instead of to a simple global JNDI name.

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo, and the
target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in glassfish-web.xml looks like this:

<ejb-ref>
 <ejb-ref-name>ejb/Foo</ejb-ref-name>
 <jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
</ejb-ref>

The code looks like this:

Context ic = new InitialContext();

267

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a Jakarta EE container, the code just uses the interoperable
global name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();
Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-specific (java:comp/env) naming
contexts are transient. On each server startup or application reloading, all relevant objects are re-
bound to the namespace.

Naming Environment for Lifecycle Modules

Lifecycle listener modules provide a means of running short or long duration tasks based on Java
technology within the Eclipse GlassFish environment, such as instantiation of singletons or RMI
servers. These modules are automatically initiated at server startup and are notified at various
phases of the server life cycle. For details about lifecycle modules, see Developing Lifecycle
Listeners.

The configured properties for a lifecycle module are passed as properties during server
initialization (the INIT_EVENT). The initial JNDI naming context is not available until server
initialization is complete. A lifecycle module can get the InitialContext for lookups using the
method LifecycleEventContext.getInitialContext() during, and only during, the STARTUP_EVENT,
READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Configuring Resources
The Eclipse GlassFish exposes special resources in the naming environment.

• External JNDI Resources

• Custom Resources

• Built-in Factories for Custom Resources

• Using Application-Scoped Resources

External JNDI Resources

An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI parent context for
external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:

• To create an external JNDI resource using the Administration Console, open the Resources
component, open the JNDI component, and select External Resources. For details, click the Help
button in the Administration Console.

268

• To create an external JNDI resource, use the asadmin create-jndi-resource command. For
details, see the Eclipse GlassFish Reference Manual.

Custom Resources

A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface. There is no specific JNDI parent context for external JNDI
resources, except for the standard java:comp/env/.

Create a custom resource in one of these ways:

• To create a custom resource using the Administration Console, open the Resources component,
open the JNDI component, and select Custom Resources. For details, click the Help button in the
Administration Console.

• To create a custom resource, use the asadmin create-custom-resource command. For details, see
the Eclipse GlassFish Reference Manual.

Built-in Factories for Custom Resources

The Eclipse GlassFish provides built-in factories for the following types of custom resources:

• JavaBeanFactory

• PropertiesFactory

• PrimitivesAndStringFactory

• URLFactory

Template glassfish-resources.xml files for these built-in factories and a README file are available at
as-install/lib/install/templates/resources/custom/. For more information about the glassfish-
resources.xml file, see the Eclipse GlassFish Application Deployment Guide.

JavaBeanFactory

To create a custom resource that provides instances of a JavaBean class, follow these steps:

1. Set the custom resource’s factory class to
org.glassfish.resources.custom.factory.JavaBeanFactory.

2. Create a property in the custom resource for each setter method in the JavaBean class.

For example, if the JavaBean class has a method named setAccount, specify a property named
account and give it a value.

3. Make sure the JavaBean class is accessible to the Eclipse GlassFish.

For example, you can place the JavaBean class in the as-install/lib directory.

PropertiesFactory

To create a custom resource that provides properties to applications, set the custom resource’s
factory class to org.glassfish.resources.custom.factory.PropertiesFactory, then specify one or both

269

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM
https://glassfish.org/docs/latest/application-deployment-guide.pdf#GSDPG

of the following:

• Create a property in the custom resource named
org.glassfish.resources.custom.factory.PropertiesFactory.fileName and specify as its value the
path to a properties file or an XML file.

The path can be absolute or relative to as-install. The file must be accessible to the Eclipse
GlassFish.

If an XML file is specified, it must match the document type definition (DTD) specified in the API
definition of java.util.Properties (http://docs.oracle.com/javase/8/docs/api/java/util/
Properties.html).

• Create the desired properties directly as properties of the custom resource.

If both the fileName property and other properties are specified, the resulting property set is the
union. If the same property is defined in the file and directly in the custom resource, the value
of the latter takes precedence.

PrimitivesAndStringFactory

To create a custom resource that provides Java primitives to applications, follow these steps:

1. Set the custom resource’s factory class to
org.glassfish.resources.custom.factory.PrimitivesAndStringFactory.

2. Set the custom resource’s resource type to one of the following or its fully qualified wrapper
class name equivalent:

◦ int

◦ long

◦ double

◦ float

◦ char

◦ short

◦ byte

◦ boolean

◦ String

3. Create a property in the custom resource named value and give it the value needed by the
application.

For example, If the application requires a double of value 22.1, create a property with the name
value and the value 22.1.

URLFactory

To create a custom resource that provides URL instances to applications, follow these steps:

270

http://download.oracle.com/javase/8/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

1. Set the custom resource’s factory class to
org.glassfish.resources.custom.factory.URLObjectFactory.

2. Choose which of the following constructors to use:

◦ URL(protocol, host, port, file)

◦ URL(protocol, host, file)

◦ URL(spec)

3. Define properties according to the chosen constructor.

For example, for the first constructor, define properties named protocol, host, port, and file.
Example values might be http, localhost, 8085, and index.html, respectively.

For the third constructor, define a property named spec and assign it the value of the entire
URL.

Using Application-Scoped Resources

You can define an application-scoped JNDI or other resource for an enterprise application, web
module, EJB module, connector module, or application client module by supplying a glassfish-
resources.xml deployment descriptor file. For details, see "Application-Scoped Resources" in Eclipse
GlassFish Application Deployment Guide.

Using a Custom jndi.properties File
To use a custom jndi.properties file, JAR it and place it in the domain-dir/lib directory. This adds
the custom jndi.properties file to the Common class loader. For more information about class
loading, see Class Loaders.

For each property found in more than one jndi.properties file, the Jakarta EE naming service
either uses the first value found or concatenates all of the values, whichever makes sense.

Mapping References
The following XML elements in the Eclipse GlassFish deployment descriptors map resource
references in application client, EJB, and web application components to JNDI names configured in
Eclipse GlassFish:

• resource-env-ref - Maps the @Resource or @Resources annotation (or the resource-env-ref
element in the corresponding Jakarta EE XML file) to the absolute JNDI name configured in
Eclipse GlassFish.

• resource-ref - Maps the @Resource or @Resources annotation (or the resource-ref element in the
corresponding Jakarta EE XML file) to the absolute JNDI name configured in Eclipse GlassFish.

• ejb-ref - Maps the @EJB annotation (or the ejb-ref element in the corresponding Jakarta EE XML
file) to the absolute JNDI name configured in Eclipse GlassFish.

271

https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources

JNDI names for EJB components must be unique. For example, appending the application name
and the module name to the EJB name is one way to guarantee unique names. In this case,
mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the module
pkgingEJB.jar, which is packaged in the pkging.ear application.

These elements are part of the glassfish-web.xml, glassfish-application-client.xml, glassfish-ejb-
jar.xml, and glassfish-application.xml deployment descriptor files. For more information about
how these elements behave in each of the deployment descriptor files, see "Elements of the Eclipse
GlassFish Deployment Descriptors" in Eclipse GlassFish Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories. The same principle is applicable to all resources (such as JMS destinations,
Jakarta Mail sessions, and so on).

The @Resource annotation in the application code looks like this:

@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;

This references a resource with the JNDI name of java:jdbc/helloDbDs. If this is the JNDI name of
the JDBC resource configured in the Eclipse GlassFish, the annotation alone is enough to reference
the resource.

However, you can use a Eclipse GlassFish specific deployment descriptor to override the
annotation. For example, the resource-ref element in the glassfish-web.xml file maps the res-ref-
name (the name specified in the annotation) to the JNDI name of another JDBC resource configured
in Eclipse GlassFish.

<resource-ref>
 <res-ref-name>jdbc/helloDbDs</res-ref-name>
 <jndi-name>jdbc/helloDbDataSource</jndi-name>
</resource-ref>

272

https://glassfish.org/docs/latest/application-deployment-guide.pdf#c-elements-of-the-glassfish-server-deployment-descriptors
https://glassfish.org/docs/latest/application-deployment-guide.pdf#c-elements-of-the-glassfish-server-deployment-descriptors

Chapter 24. Using the Java Message Service
This chapter describes how to use the Java Message Service (JMS) API. The Eclipse GlassFish has a
fully integrated JMS provider: the Open Message Queue software.


JMS resources are supported only in the full Eclipse GlassFish, not in the Web
Profile.

For information about the JMS, see Messaging in The Jakarta EE Tutorial.

For detailed information about JMS concepts and JMS support in the Eclipse GlassFish, see
"Administering the Java Message Service (JMS)" in Eclipse GlassFish Administration Guide.

The following topics are addressed here:

• Using Application-Scoped JMS Resources

• Load-Balanced Message Inflow

• Authentication With ConnectionFactory

• Delivering SOAP Messages Using the JMS API

Using Application-Scoped JMS Resources
You can define an application-scoped JMS or other resource for an enterprise application, web
module, EJB module, connector module, or application client module by supplying a glassfish-
resources.xml deployment descriptor file. For details, see "Application-Scoped Resources" in Eclipse
GlassFish Application Deployment Guide.

Load-Balanced Message Inflow
You can configure ActivationSpec properties of the jmsra resource adapter in the glassfish-ejb-
jar.xml file for a message-driven bean using activation-config-property elements. Whenever a
message-driven bean (EndPointFactory) is deployed, the connector runtime engine finds these
properties and configures them accordingly in the resource adapter. See "activation-config-
property" in Eclipse GlassFish Application Deployment Guide.

The Eclipse GlassFish transparently enables messages to be delivered in random fashion to
message-driven beans having same ClientID. The ClientID is required for durable subscribers.

For nondurable subscribers in which the ClientID is not configured, all instances of a specific
message-driven bean that subscribe to same topic are considered equal. When a message-driven
bean is deployed to multiple instances of the Eclipse GlassFish, only one of the message-driven
beans receives the message. If multiple distinct message-driven beans subscribe to same topic, one
instance of each message-driven bean receives a copy of the message.

To support multiple consumers using the same queue, set the maxNumActiveConsumers property of the
physical destination to a large value. If this property is set, the Oracle Message Queue software
allows multiple message-driven beans to consume messages from same queue. The message is

273

https://eclipse-ee4j.github.io/jakartaee-tutorial/#messaging
https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-java-message-service-jms
https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources
https://glassfish.org/docs/latest/application-deployment-guide.pdf#activation-config-property
https://glassfish.org/docs/latest/application-deployment-guide.pdf#activation-config-property

delivered randomly to the message-driven beans. If maxNumActiveConsumers is set to -1, there is no
limit to the number of consumers.

To ensure that local delivery is preferred, set addresslist-behavior to priority. This setting specifies
that the first broker in the AddressList is selected first. This first broker is the local colocated
Message Queue instance. If this broker is unavailable, connection attempts are made to brokers in
the order in which they are listed in the AddressList. This setting is the default for Eclipse GlassFish
instances that belong to a cluster.

Authentication With ConnectionFactory
If your web, EJB, or client module has res-auth set to Container, but you use the
ConnectionFactory.createConnection("user","password") method to get a connection, the Eclipse
GlassFish searches the container for authentication information before using the supplied user and
password. Version 7 of the Eclipse GlassFish threw an exception in this situation.

Delivering SOAP Messages Using the JMS API
Web service clients use the Simple Object Access Protocol (SOAP) to communicate with web
services. SOAP uses a combination of XML-based data structuring and Hyper Text Transfer Protocol
(HTTP) to define a standardized way of invoking methods in objects distributed in diverse
operating environments across the Internet.

For more information about SOAP, see the Apache SOAP web site at http://xml.apache.org/soap/
index.html.

You can take advantage of the JMS provider’s reliable messaging when delivering SOAP messages.
You can convert a SOAP message into a JMS message, send the JMS message, then convert the JMS
message back into a SOAP message.

The following topics are addressed here:

• To Send SOAP Messages Using the JMS API

• To Receive SOAP Messages Using the JMS API

To Send SOAP Messages Using the JMS API

1. Import the MessageTransformer library.

import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. You can then send a JMS message containing a SOAP payload as if it were a normal JMS
message.

2. Initialize the TopicConnectionFactory, TopicConnection, TopicSession, and publisher.

274

http://xml.apache.org/soap/index.html
http://xml.apache.org/soap/index.html

tcf = new TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
publisher = session.createPublisher(topic);

3. Construct a SOAP message using the SOAP with Attachments API for Java (SAAJ).

/*construct a default soap MessageFactory */
MessageFactory mf = MessageFactory.newInstance();
* Create a SOAP message object.*/
SOAPMessage soapMessage = mf.createMessage();
/** Get SOAP part.*/
SOAPPart soapPart = soapMessage.getSOAPPart();
/* Get SOAP envelope. */
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
/* Get SOAP body.*/
SOAPBody soapBody = soapEnvelope.getBody();
/* Create a name object. with name space */
/* http://www.sun.com/imq. */
Name name = soapEnvelope.createName("HelloWorld", "hw",
 "http://www.sun.com/imq");
* Add child element with the above name. */
SOAPElement element = soapBody.addChildElement(name)
/* Add another child element.*/
element.addTextNode("Welcome to GlassFish Web Services.");
/* Create an atachment with activation API.*/
URL url = new URL ("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler (url);
AttachmentPart ap = soapMessage.createAttachmentPart(dh);
/*set content type/ID. */
ap.setContentType("text/html");
ap.setContentId("cid-001");
/** add the attachment to the SOAP message.*/
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

4. Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage() method.

Message m = MessageTransformer.SOAPMessageIntoJMSMessage (soapMessage, session);

5. Publish the JMS message.

publisher.publish(m);

275

6. Close the JMS connection.

tc.close();

To Receive SOAP Messages Using the JMS API

1. Import the MessageTransformer library.

import com.sun.messaging.xml.MessageTransformer;

This is the utility whose methods you use to convert SOAP messages to JMS messages and the
reverse. The JMS message containing the SOAP payload is received as if it were a normal JMS
message.

2. Initialize the TopicConnectionFactory, TopicConnection, TopicSession, TopicSubscriber, and Topic.

messageFactory = MessageFactory.newInstance();
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
tc.start();

3. Use the OnMessage method to receive the message. Use the SOAPMessageFromJMSMessage method to
convert the JMS message to a SOAP message.

public void onMessage (Message message) {
SOAPMessage soapMessage = MessageTransformer.SOAPMessageFromJMSMessage(message,
messageFactory);
}

4. Retrieve the content of the SOAP message.

276

Chapter 25. Using the Jakarta Mail API
This chapter describes how to use the Jakarta Mail API, which provides a set of abstract classes
defining objects that comprise a mail system.

The following topics are addressed here:

• Introducing Jakarta Mail

• Creating a Jakarta Mail Session

• Jakarta Mail Session Properties

• Looking Up a Jakarta Mail Session

• Sending and Reading Messages Using Jakarta Mail

• Using Application-Scoped Jakarta Mail Resources


Jakarta Mail resources are supported only in the full Eclipse GlassFish, not in the
Web Profile.

Introducing Jakarta Mail
The Jakarta Mail API defines classes such as Message, Store, and Transport. The API can be extended
and can be subclassed to provide new protocols and to add functionality when necessary. In
addition, the API provides concrete subclasses of the abstract classes. These subclasses, including
MimeMessage and MimeBodyPart, implement widely used Internet mail protocols and conform to the
RFC822 and RFC2045 specifications. The Jakarta Mail API includes support for the IMAP4, POP3, and
SMTP protocols.

The Jakarta Mail architectural components are as follows:

• The abstract layer declares classes, interfaces, and abstract methods intended to support mail
handling functions that all mail systems support.

• The internet implementation layer implements part of the abstract layer using the RFC822 and
MIME internet standards.

• Jakarta Mail uses the JavaBeans Activation Framework (JAF) to encapsulate message data and to
handle commands intended to interact with that data.

For more information, see "Administering the Jakarta Mail Service" in Eclipse GlassFish
Administration Guide and the Jakarta Mail specification at https://jakarta.ee/specifications/mail.

Creating a Jakarta Mail Session
You can create a Jakarta Mail session in the following ways:

• In the Administration Console, open the Resources component and select Jakarta Mail Sessions.
For details, click the Help button in the Administration Console.

• Use the asadmin create-mail-resource command. For details, see the Eclipse GlassFish Reference

277

https://glassfish.org/docs/latest/administration-guide.pdf#administering-the-jakarta-mail-service
https://jakarta.ee/specifications/mail
https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

Manual.

Jakarta Mail Session Properties
You can set properties for a Jakarta Mail Session object. Every property name must start with a
mail- prefix. The Eclipse GlassFish changes the dash (-) character to a period (.) in the name of the
property and saves the property to the MailConfiguration and Jakarta Mail Session objects. If the
name of the property doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail.from in a Jakarta Mail Session object, first
define the property as follows:

• Name - mail-from

• Value - john.doe@sun.com

Looking Up a Jakarta Mail Session
The standard Java Naming and Directory Interface (JNDI) subcontext for Jakarta Mail sessions is
java:comp/env/mail.

Registering Jakarta Mail sessions in the mail naming subcontext of a JNDI namespace, or in one of
its child subcontexts, is standard. The JNDI namespace is hierarchical, like a file system’s directory
structure, so it is easy to find and nest references. A Jakarta Mail session is bound to a logical JNDI
name. The name identifies a subcontext, mail, of the root context, and a logical name. To change the
Jakarta Mail session, you can change its entry in the JNDI namespace without having to modify the
application.

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information about the JNDI API, see Using the Java Naming and Directory Interface.

Sending and Reading Messages Using Jakarta Mail
The following topics are addressed here:

• To Send a Message Using Jakarta Mail

• To Read a Message Using Jakarta Mail

To Send a Message Using Jakarta Mail

1. Import the packages that you need.

278

https://glassfish.org/docs/latest/reference-manual.pdf#GSRFM

import java.util.*;
import jakarta.activation.*;
import jakarta.mail.*;
import jakarta.mail.internet.*;
import javax.naming.*;

2. Look up the Jakarta Mail session.

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information, see Looking Up a Jakarta Mail Session.

3. Override the Jakarta Mail session properties if necessary.

For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4. Create a MimeMessage.

The msgRecipient, msgSubject, and msgTxt variables in the following example contain input
from the user:

Message msg = new MimeMessage(session);
msg.setSubject(msgSubject);
msg.setSentDate(new Date());
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(msgRecipient, false));
msg.setText(msgTxt);

5. Send the message.

Transport.send(msg);

To Read a Message Using Jakarta Mail

1. Import the packages that you need.

import java.util.*;
import jakarta.activation.*;

279

import jakarta.mail.*;
import jakarta.mail.internet.*;
import javax.naming.*;

2. Look up the Jakarta Mail session.

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (jakarta.mail.Session)ic.lookup(snName);

For more information, see Looking Up a Jakarta Mail Session.

3. Override the Jakarta Mail session properties if necessary.

For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4. Get a Store object from the Session, then connect to the mail server using the Store object’s
connect method.

You must supply a mail server name, a mail user name, and a password.

Store store = session.getStore();
store.connect("MailServer", "MailUser", "secret");

5. Get the INBOX folder.

Folder folder = store.getFolder("INBOX");

6. It is efficient to read the Message objects (which represent messages on the server) into an array.

Message[] messages = folder.getMessages();

Using Application-Scoped Jakarta Mail Resources
You can define an application-scoped Jakarta Mail or other resource for an enterprise application,
web module, EJB module, connector module, or application client module by supplying a glassfish-
resources.xml deployment descriptor file. For details, see "Application-Scoped Resources" in Eclipse
GlassFish Application Deployment Guide.

280

https://glassfish.org/docs/latest/application-deployment-guide.pdf#application-scoped-resources

	Eclipse GlassFish Application Development Guide, Release 8
	Chapter 1. Eclipse GlassFish
	Chapter 2. Preface
	Eclipse GlassFish Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names

	Part I
	Chapter 3. Development Tasks and Tools
	Chapter 4. Setting Up a Development Environment
	Installing and Preparing the Server for Development
	High Availability Features
	Development Tools
	The asadmin Command
	The Administration Console
	The Migration Tool
	Code Editors
	Debugging Tools
	Profiling Tools

	Sample Applications

	Chapter 5. Class Loaders
	The Class Loader Hierarchy
	Delegation
	Using the Java Optional Package Mechanism
	Using the Endorsed Standards Override Mechanism
	Class Loader Universes
	Application-Specific Class Loading
	Circumventing Class Loader Isolation
	Using the Common Class Loader
	Sharing Libraries Across a Cluster
	Packaging the Client JAR for One Application in Another Application
	To Package the Client JAR for One Application in Another Application

	Chapter 6. Debugging Applications
	Enabling Debugging
	To Set the Server to Automatically Start Up in Debug Mode

	JPDA Options
	Generating a Stack Trace for Debugging
	Application Client Debugging
	Open Message Queue Debugging
	Enabling Verbose Mode
	Class Loader Debugging
	Eclipse GlassFish Logging
	Profiling Tools
	The NetBeans Profiler
	The HPROF Profiler
	The JProbe Profiler

	Part II
	Chapter 7. Developing Applications and Application Components
	Chapter 8. API for development
	GlassFish API
	MicroProfile JWT Integration

	GlassFish EE API
	Simple GlassFish API

	Chapter 9. Securing Applications
	Security Goals
	Eclipse GlassFish Specific Security Features
	Container Security
	Declarative Security
	Programmatic Security

	Roles, Principals, and Principal to Role Mapping
	Realm Configuration
	Supported Realms
	How to Configure a Realm
	How to Set a Realm for an Application or Module
	Creating a Custom Realm

	Jakarta EE Security API Support
	JACC Support
	Pluggable Audit Module Support
	Configuring an Audit Module
	The AuditModule Class

	The server.policy File
	Default Permissions
	System Properties
	Changing Permissions for an Application
	Enabling and Disabling the Security Manager

	Configuring Message Security for Web Services
	Message Security Providers
	Message Security Responsibilities
	Application-Specific Message Protection
	Understanding and Running the Sample Application

	Programmatic Login Using the ProgrammaticLogin Class
	Programmatic Login Precautions
	Granting Programmatic Login Permission
	The ProgrammaticLogin Class

	User Authentication for Single Sign-on
	Adding Authentication Mechanisms to the Servlet Container
	The Eclipse GlassFish and JSR-375
	The Eclipse GlassFish and JSR 196
	Writing a Server Authentication Module
	Sample Server Authentication Module
	Compiling and Installing a Server Authentication Module
	Configuring a Server Authentication Module
	Binding a Server Authentication Module to Your Application

	Chapter 10. Developing Web Services
	Creating Portable Web Service Artifacts
	Deploying a Web Service
	The Web Service URI, WSDL File, and Test Page
	The Databinding Provider

	Chapter 11. Configuring the Java Persistence Provider
	Overview of Oracle TopLink
	Using Oracle TopLink in Eclipse GlassFish
	Specifying the Database for an Application
	Specifying the Persistence Provider for an Application
	Primary Key Generation Defaults
	Automatic Schema Generation
	Annotations
	Generation Options

	Restrictions and Optimizations
	Oracle Database Enhancements
	Extended Persistence Context
	Using @OrderBy with a Shared Session Cache
	Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver
	Database Case Sensitivity
	Sybase Finder Limitation
	MySQL Database Restrictions

	Chapter 12. Using Jakarta Data Repositories
	Overview of Jakarta Data
	Choosing Between JPA and NoSQL
	Basic Repository Example
	JPA Entity Example
	Repository Interface (Recommended Approach)

	Defining Repository Interfaces
	Query Methods
	Supported Query Annotations
	Parameter Annotations
	Annotated Query Examples

	Custom Queries
	JDQL vs JPQL
	Custom Query Examples

	Method Name-Based Queries (Deprecated)
	Supported Keywords
	Property Expressions
	Method Name-Based Query Examples
	Nested Property Access

	Pagination and Sorting
	Using Pageable
	Usage Example

	Configuring JPA Data Repositories
	Adding Dependencies
	Jakarta Persistence Configuration
	Custom Data Source Configuration (Recommended)
	EntityManager Integration
	EntityManager Configuration Options
	Mixing Repository and EntityManager Operations

	Configuring NoSQL Data Repositories
	Adding Dependencies
	NoSQL Database Categories
	NoSQL Entity Definition
	NoSQL Entity Examples
	Repository Usage with NoSQL Entities
	Database Configuration
	Adding NoSQL Database Dependencies
	Supported NoSQL Databases
	Programmatic Configuration

	Transaction Management
	Declarative Transactions
	Custom Transaction Behavior

	Jakarta Validation Support
	Parameter Validation
	Handling Validation Errors

	Limitations and Considerations
	General Limitations
	Mixed JPA and NoSQL Entity Usage
	JPA Entity Considerations
	NoSQL Entity Limitations
	Common Issues and Troubleshooting

	Chapter 13. Developing Web Applications
	Using Servlets
	Caching Servlet Results
	About the Servlet Engine

	Using JavaServer Pages
	JSP Tag Libraries and Standard Portable Tags
	JSP Caching
	Options for Compiling JSP Files

	Creating and Managing Sessions
	Configuring Sessions
	Session Managers

	Using Comet
	Introduction to Comet
	Grizzly Comet
	Bayeux Protocol

	Advanced Web Application Features
	Internationalization Issues
	Virtual Server Properties
	Class Loader Delegation
	Using the default-web.xml File
	Configuring Logging and Monitoring in the Web Container
	Configuring Idempotent URL Requests
	Header Management
	Configuring Valves and Catalina Listeners
	Alternate Document Roots
	Using a context.xml File
	Enabling WebDav
	Using SSI
	Using CGI

	Chapter 14. Using Enterprise JavaBeans Technology
	Value Added Features
	Read-Only Beans
	The pass-by-reference Element
	Pooling and Caching
	Priority Based Scheduling of Remote Bean Invocations
	Immediate Flushing

	EJB Timer Service
	To Deploy an EJB Timer to a Cluster

	Using Session Beans
	About the Session Bean Containers
	Stateful Session Bean Failover
	Session Bean Restrictions and Optimizations

	Using Read-Only Beans
	Read-Only Bean Characteristics and Life Cycle
	Read-Only Bean Good Practices
	Refreshing Read-Only Beans
	Deploying Read-Only Beans

	Using Message-Driven Beans
	Message-Driven Bean Configuration
	Message-Driven Bean Restrictions and Optimizations

	Chapter 15. Using Container-Managed Persistence
	Eclipse GlassFish Support for CMP
	CMP Mapping
	Mapping Capabilities
	The Mapping Deployment Descriptor File
	Mapping Considerations

	Automatic Schema Generation for CMP
	Supported Data Types for CMP
	Generation Options for CMP

	Schema Capture
	Automatic Database Schema Capture
	Using the capture-schema Utility

	Configuring the CMP Resource
	Performance-Related Features
	Version Column Consistency Checking
	Relationship Prefetching
	Read-Only Beans

	Default Fetch Group Flags
	Configuring Queries for 1.1 Finders
	About JDOQL Queries
	Query Filter Expression
	Query Parameters
	Query Variables
	JDOQL Examples

	CMP Restrictions and Optimizations
	Disabling ORDER BY Validation
	Setting the Heap Size on DB2
	Eager Loading of Field State
	Restrictions on Remote Interfaces
	PostgreSQL Case Insensitivity
	No Support for lock-when-loaded on Sybase
	Sybase Finder Limitation
	Date and Time Fields
	Set RECURSIVE_TRIGGERS to false on MSSQL
	MySQL Database Restrictions

	Chapter 16. Developing Java Clients
	Introducing the Application Client Container
	ACC Security
	ACC Naming
	Application Client Annotation
	Java Web Start
	Application Client JAR File

	Developing Clients Using the ACC
	To Access an EJB Component From an Application Client
	To Access a JMS Resource From an Application Client
	Using Java Web Start
	Using the Embeddable ACC
	Running an Application Client Using the appclient Script
	Using the package-appclient Script
	The client.policy File
	Using RMI/IIOP Over SSL
	Connecting to a Remote EJB Module Through a Firewall
	Specifying a Splash Screen
	Setting Login Retries
	Using Libraries with Application Clients

	Developing Clients Without the ACC
	To access an EJB component from a stand-alone client
	To access an EJB component from a server-side module
	To access a JMS resource from a stand-alone client

	Chapter 17. Developing Connectors
	Connector Support in the Eclipse GlassFish
	Connector Architecture for JMS and JDBC
	Connector Configuration

	Advanced Connector Configuration Options
	Thread Associations
	Security Maps
	Work Security Maps
	Overriding Configuration Properties
	Testing a Connector Connection Pool
	Flushing a Connector Connection Pool
	Handling Invalid Connections
	Setting the Shutdown Timeout
	Specifying the Class Loading Policy
	Using Last Agent Optimization of Transactions
	Disabling Pooling for a Connection
	Using Application-Scoped Connectors

	Inbound Communication Support
	Outbound Communication Support
	Configuring a Message Driven Bean to Use a Resource Adapter

	Chapter 18. Developing Lifecycle Listeners
	Server Life Cycle Events
	The LifecycleListener Interface
	The LifecycleEvent Class
	The Server Lifecycle Event Context
	Deploying a Lifecycle Module
	Considerations for Lifecycle Modules

	Chapter 19. Developing OSGi-enabled Jakarta EE Applications
	Overview of OSGi Application and Eclipse GlassFish
	Benefits of Using OSGi in Enterprise Java Applications

	Developing OSGi Application Bundles for Eclipse GlassFish
	Developing Plain OSGi Bundles
	Developing Web Application Bundles
	Developing EJB Application Bundles

	Deploying OSGi Bundles in Eclipse GlassFish

	Part III
	Chapter 20. Using Services and APIs
	Chapter 21. Using the JDBC API for Database Access
	Statements
	Using an Initialization Statement
	Setting a Statement Timeout
	Statement Leak Detection and Leaked Statement Reclamation
	Statement Caching
	Statement Tracing

	Connections
	Transparent Pool Reconfiguration
	Disabling Pooling
	Associating Connections with Threads
	Custom Connection Validation
	Sharing Connections
	Marking Bad Connections
	Handling Invalid Connections

	Connection Wrapping
	Wrapping Connections
	Obtaining a Physical Connection From a Wrapped Connection
	Using the Connection.unwrap() Method

	Allowing Non-Component Callers
	Using Application-Scoped JDBC Resources
	Restrictions and Optimizations
	Disabling Stored Procedure Creation on Sybase

	Chapter 22. Using the Transaction Service
	Handling Transactions with Databases
	Using JDBC Transaction Isolation Levels
	Using Non-Transactional Connections

	Handling Transactions with Enterprise Beans
	Flat Transactions
	Global and Local Transactions
	Commit Options
	Bean-Level Container-Managed Transaction Timeouts

	Handling Transactions with the Java Message Service
	Transactions and Non-Persistent Messages
	Using the ConfigurableTransactionSupport Interface

	The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

	Chapter 23. Using the Java Naming and Directory Interface
	Accessing the Naming Context
	Portable Global JNDI Names
	Eclipse GlassFish V2 Vendor-Specific Global JNDI Names
	Disabling Eclipse GlassFish V2 JNDI Names
	Accessing EJB Components Using the CosNaming Naming Context
	Accessing EJB Components in a Remote Eclipse GlassFish
	Naming Environment for Lifecycle Modules

	Configuring Resources
	External JNDI Resources
	Custom Resources
	Built-in Factories for Custom Resources
	Using Application-Scoped Resources

	Using a Custom jndi.properties File
	Mapping References

	Chapter 24. Using the Java Message Service
	Using Application-Scoped JMS Resources
	Load-Balanced Message Inflow
	Authentication With ConnectionFactory
	Delivering SOAP Messages Using the JMS API
	To Send SOAP Messages Using the JMS API
	To Receive SOAP Messages Using the JMS API

	Chapter 25. Using the Jakarta Mail API
	Introducing Jakarta Mail
	Creating a Jakarta Mail Session
	Jakarta Mail Session Properties
	Looking Up a Jakarta Mail Session
	Sending and Reading Messages Using Jakarta Mail
	To Send a Message Using Jakarta Mail
	To Read a Message Using Jakarta Mail

	Using Application-Scoped Jakarta Mail Resources

