
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The JUnit Plug-in

Table of contents

1 What's it for?.. 2

2 JUnit plug-in class.. 2

3 JUnit plug-in properties..2

The JUnit Plug-in

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

1 What's it for?

Why would you want to do use the JUnit plug-in? Three possible reasons spring to mind:

• To write a simple test case around arbitrary Java code, rather than creating a
new plug-in. This is the recommended way to replace the functionality of the old
TraderEJBPlugin that was shipped with early versions of The Grinder. (As an
added bonus you end up with some JUnit test cases which you can use to impresses
your boss.

• To thrash the heck out of your code in an attempt to discover race conditions (bugs).
• To investigate the statistical effects of subatomic particles passing through your

hardware.

Looking for race conditions requires that each instance of the JUnit tests should run
against a common fixture - how to achieve in general this is left as an exercise. Please
send any useful patterns to grinder-use (mailto:grinder-use@lists.sourceforge.net) .
Additionally, because The Grinder currently runs each test cycle in the same order, most
race conditions will be hidden. Perhaps a better approach would be to ditch The Grinder 2
and the JUnit plugin and instead use The Grinder 3 (../g3/) to run scripts that exercise the
test cases appropriately.

2 JUnit plug-in class

To use the JUnit (http://junit.org/) plug-in, specify:

grinder.plugin=net.grinder.plugin.junit.JUnitPlugin

3 JUnit plug-in properties

This table lists the JUnit plug-in properties that you can set in grinder.properties
in addition to the core properties (../g3/properties.html) .

grinder.plugin.parameter.testSuite The fully qualified name of the JUnit test suite
class.

The class can be anything you can normally pass
to a JUnit TestRunner. A quick summary: it
can either have a method, public static
junit.framework.Test suite() which
returns the TestSuite or it can define a
number of tests methods which will be discovered
through introspection - the method names must
begin with test. (Confusingly, it matters
not whether the class directly implements
junit.framework.TestSuite; this is a
JUnit thing, so take any complaints there).

grinder.plugin.parameter.logStackTracesSet to true to produce stack traces for failures and
errors in the error log. The default is false.

grinder.plugin.parameter.initialTestNumberThe test number used for the first test, subsequent
tests are numbered sequentially. This property is
useful if you want to use several worker processes
to run different test suites against the same
console.The default is 0.

mailto:grinder-use@lists.sourceforge.net
../g3/
http://junit.org/
../g3/properties.html

The JUnit Plug-in

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

The tests to run are automatically sucked out of the test suite class - you shouldn't specify
them individually in grinder.properties. However, you can tweak with individual tests'
sleep time as normal. For example, if you want to wait a second before the 6th test in the
test suite, you should say

grinder.test5.sleepTime=1000

JUnit has the concept of failures (which occur due to assertions failing) and errors (which
occur when tests throw exceptions). The Grinder errors count for a test is incremented by
one if the test causes either a failure or an error.

	Table of contents
	1 What's it for?
	2 JUnit plug-in class
	3 JUnit plug-in properties

