Logging

Table of contents
IR 1110 [F T o S
2 Changing the Logback configuration.............cceccuveiieiiieiie et
3 Logging data to @ database..........ccceevueeiieeieciee et
4 Writing a custom appender for data logs.........cccvveieeieiiere e
4.1 Improving database 10gging Performance...........ocvoeveeieeceeseere e
4.2 Customising dafa [0g OULPUL..........coueriirieriieieieie s

Logging

1 Introduction

The Grinder 3.7 replaced a previous custom logging framework with Logback

(' http://logback.qos.ch/) . Scripts now use a standard logging APl (SLF4J (http://
www.slf4j.org/)), and Logback can be configured to alter the output format, manage
archiving of log files, and direct log streams to alternative locations.

2 Changing the Logback configuration

The Grinder uses two Logback configuration files:

* | ogback. xm - Used by all processes. Logsto theterminal (st dout , st derr).
* | ogback-wor ker. xm - Used by worker processes. Configures logging to the log
fileand the datalog file.

Both configuration filesare located inthe gr i nder - cor e. j ar file. Refer to the
L ogback manual (http://logback.qos.ch/manual/index.html) for full details of the
configuration file settings.

Let's change the archive settings for the output log to keep more than one archivefile.
First, extract the configuration file.

cd lib
jar xf grinder-core-3.7.jar |ogback-worker.xn

Openthel ogback- wor ker . xm filein atext editor and locatethel og-fil e
appender. To keep five archive files, smply change the max| ndex setting to5 so it
matches the following:

<appender nane="|og-file"
cl ass="ch. gos. | ogback. core.rol |l ing. Rol |l i ngFi | eAppender" >
<file>${PREFI X} .| og</file>

<encoder >
<pattern>% % 5l evel % ogger{0} %rarker: %essage%m</pattern>
</ encoder >

<rol lingPolicy class="ch. gos.|ogback. core.rolling.Fi xedW ndowRol | i ngPol i cy">
<fil eNanePattern>${ PREFI X} .| 0g% </ fi | eNamePat t er n>
<m nl ndex>1</ m nl ndex>
<max| ndex>5</ max| ndex>

</rollingPolicy>

<triggeringPolicy class="net.grinder.util.logback.RollOnStartUp" />

</ appender >

Save the file under the same name (I ogback- wor ker . xnl). To use the modified
configuration, add the file's directory to the CLASSPATH used to start The Grinder.
We extracted the fileinto thel i b directory, so we could start the agent process with
something like the following:

cd $GRI NDER_HOME
java -classpath lib:lib/grinder.jar net.grinder.Ginder

Page 2

http://logback.qos.ch/
http://www.slf4j.org/
http://logback.qos.ch/manual/index.html

Logging

3 Logging data to a database

Thel ogback-wor ker . xn file configures two Logback loggers. wor ker for the
main log file, and dat a for the datalog file. Let's change the configuration to send
test data to a database. To do this, we'll configure a new appender and add it to the
datalogger. Logback's database appender supports several databases; here's a suitable
configuration for an Oracle database.

<appender nane="dat a-db" cl ass="ch. qos. | ogback. cl assi c. db. DBAppender " >
<connecti onSource cl ass="ch. qos. | ogback. core. db. Dri ver Manager Connect i onSour ce" >
<driverd ass>oracl e.jdbc. Oracl eDriver</driverC ass>
<url >j dbc: oracl e:thi n: @ocal host: 1521: XE</ url >
<user >gri nder </ user >
<passwor d>gri nder </ passwor d>
</ connecti onSour ce>
</ appender >

<l ogger nane="data" additivity="fal se">
<appender-ref ref="data-file" />
<appender-ref ref="data-db" />

</l ogger >

To expose any problems with the configuration, we'll also enable the Logback debug
output by changing the first line of the configuration.

<configuration debug="true">

Before we can use the database appender, we need to set up the appropriate database
tables. To do this, create a suitable database account (the configuration above uses an
account called grinder), download the Logback distribution, and locate and execute the
appropriate DDL (I ogback- cl assi ¢/ src/ mai n/ j aval/ ch/ gos/ | ogback/
cl assi c/ db/ di al ect/ oracl e. sql for Oracle).

To run the configuration, add the directory containing | ogback- wor ker . xni to the
CLASSPATH, along with the appropriate database driver. For example:

java -classpath /usr/lib/oracl e/ xel app/ or acl e/ product/ 10. 2. 0/ server/jdbc/li b/
ojdbcl4.jar:lib:lib/grinder.jar net.grinder.Ginder

4 Writing a custom appender for data logs

If you tried out the database configuration in the previous section you may have noted the
following drawbacks.

* It'snot particularly fast. Maximum logging throughput is of the order of a hundred log
events per second, and this severely constrains the rate at which aworker process can
perform tests.

* Thelogdataiswritten asastringtoasinglef or mat t ed_nessage column. Thisis
not amenabl e to further processing.

To address these problems, you will have to write a custom database appender, perhaps
by modifying the standard L ogback-supplied appender. If you write such an appender,
please consider making it generic and contributing it back to The Grinder. The following
sections contain some implementation ideas.

Page 3

Logging

4.1 Improving database logging performance

The most beneficial change from a performance perspective would be to buffer the log
events, and write many events to the database at once. JDBC batching would further
improve performance. | suspect that this change alone would allow tens of thousands of
events to be logged per second.

The standard appender includes caller data (filename, class, method, line) that is
expensive to obtain and is of little use for The Grinder data log. It also logs exception and
property information. These features can be removed.

To support the secondary exception and property tables, the standard appender needs to
obtain the primary key of the newly logged event. Unfortunately this uses an appender
level lock (unnecessarily, it could have synchronised on the database connection instead),
and becomes a bottleneck when many worker threads are using the appender. Since the
exception and property tables are unnecessary, this complexity can also be removed.

4.2 Customising data log output

The Grinder datalogger generates | Loggi ngEvent swith the formatted string set
to a comma-separated string (formatted as in the standard data log). It also supplies
aninstance of net . gri nder. engi ne. process. Dat aLogAr gunent s
asthe first and only argument. This can be accessed using

| Loggi ngEvent . get Argunent Array()[0] .

The Dat aLogAr gunent s object provides all the information you might need about a
particular datalog event, including the thread and run numbers, the Test , and the raw
statistics. Refer to thenet . gri nder. engi ne. processs. Thr eadDat aLogger
source code for an example of how to extract the appropriate statistics values from the
raw statistics.

Page 4

	Table of contents
	1 Introduction
	2 Changing the Logback configuration
	3 Logging data to a database
	4 Writing a custom appender for data logs
	4.1 Improving database logging performance
	4.2 Customising data log output

