Weighted Distribution Of Tests

Table of contents

IR 1110 [F T o S 2
2 Statement Of The Problem...........oe e 2
KR =S B O SRS 2
4 Weight Distribution Definition..........ccccovieiieiesiesece e 2
5 ACCUMUIAEON FUNCEION. ..ottt 3
6 RANAOM NUMIDENS.......eiieieiieieeiesiee ettt ee e e sneenaesneenns 3
A= S R0 10107 O =SS 4
8 PULtING It All TOQELNE ... e e 4

ST 01 IS T o I] o S 5

Weighted Distribution Of Tests

1 Introduction

Thisis a step-by-step tutorial on how to schedule tests according to any "weight
distribution” you desire. Thisis an exercise in data structures and random numbers, and
as such it does not use any facilities of The Grinder (such as HTTPClient) except for its
core TestRunner functionality. Therefore, it isimmediately applicable to amost any test
scenario.

Walt Tuvdl

2 Statement Of The Problem

Let's assume you have a collection of four kinds of tests you want to run, say CREATE,
READ, UPDATE, DELETE. These might be operations on a Web Server, or a Database
Server, for example.

Suppose further you want to run your tests using many threads (grinder.threads property
in the grinder.propertiesfile), and you want to schedul e these threads amongst the tests
according to a specified "weighted distribution”. As an example, we'll assume you want
to run: 20% CREATEsS, 40% READs, 30% UPDATEsS, 10% DELETEs.

How can you do this?

3 Test Cases

Note that the problem statement is independent of the actual tests themselves. So for
illustrative purposes, we will choose dummy tests that ssmply print a message to stdout.
(Your testswill likely make use of deeper facilities of The Grinder, such as HTTPClient,
etc.)

def doCREATEtest ():

print 'Doing CREATE test ...'
def doREADtest():

print 'Doing READ test ...'
def doUPDATEt est ():

print 'Doing UPDATE test ...'
def doDELETEtest():

print 'Doing DELETE test ...'

4 Weight Distribution Definition

The most flexible way to define test distribution is by means of "relative weights”, that is,
numbers which specify the number of times each test is to be run relative to one another
(as opposed to an absolute number of runs - for that, see the grinder.runs property in the
grinder.propertiesfile).

For our example, we begin by defining our desired weight distribution in atable (Jython
dictionary structure) like the following:

g_Weights = {
' CREATE' :
' READ
' UPDATE' :
' DELETE' :

PobADd

Page 2

Weighted Distribution Of Tests

Since the weightsin this table are relative, we could multiply all their values by a
constant and arrive at the same weight distribution. (The same goes for division, provided
we end up with integers.) If the sum of weights adds up to 100, the weights can be
interpreted directly as " percentages’. For example, in our example, if we multiplied our
weights by 10, we'd end up with exactly the percentage values in the original statement of
our example.

Note that string-names in the weight table are arbitrary tags (they will be mapped to
thetestsin TestRunner.__call__ ()). Asamatter of style, the weight table should be
placed near the top of your script, so its settings can be modified easily from run to run,
according to the test scenarios you want to model.

5 Accumulator Function

All the magic of choosing which test to run according to your specified weight
distribution is accomplished by the following "accumulator” function:

def wei ght Accurul ator (i _dict):
keyLi st = i_dict.keys()
keyList.sort() # sorting is optional - order conming-in doesn't matter, but
determ nismis kinda cool
listAcc =[]
wei ght Acc = 0
for key in keyList:
wei ght Acc += i _dict[key]
|'i st Acc. append((key, weightAcc))
return (listAcc, weightAcc) # order going-out does matter - hence "listAcc"
instead of "dictAcc"

g_Wei ght sAcc, g_Wei ghtsAccMax = wei ght Accunul at or (g_Wei ght s)
g_Wei ght sAccLen, g_Wei ghtsAccMax_1 = | en(g_Wei ghtsAcc), g_Wei ghtsAccMax-1

This accumulator function takes a weight dictionary as input, and transforms it into an
accumulated weight list, suitable for random indexing, as we will do below.

As shown above, the accumulator function is called with g Weights asinput, and its
output is captured in two convenience variables. Two more convenience variables are
also defined, for use below.

6 Random Numbers

Next, we prepare a random number generator, which we will use to index into our
accumulated weight list. There are many choices available (including Jython), but for our
purposes here we'll just use the Java standard generator:

g_rng = java.util.Randon(java.lang. SystemcurrentTimreMI1is())

def randNunm(i_min, i_nmax):
assert i_mn <= i_max
range = i_max - i_mn + 1 # re-purposing "range" is legal in Python
assert range <= Ox7fffffff # because we're using java.util.Random
randnum = i _min + g_rng. nextlnt(range)
assert i_mn <= randnum <= i _max

return randnum

Page 3

Weighted Distribution Of Tests

Here, we've constructed a random number generator, and seeded it with the time-of -
day. (For test/simulation purposes, it is counterproductive to use secure random number
generators, such as java.security.SecureRandom, or a secure seed source.)

Further, we've defined a randNum() function that takes minimum and maximum values as
input, and returns a random number between them (inclusive of both endpoints).

Note: One advantage of using java.util.Random is that it's thread-safe, so we need
construct only asingle global generator. But that safety comes at the expense of some
performance loss, especially if you are using the generator extensively, such as generating
massive random file/object content. In that case, you may want to use faster, non-thread-
safe generators, constructing one for each thread's private use.

7 Test Runner Class

We are now ready to define our TestRunner class:

cl ass Test Runner:
def __call__(self):
opNum = randNunm(0, g_Wei ght sAccMax_1)
opType = None # flag for assertion bel ow
for i in range(g_WeightsAccLen):
if opNum < g_WeightsAcc[i][1]:

opType = g_Wei ghtsAcc[i][0]

br eak
assert opType in g_Weights. keys()

if opType==' CREATE : doCREATEt est ()
elif opType=="READ : doREADtest ()
elif opType=='" UPDATE : doUPDATEt est ()
elif opType=='DELETE : doDELETEtest ()
el se . assert Fal se

According to The Grinder framework, every worker thread calls TestRunner.__cal__ ()
in an infinite loop (until it terminates). In our case, for each run, each thread first

chooses a random number, opNum, and then uses that random number to index into the
accumulated weight list. (Well, it's not exactly "indexing" in the array or database access
sense, but the idea is the same.) Thisresults in the tag of an operation type, opType, to be
called. The thread then maps the operation type tag to atest, and callsit.

8 Putting It All Together

Our example script is now complete, so we can run it.

Let's say we want to do 10,000 runs. In your grinder.propertiesfile, set
grinder.threads=20, grinder.runs=500. Then invoke startAgent.sh. You'll see 10,000
lines printed, each saying "Doing XXX test ...", where XXX isone of CREATE, READ,
UPDATE, DELETE.

But did you get the weighted distribution of test cases you wanted? For that, you need
to count various lines printed out by the test. In a Linux environment, you can do this
conveniently by rerunning the test in a pipeline command as follows:

start Agent.sh | \
awk '/”"Doing /{count[$0] +=1} END{for (test in count) print test, count[test]}'

Page 4

Weighted Distribution Of Tests

A typical run of this command will produce results similar to the following:

Doi ng CREATE test ... 2006
Doing READ test ... 4045
Doi ng UPDATE test ... 2993
Doi ng DELETE test ... 956

Inspection of these numbers shows you are indeed running the distribution you desired.

9 Full Script Listing

import java.lang.System java.util.Random

g_Weights = {
' CREATE' :
'READ
' UPDATE' :
' DELETE' :

B whAN

def doCREATEtest ():

print 'Doi ng CREATE test
def doREADtest():

print 'Doing READ test
def doUPDATEt est ():

print 'Doi ng UPDATE test
def doDELETEtest():

print 'Doing DELETE test

def wei ght Accumul ator (i _dict):
keyLi st =i _dict.keys()
keyList.sort() # sorting is optional - order coming-in doesn't matter, but
determ nismis kinda cool
listAcc =[]
wei ght Acc = 0
for key in keyList:
wei ght Acc += i _di ct[key]
i st Acc. append((key, weightAcc))

return (listAcc, weightAcc) # order going-out does matter - hence "listAcc"

instead of "dictAcc"

g_Wei ght sAcc, g_Wei ght sAccMax = wei ght Accunul at or (g_Wei ght s)
g_Wei ght sAccLen, g_Wei ghtsAccMax_1 = | en(g_Wi ghtsAcc), g_WeightsAccMax-1

g_rng = java.util.Randon(java.lang. SystemcurrentTimreMI1is())

def randNunm(i_min, i_nmax):
assert i_mn <= i_max
range = i_max - i_mn + 1 # re-purposing "range" is legal in Python
assert range <= Ox7fffffff # because we're using java.util.Random
randnum = i _mn + g_rng. nextlnt(range)
assert i_mn <= randnum <= i _max

return randnum

cl ass Test Runner:
def __call__(self):
opNum = randNum(0, g_Wei ght sAccMax_1)
opType = None # flag for assertion bel ow
for i in range(g_WeightsAcclLen):
if opNum < g_WeightsAcc[i][1]:

opType = g_Wei ghtsAcc[i][0]

br eak
assert opType in g_Wights. keys()

Page 5

if opType==' CREATE' :

elif opType==' READ

elif opType=='" UPDATE' :
elif opType=='DELETE :

el se

doCREATEt est ()
doREADX est ()
doUPDATEt est ()
doDELETEt est ()
assert Fal se

Weighted Distribution Of Tests

Page 6

	Table of contents
	1 Introduction
	2 Statement Of The Problem
	3 Test Cases
	4 Weight Distribution Definition
	5 Accumulator Function
	6 Random Numbers
	7 Test Runner Class
	8 Putting It All Together
	9 Full Script Listing

