
Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Weighted Distribution Of Tests

Table of contents

1 Introduction...2

2 Statement Of The Problem...2

3 Test Cases... 2

4 Weight Distribution Definition...2

5 Accumulator Function.. 3

6 Random Numbers... 3

7 Test Runner Class...4

8 Putting It All Together... 4

9 Full Script Listing...5

Weighted Distribution Of Tests

Page 2Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

1 Introduction

This is a step-by-step tutorial on how to schedule tests according to any "weight
distribution" you desire. This is an exercise in data structures and random numbers, and
as such it does not use any facilities of The Grinder (such as HTTPClient) except for its
core TestRunner functionality. Therefore, it is immediately applicable to almost any test
scenario.

Walt Tuvell

2 Statement Of The Problem

Let's assume you have a collection of four kinds of tests you want to run, say CREATE,
READ, UPDATE, DELETE. These might be operations on a Web Server, or a Database
Server, for example.

Suppose further you want to run your tests using many threads (grinder.threads property
in the grinder.properties file), and you want to schedule these threads amongst the tests
according to a specified "weighted distribution". As an example, we'll assume you want
to run: 20% CREATEs, 40% READs, 30% UPDATEs, 10% DELETEs.

How can you do this?

3 Test Cases

Note that the problem statement is independent of the actual tests themselves. So for
illustrative purposes, we will choose dummy tests that simply print a message to stdout.
(Your tests will likely make use of deeper facilities of The Grinder, such as HTTPClient,
etc.)

 def doCREATEtest():
 print 'Doing CREATE test ...'
 def doREADtest():
 print 'Doing READ test ...'
 def doUPDATEtest():
 print 'Doing UPDATE test ...'
 def doDELETEtest():
 print 'Doing DELETE test ...'

4 Weight Distribution Definition

The most flexible way to define test distribution is by means of "relative weights", that is,
numbers which specify the number of times each test is to be run relative to one another
(as opposed to an absolute number of runs - for that, see the grinder.runs property in the
grinder.properties file).

For our example, we begin by defining our desired weight distribution in a table (Jython
dictionary structure) like the following:

 g_Weights = {
 'CREATE': 2,
 'READ' : 4,
 'UPDATE': 3,
 'DELETE': 1,
 }

Weighted Distribution Of Tests

Page 3Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Since the weights in this table are relative, we could multiply all their values by a
constant and arrive at the same weight distribution. (The same goes for division, provided
we end up with integers.) If the sum of weights adds up to 100, the weights can be
interpreted directly as "percentages". For example, in our example, if we multiplied our
weights by 10, we'd end up with exactly the percentage values in the original statement of
our example.

Note that string-names in the weight table are arbitrary tags (they will be mapped to
the tests in TestRunner.__call__()). As a matter of style, the weight table should be
placed near the top of your script, so its settings can be modified easily from run to run,
according to the test scenarios you want to model.

5 Accumulator Function

All the magic of choosing which test to run according to your specified weight
distribution is accomplished by the following "accumulator" function:

 def weightAccumulator(i_dict):
 keyList = i_dict.keys()
 keyList.sort() # sorting is optional - order coming-in doesn't matter, but
 determinism is kinda cool
 listAcc = []
 weightAcc = 0
 for key in keyList:
 weightAcc += i_dict[key]
 listAcc.append((key, weightAcc))
 return (listAcc, weightAcc) # order going-out does matter - hence "listAcc"
 instead of "dictAcc"

 g_WeightsAcc, g_WeightsAccMax = weightAccumulator(g_Weights)
 g_WeightsAccLen, g_WeightsAccMax_1 = len(g_WeightsAcc), g_WeightsAccMax-1

This accumulator function takes a weight dictionary as input, and transforms it into an
accumulated weight list, suitable for random indexing, as we will do below.

As shown above, the accumulator function is called with g_Weights as input, and its
output is captured in two convenience variables. Two more convenience variables are
also defined, for use below.

6 Random Numbers

Next, we prepare a random number generator, which we will use to index into our
accumulated weight list. There are many choices available (including Jython), but for our
purposes here we'll just use the Java standard generator:

 g_rng = java.util.Random(java.lang.System.currentTimeMillis())

 def randNum(i_min, i_max):
 assert i_min <= i_max
 range = i_max - i_min + 1 # re-purposing "range" is legal in Python
 assert range <= 0x7fffffff # because we're using java.util.Random
 randnum = i_min + g_rng.nextInt(range)
 assert i_min <= randnum <= i_max
 return randnum

Weighted Distribution Of Tests

Page 4Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

Here, we've constructed a random number generator, and seeded it with the time-of-
day. (For test/simulation purposes, it is counterproductive to use secure random number
generators, such as java.security.SecureRandom, or a secure seed source.)

Further, we've defined a randNum() function that takes minimum and maximum values as
input, and returns a random number between them (inclusive of both endpoints).

Note: One advantage of using java.util.Random is that it's thread-safe, so we need
construct only a single global generator. But that safety comes at the expense of some
performance loss, especially if you are using the generator extensively, such as generating
massive random file/object content. In that case, you may want to use faster, non-thread-
safe generators, constructing one for each thread's private use.

7 Test Runner Class

We are now ready to define our TestRunner class:

 class TestRunner:
 def __call__(self):
 opNum = randNum(0, g_WeightsAccMax_1)
 opType = None # flag for assertion below
 for i in range(g_WeightsAccLen):
 if opNum < g_WeightsAcc[i][1]:
 opType = g_WeightsAcc[i][0]
 break
 assert opType in g_Weights.keys()

 if opType=='CREATE': doCREATEtest()
 elif opType=='READ' : doREADtest()
 elif opType=='UPDATE': doUPDATEtest()
 elif opType=='DELETE': doDELETEtest()
 else : assert False

According to The Grinder framework, every worker thread calls TestRunner.__call__()
in an infinite loop (until it terminates). In our case, for each run, each thread first
chooses a random number, opNum, and then uses that random number to index into the
accumulated weight list. (Well, it's not exactly "indexing" in the array or database access
sense, but the idea is the same.) This results in the tag of an operation type, opType, to be
called. The thread then maps the operation type tag to a test, and calls it.

8 Putting It All Together

Our example script is now complete, so we can run it.

Let's say we want to do 10,000 runs. In your grinder.properties file, set
grinder.threads=20, grinder.runs=500. Then invoke startAgent.sh. You'll see 10,000
lines printed, each saying "Doing XXX test ...", where XXX is one of CREATE, READ,
UPDATE, DELETE.

But did you get the weighted distribution of test cases you wanted? For that, you need
to count various lines printed out by the test. In a Linux environment, you can do this
conveniently by rerunning the test in a pipeline command as follows:

 startAgent.sh | \
 awk '/^Doing /{count[$0]+=1} END{for (test in count) print test, count[test]}'

Weighted Distribution Of Tests

Page 5Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

A typical run of this command will produce results similar to the following:

 Doing CREATE test ... 2006
 Doing READ test ... 4045
 Doing UPDATE test ... 2993
 Doing DELETE test ... 956

Inspection of these numbers shows you are indeed running the distribution you desired.

9 Full Script Listing

import java.lang.System, java.util.Random

g_Weights = {
 'CREATE': 2,
 'READ' : 4,
 'UPDATE': 3,
 'DELETE': 1,
}

def doCREATEtest():
 print 'Doing CREATE test ...'
def doREADtest():
 print 'Doing READ test ...'
def doUPDATEtest():
 print 'Doing UPDATE test ...'
def doDELETEtest():
 print 'Doing DELETE test ...'

def weightAccumulator(i_dict):
 keyList = i_dict.keys()
 keyList.sort() # sorting is optional - order coming-in doesn't matter, but
 determinism is kinda cool
 listAcc = []
 weightAcc = 0
 for key in keyList:
 weightAcc += i_dict[key]
 listAcc.append((key, weightAcc))
 return (listAcc, weightAcc) # order going-out does matter - hence "listAcc"
 instead of "dictAcc"

g_WeightsAcc, g_WeightsAccMax = weightAccumulator(g_Weights)
g_WeightsAccLen, g_WeightsAccMax_1 = len(g_WeightsAcc), g_WeightsAccMax-1

g_rng = java.util.Random(java.lang.System.currentTimeMillis())

def randNum(i_min, i_max):
 assert i_min <= i_max
 range = i_max - i_min + 1 # re-purposing "range" is legal in Python
 assert range <= 0x7fffffff # because we're using java.util.Random
 randnum = i_min + g_rng.nextInt(range)
 assert i_min <= randnum <= i_max
 return randnum

class TestRunner:
 def __call__(self):
 opNum = randNum(0, g_WeightsAccMax_1)
 opType = None # flag for assertion below
 for i in range(g_WeightsAccLen):
 if opNum < g_WeightsAcc[i][1]:
 opType = g_WeightsAcc[i][0]
 break
 assert opType in g_Weights.keys()

Weighted Distribution Of Tests

Page 6Copyright © 2013 Philip Aston, Calum Fitzgerald All rights reserved.

 if opType=='CREATE': doCREATEtest()
 elif opType=='READ' : doREADtest()
 elif opType=='UPDATE': doUPDATEtest()
 elif opType=='DELETE': doDELETEtest()
 else : assert False

	Table of contents
	1 Introduction
	2 Statement Of The Problem
	3 Test Cases
	4 Weight Distribution Definition
	5 Accumulator Function
	6 Random Numbers
	7 Test Runner Class
	8 Putting It All Together
	9 Full Script Listing

