
Hamilton
Version latest

1

43

44

48

49

52

57

57

Table of Contents

USER GUIDE

Get Started

• www.tryhamilton.dev

• Get started with Apache Hamilton locally

• Why use Apache Hamilton?

• Comparison to Other Frameworks

• Orchestration Systems

• Feature Stores

• Data Science Ecosystems/ML platforms

• Registries / Experiment Tracking

• Python Dataframe/manipulation Libraries

• Python “big data” systems

• Install

• Installing with pip

• Installing with conda

• Installing from source

• Your First Dataflow

• Write transformation functions

• Run your dataflow

• Learning Resources

• 📒 User Guide Documentation

• 📚 Reference Documentation

• 🌐 Ecosystem & Integrations

• ✍ tryhamilton.dev

• 👋 Slack

• 📣 Talks & Videos

• 📰 External Blogs

• 🎙 Podcasts

• Contributing

• License

• Usage analytics & data privacy

2

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/index.html

58

59

60

64

68

75

Concepts

• Glossary

• Functions, nodes & dataflow

• Functions

• Specifying dependencies

• Helper function

• Function naming tips

• Nodes

• Anatomy of a node

• Dataflow

• How other frameworks build graphs

• Readability

• Maintainability

• Recap

• Next step

• Driver

• Define the Driver

• Visualize the dataflow

• Execute the dataflow

• Development tips

• With a Python module

• With a Jupyter notebook

• Recap

• Next step

• Visualization

• Available visualizations

• View full dataflow

• View executed dataflow

• View node dependencies

• Configure your visualization

• Custom node labels with display_name

• Apply custom style

• Materialization

• Different ways to write the same dataflow

• Without materialization

• Limitations

3

83

98

• With materialization

• Simple Materialization

• Static materializers

• Dynamic materializers

• Function modifiers

• DataLoader and DataSaver

• Function modifiers

• Decorators

• Reminder: Anatomy of a node

• Add metadata to a node

• @tag

• Query node by tag

• Customize visualization by tag

• @schema

• Validate node output

• @check_output*

• pandera support

• pydantic support

• Split node output into n nodes

• @unpack_fields

• @extract_fields

• @extract_columns

• Define one function, create n nodes

• @parameterize

• Select functions to include

• @config

• Load and save external data

• @load_from

• @save_to

• Builder

• with_modules()

• with_config()

• with_materializers()

• with_cache()

• with_adapters()

• enable_dynamic_execution()

4

105

120

121

127

• Caching

• How does it work?

• Cache key

• Observing the cache

• Logging

• Visualization

• Structured logs

• Cached result format

• Caching behavior

• Setting caching behavior

• via @cache

• via Builder().with_cache()

• Set a default behavior

• Code version

• Data version

• Recursion depth

• Support additional types

• Storage

• Setting the cache path

• By project

• Globally

• Separate locations

• Inspect storage

• In-memory

• Persist cache

• Load cache

• Roadmap

• Function modifiers (Advanced)

• Dynamic DAGs/Parallel Execution

• Using an Adapter

• Using the Parallelizable[] and Collect[] types

• Known Caveats

• Serialization

• Multiple Collects

• UI Overview

• Local Mode

5

138

138

139

141

142

143

143

• Docker/Deployed Mode

• Install

• Building the Docker Images locally

• Self-Hosting

• Running on Snowflake

• Get started

• Existing Apache Hamilton Code

• I need some Apache Hamilton code to run

• Features

• Dataflow versioning

• Assets/features catalog

• Browser

• Run tracking + telemetry

• SDK Configuration

• Changing where data is sent

• Changing behavior of what is captured

• Best Practices

• Function Naming

• It enables you to define your Apache Hamilton dataflow

• It drives collaboration and reuse

• It serves as documentation itself

• Migrating to Apache Hamilton

• Continuous Integration for Comparisons

• Integrate into your code base via a “custom wrapper object”

• Code Organization

• Team thinking

• Helps isolate what you’re working on

• Enables you to replace parts of your DAG easily for different contexts

• Common Indices

• Best practice:

• Output Immutability

• Best practice:

• Using within your ETL System

• Compatibility Matrix

• ETL Recipe

6

145

147

148

7

7

7

7

154

155

• Loading Data

• Plugging in new Data Sources

• Modules as Interfaces

• Using the Config to Decide Sources

User Guide

• Jupyter notebooks

• 1 - Dynamically create modules within your notebook

• Use Hamilton Jupyter Magic

• Importing specific functions into cell modules

• Using ad_hoc_utils to create a temporary module (e.g. use in google colab)

• Caveat with this approach:

• 2 - Importing modules into your notebook

• Step 1 — Install Jupyter & Apache Hamilton •
• Step 2— Set up the files •
• Step 3— The basic process of iteration •

• Pro-tip: You can use ipython magic to autoreload code

• Pro-tip: You can import functions directly •
• Loading data

• Caching

• Basics

• Understanding the cache_key

• Adding a node

• Changing inputs

• Changing code

• Changing external data

• Idempotency

• .with_cache() to specify caching behavior

• @cache to specify caching behavior

• When to use @cache vs. .with_cache() ?

• Force recompute all

• Setting default behavior

• Materializers

• Usage patterns

• Changing the cache format

• Introspecting the cache

• Interactively explore runs

7

195

199

199

200

200

207

208

• Managing storage

• Setting the cache path

• Instantiating the result_store and metadata_store

• Deleting data and recovering storage

• Usage patterns

• 🚧 INTERNALS

• Manually retrieve results

• Decoding the cache_key

• Manually retrieve metadata

• Feature engineering

• Offline Feature Engineering

• Apache Hamilton Example

• Streaming Feature Engineering

• Apache Hamilton Example

• Online Feature Engineering

• Apache Hamilton Example

• Write once, run anywhere blog post:

• Best Egg Platform Blog Post:

• FAQ

• Q. Can I use Apache Hamilton for feature engineering with Feast?

• Model training

• LLM workflows

• Data quality

• Lineage + Apache Hamilton

• Common Problems (and therefore questions)

• What is “Lineage”?

• Apache Hamilton’s Lineage Capabilities

• Lineage as Code

• Reproducibility

• Auditing and Compliance

• Troubleshooting and Debugging

• Collaboration

• Recipe for using Apache Hamilton’s Lineage Capabilities

• A script you could write to ask questions of your DAGs

• Scaling computation

• Microservice

8

208

210

211

213

218

219

• Extension autoloading

• Autoloading behavior

• Disable autoloading

• 1. Programmatically

• 2. Environment variables

• 3. Configuration file

• Manually loading extensions

• 1. Importing the extension

• 2. Registering the extension

• Wrapping the Driver

• Command line interface

• Installation

• hamilton (global)

• hamilton build

• hamilton diff

• hamilton version

• hamilton view

• pre-commit hooks

• Use pre-commit hooks for safer Apache Hamilton code changes

• What are pre-commit hooks?

• Add pre-commit hooks to your project

• Steps to get started

• Custom Apache Hamilton pre-commit hooks

• Checking dataflow definition

• Checking dataflow paths

• Add Apache Hamilton pre-commit to your project

Apache Hamilton UI

• Reference

• UI Overview

• Local Mode

• Docker/Deployed Mode

• Install

• Building the Docker Images locally

• Self-Hosting

• Running on Snowflake

9

230

231

236

237

238

• Get started

• Existing Apache Hamilton Code

• I need some Apache Hamilton code to run

• Features

• Dataflow versioning

• Assets/features catalog

• Browser

• Run tracking + telemetry

• SDK Configuration

• Changing where data is sent

• Changing behavior of what is captured

IDE extension

• Reference

• Apache Hamilton VSCode

• Features

• Dataflow visualization

• Completion suggestions

• Outline

• Symbol navigation

• Extension walkthrough

• Roadmap

• Language Server

• Installation

• Developers

Integrations

• dlt

• Extract, Transform, Load (ETL)

• Extract

• Transform

• Load

• ETL Summary

• Extract, Load, Transform (ELT)

• Extract & Load

• Transform

• ELT Summary

10

248

253

263

• dlt materializer plugin

• DataLoader

• DataSaver

• Combining both

• Next steps

• FastAPI

• Challenges

• 1. Test your FastAPI application

• 2. Document your API

• Apache Hamilton + FastAPI

• Example

• Client

• Backend dataflow with Apache Hamilton

• Server definition with FastAPI

• Visualize endpoints’ dataflow

• Benefits

• Ibis

• Standalone Ibis

• Challenge 1 - Maintain and test large data transformations codebases

• Challenge 2 - Orchestrate Ibis code in production

• How Apache Hamilton complements Ibis

• Write modular Ibis code

• Table-level

• Column-level

• Orchestrate Ibis anywhere

• How Ibis complements Apache Hamilton

• Performance boost

• Atomic data transformation documentation

• Working across rows with user-defined functions (UDFs)

• Ibis + Apache Hamilton - a natural pairing

• Streamlit

• Challenges

• 1. Hard to read UI and data flows.

• 2. Cache and state management

• Apache Hamilton + Streamlit

• Example

• Benefits

11

268

269

270

280

289

• dbt

• MLFlow

• Airflow

• Amazon Web Services

• Burr

• Dagster

• Dask

• Feast

• Metaflow

• Pandera

• Plotly

• Polars

• Prefect

• Ray

• Slack

• Spark

• Vaex

• Narwhals

• OpenLineage

Code Comparisons

• Kedro

• Imperative vs. Declarative

• 1. Define steps

• 2. Assemble dataflow

• 3. Execute dataflow

• Framework weight

• Kedro

• Feature comparison

• More information

• Dagster

• TL;DR

• Dataflow definition

• Dataflow execution

• More information

• LangChain

• A simple joke example

12

https://github.com/apache/hamilton/tree/main/examples/mlflow
https://github.com/apache/hamilton/tree/main/examples/mlflow
https://github.com/apache/hamilton/tree/main/examples/mlflow
https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/aws
https://github.com/apache/hamilton/tree/main/examples/aws
https://github.com/apache/hamilton/tree/main/examples/aws
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/image_telephone
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/image_telephone
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/image_telephone
https://github.com/apache/hamilton/tree/main/examples/dagster
https://github.com/apache/hamilton/tree/main/examples/dagster
https://github.com/apache/hamilton/tree/main/examples/dagster
https://github.com/apache/hamilton/tree/main/examples/dask
https://github.com/apache/hamilton/tree/main/examples/dask
https://github.com/apache/hamilton/tree/main/examples/dask
https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/outerbounds/hamilton-metaflow
https://github.com/outerbounds/hamilton-metaflow
https://github.com/outerbounds/hamilton-metaflow
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera
https://github.com/apache/hamilton/tree/main/examples/plotly
https://github.com/apache/hamilton/tree/main/examples/plotly
https://github.com/apache/hamilton/tree/main/examples/plotly
https://github.com/apache/hamilton/tree/main/examples/polars
https://github.com/apache/hamilton/tree/main/examples/polars
https://github.com/apache/hamilton/tree/main/examples/polars
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/ray
https://github.com/apache/hamilton/tree/main/examples/ray
https://github.com/apache/hamilton/tree/main/examples/ray
https://github.com/apache/hamilton/tree/main/examples/slack
https://github.com/apache/hamilton/tree/main/examples/slack
https://github.com/apache/hamilton/tree/main/examples/slack
https://github.com/apache/hamilton/tree/main/examples/spark
https://github.com/apache/hamilton/tree/main/examples/spark
https://github.com/apache/hamilton/tree/main/examples/spark
https://github.com/apache/hamilton/tree/main/examples/vaex
https://github.com/apache/hamilton/tree/main/examples/vaex
https://github.com/apache/hamilton/tree/main/examples/vaex
https://github.com/apache/hamilton/tree/main/examples/narwhals
https://github.com/apache/hamilton/tree/main/examples/narwhals
https://github.com/apache/hamilton/tree/main/examples/narwhals
https://github.com/apache/hamilton/tree/main/examples/openlineage
https://github.com/apache/hamilton/tree/main/examples/openlineage
https://github.com/apache/hamilton/tree/main/examples/openlineage

305

308

310

• A streamed joke example

• A “batch” parallel joke example

• A “async” joke example

• Switch LLM to completion for joke

• Switch to using Anthropic

• Logging

• Fallbacks

• Airflow

• High-level differences:

• Code examples:

• Apache Hamilton:

• Airflow:

PDF

PDF

COMMUNITY

Meet-ups

• Past Meet-ups

• July 2025

• December 2024

• October 2024

• August 2024

• June 2024

• April 2024

• March 2024

• February 2024

Ecosystem

• 🚀 Interactive Tutorials

• Built-in Integrations

• Data Frameworks

• Machine Learning & Data Science

• Orchestration & Workflow Systems

• Data Engineering & ETL

• Observability & Monitoring

• Visualization

13

https://hamilton.apache.org/_static/Hamilton.pdf
https://hamilton.apache.org/_static/Hamilton.pdf

319

320

326

• Developer Tools

• Cloud Providers & Infrastructure

• Storage & Caching

• Other Utilities

• External Resources

• Community Resources

• 📚 Dataflow Hub

• 📝 Blog & Tutorials

• 🎥 Video Content

• Contributing to the Ecosystem

• Adding a New Integration

• Support & Questions

• Stay Updated

Slack

GitHub

REFERENCE

tryhamilton.dev

Decorators

• Custom Decorators

• Reference

• check_output*

• check_output

• check_output.__init__()

• check_output_custom

• check_output_custom.__init__()

• check_output

• check_output.__init__()

• check_output

• check_output.__init__()

• config.when*

• config

• config.__init__()

• hamilton_exclude

14

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://github.com/apache/hamilton
https://github.com/apache/hamilton
https://www.tryhamilton.dev/
https://www.tryhamilton.dev/

329

330

331

333

335

336

337

338

340

344

• dataloader

• dataloader

• dataloader.generate_nodes()

• dataloader.validate()

• datasaver

• datasaver

• datasaver.generate_nodes()

• datasaver.validate()

• does

• does

• does.__init__()

• unpack_fields

• unpack_fields

• unpack_fields.__init__()

• extract_columns

• extract_columns

• extract_columns.__init__()

• extract_fields

• extract_fields

• extract_fields.__init__()

• inject

• inject

• inject.__init__()

• load_from

• load_from

• load_from.__init__()

• parameterize

• ParameterizedExtract

• source

• value

• group

• parameterize

• parameterize.__init__()

• parameterize_extract_columns

• parameterize_extract_columns

• parameterize_extract_columns.__init__()

15

346

347

349

352

353

364

366

368

• parameterize_frame

• parameterize_frame

• parameterize_frame.__init__()

• parameterize_sources

• parameterize_sources

• parameterize_sources.__init__()

• parameterized_subdag

• parameterized_subdag

• parameterized_subdag.__init__()

• parameterize_values

• parameterize_values

• parameterize_values.__init__()

• pipe family

• pipe

• pipe

• pipe.__init__()

• pipe_input

• pipe_input

• pipe_input.__init__()

• pipe_output

• pipe_output

• pipe_output.__init__()

• mutate

• mutate

• mutate.__init__()

• resolve

• resolve

• resolve.__init__()

• resolve_from_config

• resolve_from_config.__init__()

• save_to

• save_to

• save_to.__init__()

• subdag

• subdag

• subdag.__init__()

16

370

371

374

386

388

• schema

• schema

• schema.output()

• tag*

• tag

• tag.__init__()

• tag_outputs

• tag_outputs.__init__()

• with_columns

• Pandas

• with_columns

• with_columns.__init__()

• Polar (Eager)

• with_columns

• with_columns.__init__()

• Polars (Lazy)

• with_columns

• with_columns.__init__()

• PySpark

• with_columns

• with_columns.__init__()

Drivers

• Instantiation

• Execution

• Using a DAG once

• Using a DAG multiple times

• Short circuiting some DAG computation

• Reference

• Builder

• Builder

• Builder.__init__()

• Builder.allow_module_overrides()

• Builder.build()

• Builder.cache

• Builder.copy()

• Builder.enable_dynamic_execution()

17

• Builder.with_adapter()

• Builder.with_adapters()

• Builder.with_cache()

• Builder.with_config()

• Builder.with_execution_manager()

• Builder.with_grouping_strategy()

• Builder.with_local_executor()

• Builder.with_materializers()

• Builder.with_modules()

• Builder.with_remote_executor()

• Driver

• Driver

• Driver.__init__()

• Driver.cache

• Driver.capture_constructor_telemetry()

• Driver.capture_execute_telemetry()

• Driver.display_all_functions()

• Driver.display_downstream_of()

• Driver.display_upstream_of()

• Driver.execute()

• Driver.export_execution()

• Driver.has_cycles()

• Driver.list_available_variables()

• Driver.materialize()

• Driver.normalize_adapter_input()

• Driver.raw_execute()

• Driver.validate_execution()

• Driver.validate_inputs()

• Driver.validate_materialization()

• Driver.visualize_execution()

• Driver.visualize_materialization()

• Driver.visualize_path_between()

• Driver.what_is_downstream_of()

• Driver.what_is_the_path_between()

• Driver.what_is_upstream_of()

18

417

421

421

422

• DefaultGraphExecutor

• DefaultGraphExecutor

• DefaultGraphExecutor.__init__()

• DefaultGraphExecutor.execute()

• DefaultGraphExecutor.validate()

• TaskBasedGraphExecutor

• TaskBasedGraphExecutor

• TaskBasedGraphExecutor.__init__()

• TaskBasedGraphExecutor.execute()

• TaskBasedGraphExecutor.validate()

• AsyncDriver

• AsyncDriver

• AsyncDriver.__init__()

• AsyncDriver.ainit()

• AsyncDriver.capture_constructor_telemetry()

• AsyncDriver.execute()

• AsyncDriver.raw_execute()

• Async Builder

• Builder

• Builder.__init__()

• Builder.build()

• Builder.build_without_init()

• Builder.enable_dynamic_execution()

• Builder.with_adapter()

• Builder.with_materializers()

• Custom Driver

Caching

• Reference

• Caching logic

• Caching Behavior

• CachingBehavior

• CachingBehavior.from_string()

• @cache decorator

• cache

• cache.BEHAVIOR_KEY

• cache.FORMAT_KEY

19

432

• cache.__init__()

• cache.decorate_node()

• Logging

• CachingEvent

• CachingEvent.__init__()

• CachingEventType

• Adapter

• HamiltonCacheAdapter

• HamiltonCacheAdapter.__init__()

• HamiltonCacheAdapter.do_node_execute()

• HamiltonCacheAdapter.get_cache_key()

• HamiltonCacheAdapter.get_data_version()

• HamiltonCacheAdapter.last_run_id

• HamiltonCacheAdapter.logs()

• HamiltonCacheAdapter.post_node_execute()

• HamiltonCacheAdapter.pre_graph_execute()

• HamiltonCacheAdapter.pre_node_execute()

• HamiltonCacheAdapter.resolve_behaviors()

• HamiltonCacheAdapter.resolve_code_versions()

• HamiltonCacheAdapter.version_code()

• HamiltonCacheAdapter.version_data()

• HamiltonCacheAdapter.view_run()

• Quirks and limitations

• Data versioning

• hash_bytes()

• hash_mapping()

• hash_none()

• hash_numpy_array()

• hash_pandas_obj()

• hash_polars_column()

• hash_polars_dataframe()

• hash_primitive()

• hash_repr()

• hash_sequence()

• hash_set()

• hash_unordered_mapping()

20

435

• hash_value()

• set_max_depth()

• Stores

• stores.base

• MetadataStore

• MetadataStore.delete()

• MetadataStore.delete_all()

• MetadataStore.exists()

• MetadataStore.get()

• MetadataStore.get_last_run()

• MetadataStore.get_run()

• MetadataStore.get_run_ids()

• MetadataStore.initialize()

• MetadataStore.last_run_id

• MetadataStore.set()

• MetadataStore.size

• ResultRetrievalError

• ResultStore

• ResultStore.delete()

• ResultStore.delete_all()

• ResultStore.exists()

• ResultStore.get()

• ResultStore.set()

• search_data_adapter_registry()

• stores.file

• FileResultStore

• FileResultStore.delete()

• FileResultStore.delete_all()

• FileResultStore.exists()

• FileResultStore.get()

• FileResultStore.set()

• stores.sqlite

• SQLiteMetadataStore

• SQLiteMetadataStore.connection

• SQLiteMetadataStore.delete()

• SQLiteMetadataStore.delete_all()

21

441

442

• SQLiteMetadataStore.exists()

• SQLiteMetadataStore.get()

• SQLiteMetadataStore.get_run()

• SQLiteMetadataStore.get_run_ids()

• SQLiteMetadataStore.initialize()

• SQLiteMetadataStore.set()

• stores.memory

• InMemoryMetadataStore

• InMemoryMetadataStore.delete()

• InMemoryMetadataStore.delete_all()

• InMemoryMetadataStore.exists()

• InMemoryMetadataStore.get()

• InMemoryMetadataStore.get_run()

• InMemoryMetadataStore.get_run_ids()

• InMemoryMetadataStore.initialize()

• InMemoryMetadataStore.load_from()

• InMemoryMetadataStore.persist_to()

• InMemoryMetadataStore.set()

• InMemoryResultStore

• InMemoryResultStore.delete()

• InMemoryResultStore.delete_all()

• InMemoryResultStore.exists()

• InMemoryResultStore.get()

• InMemoryResultStore.load_from()

• InMemoryResultStore.persist_to()

• InMemoryResultStore.set()

GraphAdapters

• Reference

• SimplePythonDataFrameGraphAdapter

• SimplePythonDataFrameGraphAdapter

• SimplePythonDataFrameGraphAdapter.check_input_type()

• SimplePythonDataFrameGraphAdapter.check_node_type_equivalence()

• SimplePythonDataFrameGraphAdapter.execute_node()

22

443

447

448

449

• SimplePythonGraphAdapter

• SimplePythonGraphAdapter

• SimplePythonGraphAdapter.__init__()

• SimplePythonGraphAdapter.build_dataframe_with_dataframes()

• SimplePythonGraphAdapter.build_result()

• SimplePythonGraphAdapter.check_input_type()

• SimplePythonGraphAdapter.check_node_type_equivalence()

• SimplePythonGraphAdapter.check_pandas_index_types_match()

• SimplePythonGraphAdapter.do_build_result()

• SimplePythonGraphAdapter.do_check_edge_types_match()

• SimplePythonGraphAdapter.do_node_execute()

• SimplePythonGraphAdapter.do_validate_input()

• SimplePythonGraphAdapter.execute_node()

• SimplePythonGraphAdapter.input_types()

• SimplePythonGraphAdapter.output_type()

• SimplePythonGraphAdapter.pandas_index_types()

• HamiltonGraphAdapter

• HamiltonGraphAdapter

• h_async.AsyncGraphAdapter

• AsyncGraphAdapter

• AsyncGraphAdapter.__init__()

• AsyncGraphAdapter.build_result()

• AsyncGraphAdapter.do_build_result()

• AsyncGraphAdapter.do_node_execute()

• AsyncGraphAdapter.input_types()

• AsyncGraphAdapter.output_type()

• h_threadpool.FutureAdapter

• FutureAdapter

• FutureAdapter.__init__()

• FutureAdapter.build_result()

• FutureAdapter.do_build_result()

• FutureAdapter.do_remote_execute()

• FutureAdapter.input_types()

• FutureAdapter.output_type()

23

451

457

462

• CachingGraphAdapter

• CachingGraphAdapter

• CachingGraphAdapter.__init__()

• CachingGraphAdapter.build_dataframe_with_dataframes()

• CachingGraphAdapter.build_result()

• CachingGraphAdapter.check_input_type()

• CachingGraphAdapter.check_node_type_equivalence()

• CachingGraphAdapter.check_pandas_index_types_match()

• CachingGraphAdapter.do_build_result()

• CachingGraphAdapter.do_check_edge_types_match()

• CachingGraphAdapter.do_node_execute()

• CachingGraphAdapter.do_validate_input()

• CachingGraphAdapter.execute_node()

• CachingGraphAdapter.input_types()

• CachingGraphAdapter.output_type()

• CachingGraphAdapter.pandas_index_types()

• h_dask.DaskGraphAdapter

• DaskGraphAdapter

• DaskGraphAdapter.__init__()

• DaskGraphAdapter.build_result()

• DaskGraphAdapter.check_input_type()

• DaskGraphAdapter.check_node_type_equivalence()

• DaskGraphAdapter.do_build_result()

• DaskGraphAdapter.do_check_edge_types_match()

• DaskGraphAdapter.do_node_execute()

• DaskGraphAdapter.do_validate_input()

• DaskGraphAdapter.execute_node()

• DaskGraphAdapter.input_types()

• DaskGraphAdapter.output_type()

• h_spark.PySparkUDFGraphAdapter

• PySparkUDFGraphAdapter

• PySparkUDFGraphAdapter.__init__()

• PySparkUDFGraphAdapter.build_result()

• PySparkUDFGraphAdapter.check_input_type()

• PySparkUDFGraphAdapter.check_node_type_equivalence()

• PySparkUDFGraphAdapter.execute_node()

24

464

467

471

472

473

• h_ray.RayGraphAdapter

• RayGraphAdapter

• RayGraphAdapter.__init__()

• RayGraphAdapter.do_build_result()

• RayGraphAdapter.do_check_edge_types_match()

• RayGraphAdapter.do_remote_execute()

• RayGraphAdapter.do_validate_input()

• RayGraphAdapter.post_graph_execute()

• h_spark.SparkKoalasGraphAdapter

• SparkKoalasGraphAdapter

• SparkKoalasGraphAdapter.__init__()

• SparkKoalasGraphAdapter.build_result()

• SparkKoalasGraphAdapter.check_input_type()

• SparkKoalasGraphAdapter.check_node_type_equivalence()

• SparkKoalasGraphAdapter.do_build_result()

• SparkKoalasGraphAdapter.do_check_edge_types_match()

• SparkKoalasGraphAdapter.do_node_execute()

• SparkKoalasGraphAdapter.do_validate_input()

• SparkKoalasGraphAdapter.execute_node()

• SparkKoalasGraphAdapter.input_types()

• SparkKoalasGraphAdapter.output_type()

Lifecycle Adapters

• Customization

• lifecycle.ResultBuilder

• ResultBuilder

• ResultBuilder.build_result()

• ResultBuilder.do_build_result()

• ResultBuilder.input_types()

• ResultBuilder.output_type()

• lifecycle.LegacyResultMixin

• LegacyResultMixin

• LegacyResultMixin.build_result()

• LegacyResultMixin.do_build_result()

• LegacyResultMixin.input_types()

• LegacyResultMixin.output_type()

25

474

476

478

479

481

• lifecycle.api.GraphAdapter

• GraphAdapter

• GraphAdapter.build_result()

• GraphAdapter.check_input_type()

• GraphAdapter.check_node_type_equivalence()

• GraphAdapter.do_build_result()

• GraphAdapter.do_check_edge_types_match()

• GraphAdapter.do_node_execute()

• GraphAdapter.do_validate_input()

• GraphAdapter.execute_node()

• GraphAdapter.input_types()

• GraphAdapter.output_type()

• lifecycle.NodeExecutionHook

• NodeExecutionHook

• NodeExecutionHook.post_node_execute()

• NodeExecutionHook.pre_node_execute()

• NodeExecutionHook.run_after_node_execution()

• NodeExecutionHook.run_before_node_execution()

• lifecycle.api.GraphExecutionHook

• GraphExecutionHook

• GraphExecutionHook.post_graph_execute()

• GraphExecutionHook.pre_graph_execute()

• GraphExecutionHook.run_after_graph_execution()

• GraphExecutionHook.run_before_graph_execution()

• lifecycle.api.EdgeConnectionHook

• EdgeConnectionHook

• EdgeConnectionHook.check_edge_types_match()

• EdgeConnectionHook.do_check_edge_types_match()

• EdgeConnectionHook.do_validate_input()

• EdgeConnectionHook.validate_input()

• lifecycle.api.NodeExecutionMethod

• NodeExecutionMethod

• NodeExecutionMethod.do_node_execute()

• NodeExecutionMethod.run_to_execute_node()

26

482

484

485

486

487

490

491

• lifecycle.api.StaticValidator

• StaticValidator

• StaticValidator.run_to_validate_graph()

• StaticValidator.run_to_validate_node()

• StaticValidator.validate_graph()

• StaticValidator.validate_node()

• lifecycle.api.GraphConstructionHook

• GraphConstructionHook

• GraphConstructionHook.post_graph_construct()

• GraphConstructionHook.run_after_graph_construction()

• lifecycle.api.TaskSubmissionHook

• TaskSubmissionHook

• TaskSubmissionHook.pre_task_submission()

• TaskSubmissionHook.run_before_task_submission()

• lifecycle.api.TaskReturnHook

• TaskReturnHook

• TaskReturnHook.post_task_return()

• TaskReturnHook.run_after_task_return()

• lifecycle.api.TaskExecutionHook

• TaskExecutionHook

• TaskExecutionHook.post_task_execute()

• TaskExecutionHook.pre_task_execute()

• TaskExecutionHook.run_after_task_execution()

• TaskExecutionHook.run_before_task_execution()

• lifecycle.api.TaskGroupingHook

• TaskGroupingHook

• TaskGroupingHook.post_task_expand()

• TaskGroupingHook.post_task_group()

• TaskGroupingHook.run_after_task_expansion()

• TaskGroupingHook.run_after_task_grouping()

• Available Adapters

• lifecycle.PDBDebugger

• PDBDebugger

• PDBDebugger.__init__()

• PDBDebugger.do_node_execute()

• PDBDebugger.post_node_execute()

27

495

496

500

• PDBDebugger.pre_node_execute()

• PDBDebugger.run_after_node_execution()

• PDBDebugger.run_before_node_execution()

• PDBDebugger.run_to_execute_node()

• lifecycle.PrintLn

• PrintLn

• PrintLn.__init__()

• PrintLn.post_node_execute()

• PrintLn.pre_node_execute()

• PrintLn.run_after_node_execution()

• PrintLn.run_before_node_execution()

• plugins.h_tqdm.ProgressBar

• ProgressBar

• ProgressBar.__init__()

• ProgressBar.post_graph_execute()

• ProgressBar.post_node_execute()

• ProgressBar.pre_graph_execute()

• ProgressBar.pre_node_execute()

• ProgressBar.run_after_graph_execution()

• ProgressBar.run_after_node_execution()

• ProgressBar.run_before_graph_execution()

• ProgressBar.run_before_node_execution()

• plugins.h_rich.RichProgressBar

• RichProgressBar

• RichProgressBar.__init__()

• RichProgressBar.post_graph_execute()

• RichProgressBar.post_node_execute()

• RichProgressBar.post_task_execute()

• RichProgressBar.post_task_expand()

• RichProgressBar.post_task_group()

• RichProgressBar.pre_graph_execute()

• RichProgressBar.pre_node_execute()

• RichProgressBar.pre_task_execute()

• RichProgressBar.run_after_graph_execution()

• RichProgressBar.run_after_node_execution()

• RichProgressBar.run_after_task_execution()

28

507

514

• RichProgressBar.run_after_task_expansion()

• RichProgressBar.run_after_task_grouping()

• RichProgressBar.run_before_graph_execution()

• RichProgressBar.run_before_node_execution()

• RichProgressBar.run_before_task_execution()

• plugins.h_ddog.DDOGTracer

• DDOGTracer

• DDOGTracer.__init__()

• DDOGTracer.post_graph_execute()

• DDOGTracer.post_node_execute()

• DDOGTracer.post_task_execute()

• DDOGTracer.pre_graph_execute()

• DDOGTracer.pre_node_execute()

• DDOGTracer.pre_task_execute()

• DDOGTracer.run_after_graph_execution()

• DDOGTracer.run_after_node_execution()

• DDOGTracer.run_after_task_execution()

• DDOGTracer.run_before_graph_execution()

• DDOGTracer.run_before_node_execution()

• DDOGTracer.run_before_task_execution()

• AsyncDDOGTracer

• AsyncDDOGTracer.__init__()

• AsyncDDOGTracer.post_graph_construct()

• AsyncDDOGTracer.post_graph_execute()

• AsyncDDOGTracer.post_node_execute()

• AsyncDDOGTracer.pre_graph_execute()

• AsyncDDOGTracer.pre_node_execute()

• lifecycle.FunctionInputOutputTypeChecker

• FunctionInputOutputTypeChecker

• FunctionInputOutputTypeChecker.__init__()

• FunctionInputOutputTypeChecker.post_node_execute()

• FunctionInputOutputTypeChecker.pre_node_execute()

• FunctionInputOutputTypeChecker.run_after_node_execution()

• FunctionInputOutputTypeChecker.run_before_node_execution()

29

515

516

520

520

523

• plugins.h_slack.SlackNotifier

• SlackNotifier

• SlackNotifier.__init__()

• SlackNotifier.post_node_execute()

• SlackNotifier.pre_node_execute()

• SlackNotifier.run_after_node_execution()

• SlackNotifier.run_before_node_execution()

• lifecycle.GracefulErrorAdapter

• GracefulErrorAdapter

• GracefulErrorAdapter.__init__()

• default.accept_error_sentinels()

• plugins.h_spark.SparkInputValidator

• SparkInputValidator

• SparkInputValidator.do_validate_input()

• plugins.h_narhwals.NarwhalsAdapter

• NarwhalsAdapter

• NarwhalsAdapter.do_node_execute()

• NarwhalsAdapter.run_to_execute_node()

• plugins.h_narhwals.NarwhalsDataFrameResultBuilder

• NarwhalsDataFrameResultBuilder

• NarwhalsDataFrameResultBuilder.__init__()

• NarwhalsDataFrameResultBuilder.build_result()

• NarwhalsDataFrameResultBuilder.do_build_result()

• NarwhalsDataFrameResultBuilder.input_types()

• NarwhalsDataFrameResultBuilder.output_type()

• plugins.h_mlflow.MLFlowTracker

• MLFlowTracker

• MLFlowTracker.__init__()

• MLFlowTracker.post_graph_construct()

• MLFlowTracker.post_graph_execute()

• MLFlowTracker.post_node_execute()

• MLFlowTracker.pre_graph_execute()

• MLFlowTracker.pre_node_execute()

• MLFlowTracker.run_after_graph_construction()

• MLFlowTracker.run_after_graph_execution()

• MLFlowTracker.run_after_node_execution()

30

526

527

529

530

531

531

533

• MLFlowTracker.run_before_graph_execution()

• MLFlowTracker.run_before_node_execution()

• lifecycle.NoEdgeAndInputTypeChecking

• NoEdgeAndInputTypeChecking

• NoEdgeAndInputTypeChecking.check_edge_types_match()

• NoEdgeAndInputTypeChecking.do_check_edge_types_match()

• NoEdgeAndInputTypeChecking.do_validate_input()

• NoEdgeAndInputTypeChecking.validate_input()

• plugins.h_openlineage.OpenLineageAdapter

• OpenLineageAdapter

• OpenLineageAdapter.__init__()

• OpenLineageAdapter.post_graph_execute()

• OpenLineageAdapter.post_node_execute()

• OpenLineageAdapter.pre_graph_execute()

• OpenLineageAdapter.pre_node_execute()

ResultBuilders

• Reference

• Generic

• ResultMixin

• DictResult

• DictResult.build_result()

• DictResult.input_types()

• DictResult.output_type()

• Numpy

• NumpyMatrixResult

• NumpyMatrixResult.build_result()

• Pandas

• PandasDataFrameResult

• PandasDataFrameResult.build_result()

• StrictIndexTypePandasDataFrameResult

• StrictIndexTypePandasDataFrameResult.build_result()

• Polars

• PolarsDataFrameResult

• PolarsDataFrameResult.build_result()

31

534

534

535

536

537

566

• Dask

• DaskDataFrameResult

• DaskDataFrameResult.build_result()

• plugins.h_pyarrow.PyarrowTableResult

• PyarrowTableResult

• PyarrowTableResult.build_result()

• PyarrowTableResult.do_build_result()

• PyarrowTableResult.input_types()

• PyarrowTableResult.output_type()

• Custom ResultBuilder

• What you need to do

• How to use it

I/O

• Reference

• Using Data Adapters

• Data Loaders

• Data Savers

• Data Adapters

• DataLoader

• DataLoader.applicable_types()

• DataLoader.applies_to()

• DataLoader.can_load()

• DataLoader.can_save()

• DataLoader.get_optional_arguments()

• DataLoader.get_required_arguments()

• DataLoader.load_data()

• DataLoader.name()

• DataSaver

• DataSaver.applicable_types()

• DataSaver.applies_to()

• DataSaver.can_load()

• DataSaver.can_save()

• DataSaver.get_optional_arguments()

• DataSaver.get_required_arguments()

• DataSaver.name()

• DataSaver.save_data()

32

571

572

572

573

573

574

575

576

576

577

577

578

• AdapterCommon

• AdapterCommon.applicable_types()

• AdapterCommon.applies_to()

• AdapterCommon.can_load()

• AdapterCommon.can_save()

• AdapterCommon.get_optional_arguments()

• AdapterCommon.get_required_arguments()

• AdapterCommon.name()

Dataflows

• Reference

• clear_storage()

• clear_storage()

• copy()

• copy()

• find()

• find()

• import_module()

• import_module()

• inspect()

• InspectResult

• inspect()

• inspect_module()

• InspectModuleResult

• inspect_module()

• install_dependencies_string()

• install_dependencies_string()

• latest_commit()

• latest_commit()

• list()

• list()

• pull_module()

• pull_module()

Telemetry

33

579

ASF

ASF

• Apache Software Foundation

• License

• Events

• Privacy

• Security

• Sponsorship

• Thanks

• Code of Conduct

• Mailing Lists

• Users Mailing List

• Dev Mailing List

34

https://www.apache.org/
https://www.apache.org/
https://www.apache.org/
https://www.apache.org/licenses/
https://www.apache.org/licenses/
https://www.apache.org/licenses/
https://www.apache.org/events/current-event.html
https://www.apache.org/events/current-event.html
https://www.apache.org/events/current-event.html
https://privacy.apache.org/policies/privacy-policy-public.html
https://privacy.apache.org/policies/privacy-policy-public.html
https://privacy.apache.org/policies/privacy-policy-public.html
https://www.apache.org/security/
https://www.apache.org/security/
https://www.apache.org/security/
https://www.apache.org/foundation/sponsorship.html
https://www.apache.org/foundation/sponsorship.html
https://www.apache.org/foundation/sponsorship.html
https://www.apache.org/foundation/thanks.html
https://www.apache.org/foundation/thanks.html
https://www.apache.org/foundation/thanks.html
https://www.apache.org/foundation/policies/conduct.html
https://www.apache.org/foundation/policies/conduct.html
https://www.apache.org/foundation/policies/conduct.html

Welcome to Apache Hamilton

Apache Hamilton (incubating) is a general-purpose framework to write dataflows using regular

Python functions. At the core, each function defines a transformation and its parameters indicates

its dependencies. Apache Hamilton automatically connects individual functions into a Directed

Acyclic Graph (DAG) that can be executed, visualized, optimized, and reported on. Apache Hamilton

also comes with a UI to visualize, catalog, and monitor your dataflows.

The ABC of Apache Hamilton

Why should you use Apache
Hamilton (incubating)?
Facilitate collaboration. By focusing on functions, Apache Hamilton avoids sprawling code

hierarchy and generates flat dataflows. Well-scoped functions make it easier to add features,

complete code reviews, debug pipeline failures, and hand-off projects. Visualizations can be

generated directly from your code to better understand and document it. Integration with the

Apache Hamilton UI allows you to track lineage, catalog code & artifacts, and monitor your

dataflows.

35

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://twitter.com/hamilton_os
https://twitter.com/hamilton_os
https://pepy.tech/project/sf-hamilton
https://pepy.tech/project/sf-hamilton
https://pepy.tech/project/sf-hamilton
https://pepy.tech/project/sf-hamilton
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_acyclic_graph
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/abc.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/abc.png

Reduce development time. Apache Hamilton dataflows are reusable across projects and context

(e.g., pipeline vs. web service). The benefits of developing robust and well-tested solutions are

multiplied by reusability. Explore community-contributed dataflows in the ecosystem.

Own your platform. Apache Hamilton helps you integrate the frameworks and tools of your stack.

Apache Hamilton’s features are easy to extend and customize to your needs. This flexibility

enables self-serve designs and ultimately reduces the risks of vendor lock-in.

Scale your dataflow. Apache Hamilton separates transformation logic from execution, allowing

you to seamlessly scale via remote execution (AWS, Modal, etc.) and specialized computation

engines (Spark, Ray, duckdb etc.). Apache Hamilton was battle tested under intensive enterprise

data workloads.

Here’s a quick overview of benefits that Apache Hamilton provides as compared to other tools:

Feature

Apache

Hamilton

Macro orchestration

systems (e.g. Airflow) Feast dbt Dask

Execute a graph of data

transformations
✅ ✅ ❌ ✅ ✅

Can visualize lineage easily ✅ ❌ ❌ ✅ ✅

Can model GenerativeAI/

LLM based workflows
✅ ❌ ❌ ❌ ❌

Is a feature store ❌ ❌ ✅ ❌ ❌

Helps you structure your

code base
✅ ❌ ❌ ✅ ❌

Is just a library ✅ ❌ ❌ ❌ ✅

Runs anywhere python

runs
✅ ❌ ❌ ❌ ✅

Documentation friendly ✅ ❌ ❌ ❌ ❌

36

Feature

Apache

Hamilton

Macro orchestration

systems (e.g. Airflow) Feast dbt Dask

Code is always unit

testable
✅ ❌ ❌ ❌ ❌

Architecture Overview
The following diagram gives a simplified overview of the main components of Apache Hamilton.

Functions & Module. Transformations are regular Python functions organized into modules.

Functions must be type-annotated, but hold no dependency with Apache Hamilton and can be

reused outside of it.

Driver & FunctionGraph. The Driver will automatically assemble the FunctionGraph from the

modules given. The Driver can be configured to modify and extend the execution behavior (e.g.,

remote execution, monitoring, webhooks, caching).

Visualization. The FunctionGraph can be visualized without executing code. This coupling ensures

visualizations always match the code from modules.

37

Execution. When requesting variables, the Driver establishes an execution plan to only compute

the required functions. Then, results are gathered and returned to the user.

Who is using Apache Hamilton?

Multiple companies are doing cool stuff with Apache Hamilton! Come chat with members of the

community and the development team on Slack:

Wealth.com - Async Python LLM document processing pipelines

Wren.ai - Async RAG pipelines

Oxehealth - Multi-modal prediction

PupPilot - Async python LLM transcript processing pipelines

Stitch Fix — Time series forecasting

British cycling — Telemetry analysis

Joby - Flight data processing

Transfix - Online featurization and prediction

IBM - Internal search and ML pipelines

Ascena - Feature engineering

•

•

•

•

•

•

•

•

•

•

38

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

Adobe - Prompt engineering research

Axiom Cloud - IoT data processing

Oak Ridge & PNNL - Naturf project

Habitat - Time-series feature engineering

UK Government Digital Service - National feedback pipeline (processing & analysis)

Railoify - Orchestrate pandas code

Lexis Nexis - Feature processing and lineage

Opendoor - Manage PySpark pipelines

KI - Feature engineering

Kora Money - DS/ML Workflows

Capitec Bank - Financial decisions

Best Egg - Feature engineering

•

•

•

•

•

•

•

•

•

•

•

•

39

https://github.com/IMMM-SFA/naturf/tree/feature/nodes

RTV Euro AGD - General feature engineering & machine learning•

40

Testimonials

41

"Apache Hamilton provides a modular and

compatible framework that has significantly

empowered our data science team. We've

been able to build robust and flexible data

pipelines with ease. The documentation is

thorough and regularly updated... Even with

no prior experience with the package, our

team successfully migrated one of our legacy

data pipelines to the Apache Hamilton

structure within a month. This transition has

greatly enhanced our productivity, enabling

us to focus more on feature engineering and

model iteration while Apache Hamilton's DAG

approach seamlessly manages data lineage.

I highly recommend Apache Hamilton to data

professionals looking for a reliable,

standardized solution for creating and

managing data pipelines."

Yuan Liu
DS, Kora Financial

"How (with good software practices) do you

orchestrate a system of asynchronous LLM

calls, but where some of them depend on

others? How do you build such a system so

that it’s modular and testable? At wealth.com

we've selected Apache Hamilton to help us

solve these problems and others. And today

our product, Ester AI, an AI legal assistant

that extracts information from estate

planning documents, is running in

production with Apache Hamilton under the

hood."

Kyle Pounder
CTO, Wealth.com

42

"Apache Hamilton is simplicity. Its declarative

approach to defining pipelines (as well as the

UI to visualize them) makes testing and

modifying the code easy, and onboarding is

quick and painless. Since using Apache

Hamilton, we have improved our efficiency of

both developing new functionality and

onboarding new developers to work on the

code. We deliver solutions more quickly than

before."

Michał Siedlaczek
Senior DS/SWE, IBM

"...The companion Apache Hamilton UI has

taken the value proposition up enormously

with the ability to clearly show lineage &

track execution times, covering a major part

of our observability needs"

Fran Boon
Director, Oxehealth.com

"Many thanks to writing such a great library.

We are very excited about it and very pleased

with so many decisions you've made. 🙏"

Louwrens
Software Engineer, luoautomation.com

43

Get Started

Welcome to Apache Hamilton’s documentation!

www.tryhamilton.dev

Before diving in, we highly recommend you try Apache Hamilton in your browser at https://

www.tryhamilton.dev. It allows you to:

run python in the browser, so you can get a feel for the basics of Apache Hamilton

without installing anything!

it includes various examples that you can run and modify.

3. it represents an easy hands-on introduction to Apache Hamilton that should get

you comfortable with the framework and its basic capabilities.

Get started with Apache Hamilton locally

The following section of the docs will teach you how to install Apache Hamilton and get started

with your own project.

Why use Apache Hamilton?

There are many choices for building dataflows/pipelines/workflows/ETLs. Let’s compare Apache

Hamilton to some of the other options to help answer this question.

Comparison to Other Frameworks
There are a lot of frameworks out there, especially in the pipeline space. This section should help

you figure out when to use Apache Hamilton with another framework, or in place of a framework,

or when to use another framework altogether.

Let’s go over some groups of “competitive” or “complimentary” products. For a basic overview, see

the product matrix on the homepage.

1.

2.

44 Get Started

https://www.tryhamilton.dev
https://www.tryhamilton.dev

Orchestration Systems
Examples include:

Airflow

Metaflow

Luigi

dbt

Apache Hamilton is not, in itself a macro, i.e. high level, task orchestration system. While it does

orchestrate functions, and the DAG abstraction is very powerful, it does not provision compute, or

schedule long-running jobs. Apache Hamilton works well in conjunction with these macro

systems. Apache Hamilton provides the capabilities of fine-grained lineage, highly readable code,

and self-documenting pipelines, which many of these systems lack.

Apache Hamilton can be used within any python orchestration system in the following ways:

Hamilton DAGs can be called within orchestration system tasks. See the Apache Hamilton +

Airflow example. The integration is generally trivial – all you have to do is call out to the

hamilton library within your task. If your orchestrator supports python, then you’re good to go.

Some pseudocode (if your orchestrator handles scripts like airflow):

#my_task.py
import hamilton
import my_transformations
dr = hamilton.driver.Driver({}, my_functions)
output = dr.execute(['final_var'], inputs=...)
do_something_with(output)

Hamilton DAGs can be broken up to run as components within an orchestration system. With

the ability to include overrides, you can run the DAG on each task, overloading the outputs of

the last task + any static inputs/configuration, and pass it into the next task. This is more of a

manual/power-user feature. Some pseudocode:

#my_task.py
import hamilton
import my_functions
prior_inputs = load_relevant_task_results()
desired_outputs = ['final_var_1', 'final_var_2']
inputs = my_inputs
dr = hamilton.driver.Driver({}, my_functions)
output = dr.execute(

desired_outputs,
inputs=inputs,

•

•

•

•

1.

2.

45 Get Started

https://airflow.apache.org/
https://github.com/Netflix/metaflow
https://github.com/spotify/luigi
https://www.getdbt.com/
https://blog.dagworks.io/p/supercharge-your-airflow-dag-with
https://blog.dagworks.io/p/supercharge-your-airflow-dag-with

overrides=prior_inputs)
save_for_later(output)

Feature Stores
Examples include:

Hopsworks

Feast

Tecton

One can think of Apache Hamilton as a being your “feature definition store”, where “store” is code

+ git. While it does not provide all the capabilities of a standard feature store, it provides a source

of truth for the code that generated the features, and can be run in a portable method. So, if your

desire is just to be able to run the same code in different environments, and have an online/

offline store of features, you can use hamilton both to save the features offline, and generate

features online on the fly.

See the feature engineering example for more possibilities, as well as blogs on the feature topic.

Note that in small cases, you probably don’t need a true feature store – recomputing derived

features in an ETL and online can be very efficient, as long as you have some database to look

values up (or have them passed in).

Also note that joins and aggregations can get tricky. We often recommend using our “polymorphic

function definition” i.e. functions decorated with @config.when , to either load up the non-online-

friendly features from a feature store or do an external lookup to simulate an online join.

We expect Apache Hamilton to play a prominent role in the way feature stores work in the future.

Data Science Ecosystems/ML platforms
Examples include:

Kedro

Domino Data Labs

Dataiku

SageMaker

Google Cloud Vertex AI Platform

etc.

•

•

•

•

•

•

•

•

•

46 Get Started

https://www.hopsworks.ai/
https://feast.dev/
https://tecton.ai/
https://blog.dagworks.io/?sort=search&search=features
https://kedro.org/
https://www.dominodatalab.com/
https://www.dataiku.com/
https://aws.amazon.com/sagemaker/
https://cloud.google.com/vertex-ai

We’ve kind of grouped a whole suite of platforms into the same bucket here. These tend to have a

lot of capabilities all related to ML. Apache Hamilton can be used in conjunction with these

platforms in a variety of ways. For example, you can use Apache Hamilton to generate features for

a model that you train in one of these platforms. Or you can use Apache Hamilton to generate a

model using the platform’s compute, and then save the model to the platform’s registry.

Registries / Experiment Tracking
Examples include:

MLflow

Weights and Biases

DVC

Most pipelines have a “reverse ETL problem” – they need to get the results of the pipeline into a

some sort of datastore or registry. Apache Hamilton can be used in conjunction with these tools

as the glue code that helps everything work together. For example, you can use Apache Hamilton

to generate a model and then store metrics computed by Apache Hamilton to one of these

“destinations”.

There are three main ways to integrate with these tools:

inside a function that Apache Hamilton orchestrates

outside Apache Hamilton (e.g. in a script that calls Apache Hamilton)

using “materializers” (see materializers) (see this blog).

See this ML reference post for examples of how to use Apache Hamilton with these tools.

Python Dataframe/manipulation Libraries
Examples include:

pandas

dask

modin

polars

duckdb

Apache Hamilton works with any python dataframe/manipulation oriented libraries. See our

examples folder to see how to use Apache Hamilton with these libraries.

•

•

•

•

•

•

•

•

•

•

•

47 Get Started

https://mlflow.org/
https://wandb.ai/site
https://dvc.org/
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference
https://pandas.pydata.org/
https://www.dask.org/
https://github.com/modin-project/modin
https://www.pola.rs/
https://duckdb.org/
https://github.com/apache/hamilton/tree/main/examples

Python “big data” systems
The following systems are ones that you would resort to using when wanting to scale up your data

processing.

Examples include:

dask

ray

pyspark

pandas-on-spark

These all provide capabilities to either (a) express and execute computation over datasets in

python or (b) parallelize it. Often both. Apache Hamilton has a variety of integrations with these

systems. The basics is that Apache Hamilton can make use of these systems to execute the DAG

using the GraphAdapter abstraction and Lifecycle Hooks.

See our examples folder to see how to use Apache Hamilton with these systems.

Installing hamilton is easy!

Install

Apache Hamilton is a lightweight framework with a variety of extensions/plugins. To get started,

you’ll need the following:

python >= 3.10

pip

For help with python/pip/managing virtual environments see the python docs.

Installing with pip
Apache Hamilton is published on pypi under sf-hamilton . To install, run:

pip install sf-hamilton

To use the DAG visualization functionality, instead install with

pip install sf-hamilton[visualization]

Note: for visualization you may additionally need to install graphviz externally – see graphviz for

instructions on the correct way for your operating system.

•

•

•

•

•

•

48 Get Started

https://www.dask.org/
https://ray.io/
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://github.com/apache/hamilton/tree/main/examples
https://docs.python.org/3/tutorial/venv.html/
https://pypi.org/project/sf-hamilton/
https://graphviz.org/download/

Installing with conda
Apache Hamilton is also available on conda if you prefer:

conda install -c hamilton-opensource sf-hamilton

Installing from source
You can also download the code and run it from the source.

git clone https://github.com/apache/hamilton.git
cd hamilton
pip install -e .

Your First Dataflow

Let’s get started with a dataflow that computes statistics on a time-series of marketing spend.

We’re jumping in head-first. If you want to start with an overview, skip ahead to Concepts.

 Note

You can follow along in the examples directory of the hamilton repo. We highly recommend

forking the repo and playing around with the code to get comfortable.

Write transformation functions
Create a file my_functions.py and add the following two functions:

import pandas as pd

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
"""Rolling 3 week average spend."""
return spend.rolling(3).mean()

def acquisition_cost(avg_3wk_spend: pd.Series, signups: pd.Series) -
> pd.Series:

"""The cost per signup in relation to a rolling average of
spend."""

return avg_3wk_spend / signups

49 Get Started

https://github.com/apache/hamilton/tree/main/examples/hello_world
https://github.com/apache/hamilton/

An astute observer might ask the following questions:

Why do the parameter names clash with the function names? This is core to how hamilton

works. It utilizes dependency injection to create a DAG of computation. Parameter names tell

the framework where your function gets its data.

OK, if the parameter names determine the source of the data, why have we not defined

defined `spend` or `signups` as functions? This is OK, as we will provide this data as an input

when we actually want to materialize our functions. The DAG doesn’t have to be complete when

it is compiled.

Why is there no main line to call these functions? Good observation. In fact, we never will call

them (directly)! This is one of the core principles of Apache Hamilton. You write individual

transforms and the rest is handled by the framework. More on that next.

The functions all output pandas series. What if I don’t want to use series? You don’t have to!

Apache Hamilton is not opinionated on the data type you use. The following are all perfectly

valid as well (and we support dask/spark/ray/other distributed frameworks).

Let’s add a few more functions to our my_functions.py file:

def spend_mean(spend: pd.Series) -> float:

"""Shows function creating a scalar. In this case it computes the
mean of the entire column."""

return spend.mean()

def spend_zero_mean(spend: pd.Series, spend_mean: float) ->
pd.Series:

"""Shows function that takes a scalar. In this case to zero mean
spend."""

return spend - spend_mean

def spend_std_dev(spend: pd.Series) -> float:
"""Function that computes the standard deviation of the spend

column."""
return spend.std()

def spend_zero_mean_unit_variance(spend_zero_mean: pd.Series,
spend_std_dev: float) -> pd.Series:

"""Function showing one way to make spend have zero mean and unit
variance."""

return spend_zero_mean / spend_std_dev

Let’s give these functions a spin!

1.

2.

3.

4.

50 Get Started

Run your dataflow
To actually run the dataflow, we’ll need to write a driver. Create a my_script.py with the following

contents:

import logging
import sys

import pandas as pd

We add this to speed up running things if you have a lot in your
python environment.
from hamilton import registry; registry.disable_autoload()
from hamilton import driver, base
import my_functions # we import the module here!

logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout)

if __name__ == '__main__':
Instantiate a common spine for your pipeline
index = pd.date_range("2022-01-01", periods=6, freq="w")
initial_columns = { # load from actuals or wherever -- this is

our initial data we use as input.
Note: these do not have to be all series, they could be

scalar inputs.
'signups': pd.Series([1, 10, 50, 100, 200, 400],

index=index),
'spend': pd.Series([10, 10, 20, 40, 40, 50], index=index),

}
dr = (

driver.Builder()
.with_config({}) # we don't have any configuration or

invariant data for this example.
.with_modules(my_functions)

we need to tell hamilton where to load function definitions from
.with_adapters(base.PandasDataFrameResult()) # we want a

pandas dataframe as output
.build()

)
we need to specify what we want in the final dataframe (these

could be function pointers).
output_columns = [

'spend',
'signups',
'avg_3wk_spend',
'acquisition_cost',

]
let's create the dataframe!
df = dr.execute(output_columns, inputs=initial_columns)

51 Get Started

`pip install sf-hamilton[visualization]` earlier you can also
do

dr.visualize_execution(output_columns,'./my_dag.png', {})
print(df)

Run the script with the following command:

python my_script.py

And you should see the following output:

spend signups avg_3wk_spend acquisition_cost
2022-01-02 10 1 NaN 10.000
2022-01-09 10 10 NaN 1.000
2022-01-16 20 50 13.333333 0.400
2022-01-23 40 100 23.333333 0.400
2022-01-30 40 200 33.333333 0.200
2022-02-06 50 400 43.333333 0.125

Not only is your spend to signup ratio decreasing exponentially (your product is going viral!), but

you’ve also successfully run your first Apache Hamilton Dataflow. Kudos!

See, wasn’t that quick and easy?

Note: if you’re ever like “why are things taking a while to execute?”, then you might have too much

in your python environment and Apache Hamilton is auto-loading all the extensions. You can

disable this by setting the environment variable HAMILTON_AUTOLOAD_EXTENSIONS=0 or

programmatically via from hamilton import registry; registry.disable_autoload() - for more

see Extension autoloading.

Learning Resources

Several channels are available to get started with Apache Hamilton, learn advanced usage, and

participate in the latest feature development.

📒 User Guide Documentation
The user guide gives a complete overview of Apache Hamilton’s features.

📚 Reference Documentation
The reference documentation details Apache Hamilton’s public API.

52 Get Started

🌐 Ecosystem & Integrations
The ecosystem page lists all built-in integrations (pandas, Polars, Spark, etc.) and external

community resources. Find reusable dataflows, blog posts, and video tutorials there.

✍ tryhamilton.dev
The tryhamilton.dev website provides interactive tutorials in-browser to learn specific Apache

Hamilton concepts.

👋 Slack
The Slack channel is the ideal place to ask questions, request features, and give feedback.

📣 Talks & Videos
See the ecosystem page for links to video content and conference talks.

2024-02 Apache Hamilton Meet-up for February

Recording

[Slides](https://github.com/skrawcz/talks/files/14351139/Apache Hamilton.February.

2024.Meetup.pdf)

2023-12 Why you should build your GenAI/LLM apps using Apache Hamilton. AICamp End of

Year in SF

Recording

[Slides](https://github.com/skrawcz/talks/files/13666470/

Why.you.should.build.your.GenAI_LLM.apps.using.Apache Hamilton.pdf)

2023-12 Bridging Classic ML Pipelines with the World of LLMs. PyData Global

Slides

2023-11 Apache Hamilton: Natively bringing software engineering best practices to python data

transformations. Scale by the Bay.

Recording

Slides

•

◦

◦

•

◦

◦

•

◦

•

◦

◦

53 Get Started

https://tryhamilton.dev
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://www.youtube.com/watch?v=ks672Lm0CJo.
https://www.aicamp.ai/event/eventdetails/W2023121217
https://www.aicamp.ai/event/eventdetails/W2023121217
https://youtu.be/IwWixrjhkZU?si=DVa72Zr4iD-hibS5&t=7602
https://global2023.pydata.org/cfp/talk/3REDA9/
https://github.com/skrawcz/talks/files/13666479/Bridging.Classic.ML.Pipelines.with.the.World.of.LLMs.1.pdf
https://www.scale.bythebay.io/
https://www.youtube.com/watch?v=gK4-6X0h7PU
https://github.com/skrawcz/talks/files/13969784/Scale.By.The.Bay.-.Hamilton_.Natively.bringing.SWE.best.practices.to.python.data.transformations.pdf

2023-09 Apache Hamilton: Natively bringing software engineering best practices to python

data transformations. Bay Area Python Interest Group (BAYPIGgies)

[Slides](https://github.com/skrawcz/talks/files/12785978/BayPIGgies_.Apache

Hamilton.Talk.pdf)

2023-08 dbt + Apache Hamilton: Enabling you to maintain complex Python within dbt models.

MDSFest’23

Recording

Slides

2023-06 Apache Hamilton: an OS tool to add to your LLM App toolbelt. LLM Avalanche.

Slides

2023-06 Feature Engineering with Apache Hamilton: Portability & Lineage. Budapest ML Forum

June 2023

Slides

2023-06 British Cycling Data Platform in Python. Manchester PyData Meetup

Slides

Co-presented with Peter Robinson, and Murray Tait.

2023-04 Lightweight Lineage with Apache Hamilton. PyData Seattle

[Slides](https://github.com/skrawcz/talks/files/11399972/PyData-Seattl-Lightning-Talk-2023-

Lighweight-Lineage-with-Apache Hamilton.pdf)

2023-01 Apache Hamilton: Natively bringing software engineering best practices to python

data transformations. AI Camp Meetup San Jose

Slides

2022-10 Apache Hamilton: an open source, declarative, micro-framework for clean & robust

feature transform code in Python. Feature Store Summit

Event

[Slides](https://github.com/skrawcz/talks/files/9759661/FS.Summit.2022.-.Apache

Hamilton.pdf)

•

◦

•

◦

◦

•

◦

•

◦

•

◦

◦

•

◦

•

◦

•

◦

◦

54 Get Started

https://www.meetup.com/baypiggies/events/296283989/
https://www.mdsfest.com/
https://www.youtube.com/watch?v=ZM-kM8DqlaQ&list=PLdVpUmZrh0QpDi07ENp3FD5aTFuTTtWnP
https://github.com/skrawcz/talks/files/12431755/dbt.%2B.Hamilton_.Enabling.you.to.maintain.complex.python.within.dbt.models.pdf
https://github.com/skrawcz/talks/files/11899349/Hamilton_.an.OS.tool.to.add.to.your.LLM.App.toolbelt.pdf
https://budapestml.hu/2023/en/
https://budapestml.hu/2023/en/
https://github.com/skrawcz/talks/files/11690901/Stefan_Krawczyk_BudapestTalkJune2023_FeatureEngineeringwith.Hamilton_Portability.Lineage.pdf
https://github.com/skrawcz/talks/files/11899331/PyData.British.Cycling.7.June.2023.pdf
https://github.com/skrawcz/talks/files/10830349/Hamilton_.Natively.bringing.software.engineering.best.practices.to.python.data.transformations.-.January.2023.pdf
https://www.featurestoresummit.com/

2022-09 Apache Hamilton: enabling software engineering best practices for data

transformations via generalized dataflow graphs. DEco - First International Workshop on Data

Ecosystems

Event

Slides

2022-09 Apache Hamilton: a modular open source declarative paradigm for high level

modeling of dataflows. CDMS - First International Workshop on Composable Data Management

Systems

Event

Slides

Paper

2022-08 Apache Hamilton: A Python Micro-Framework for tidy scalable Pandas. Scalable

Pandas Meetup

Recording

[Slides](https://github.com/skrawcz/talks/files/9428705/Apache Hamilton.

%40.Ponder.Pandas.meetup.pdf)

2022-08 Scalable feature engineering with Apache Hamilton on Ray. Ray Summit

[Slides](https://github.com/skrawcz/talks/files/9411082/

Submitted.Slides.-.Ray.Summit_.Scalable.feature.engineering.with.Apache

Hamilton.on.Ray.pdf)

2022-07 Apache Hamilton: A Python Micro-Framework for Data / Feature Engineering.

MLOPsWorld Bay Area

Slides

2022-05 Apache Hamilton: a python micro-framework for data / feature engineering at Stitch

Fix. AICamp

Recording

[Slides](https://github.com/skrawcz/talks/files/8691633/AICamp.Apache

Hamilton.Presentation.pdf)

2022-02 [Open Source] Apache Hamilton, a micro framework for creating dataframes, and its

application at Stitch Fix. Apply(Meetup)

Event.

•

◦

◦

•

◦

◦

◦

•

◦

◦

•

◦

•

◦

•

◦

◦

•

◦

55 Get Started

https://dbis.rwth-aachen.de/DEco22/
https://github.com/skrawcz/talks/files/9550914/Submitted.-.DEco.2022_.Hamilton_.enabling.software.engineering.best.practices.for.data.transformations.via.generalized.dataflow.graphs.1.pdf
https://cdmsworkshop.github.io/2022/
https://github.com/skrawcz/talks/files/9550939/CDMS.2022.-.Hamilton_.a.modular.open.source.declarative.paradigm.for.high.level.modeling.of.dataflows.1.pdf
https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper6_StefanKrawczyk.pdf
https://www.youtube.com/watch?v=m_rjCzxQj4c&ab_channel=Ponder
https://github.com/skrawcz/talks/files/9213924/Hamilton_.A.Python.Micro-Framework.for.Data._.Feature.Engineering.pdf
https://www.youtube.com/watch?v=PDGIt37dov8
https://www.applyconf.com/agenda/open-source-hamilton-a-micro-framework-for-creating-dataframes-and-its-application-at-stitch-fix/

Recording

Slides

2021-12 Apache Hamilton an open source micro framework for creating dataframes. SF Python

Meetup

Recording

Slides

📰 External Blogs
For external resources including blogs, see the ecosystem page. Here are some notable blog posts

about Apache Hamilton:

2024-03 RAG: ingestion and chunking using Apache Hamilton and scaling to Ray, Dask, or

PySpark

2024-02 A command line tool to improve your development workflow

2024-02 Monthly Meetup Recap and office hours

2024-02 Using IPython Jupyter Magic commands to improve the notebook experience

2024-02 Building a lightweight experiment manager

2024-01 Customizing Apache Hamilton’s Execution with the new Lifecycle API

2024-01 How well-structured should your data code be?

2024-01 From Dev to Prod: a ML Pipeline Reference Post

2023-12 Winning over hearts and minds at work: ADKAR my favorite change management

approach

2023-11 🚀 We’re launching the Apache Hamilton Dataflow Hub!

2023-10 Separate data I/O from transformation – your future self will thank you.

2023-09 Retrieval augmented generation (RAG) with Streamlit, FastAPI, Weaviate, and Apache

Hamilton!

2023-09 LLMOps: Production prompt engineering patterns with Apache Hamilton

2023-09 Feature Engineering with Apache Hamilton

2023-08 Expressing PySpark Transformations Declaratively with Apache Hamilton

2023-08 Containerized PDF Summarizer with FastAPI and Apache Hamilton

◦

◦

•

◦

◦

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

56 Get Started

https://www.youtube.com/watch?v=CHfrT5OVjlM
https://github.com/skrawcz/talks/blob/main/Public%20ApplyConf2022%20-%20%5BOpen%20Source%5D%20Hamilton%2C%20a%20micro%20framework%20for%20creating%20dataframes%2C%20and%20its%20application%20at%20Stitch%20Fix.pdf
https://www.youtube.com/watch?v=_XUYfwougz4
https://github.com/skrawcz/talks/files/8944605/Python.Meetup.Dec.2021.-.Hamilton_.an.open.source.micro.framework.for.creating.dataframes.pdf
https://blog.dagworks.io/p/rag-ingestion-and-chunking-using
https://blog.dagworks.io/p/rag-ingestion-and-chunking-using
https://blog.dagworks.io/p/a-command-line-tool-to-improve-your
https://blog.dagworks.io/p/monthly-hamilton-meetup-and-office
https://blog.dagworks.io/p/using-ipython-jupyter-magic-commands
https://blog.dagworks.io/p/building-a-lightweight-experiment
https://blog.dagworks.io/p/customizing-hamiltons-execution-with
https://blog.dagworks.io/p/how-well-structured-should-your-data
https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference
https://blog.dagworks.io/p/winning-hearts-and-minds-at-work
https://blog.dagworks.io/p/winning-hearts-and-minds-at-work
https://blog.dagworks.io/p/were-launching-the-hamilton-dataflow
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch
https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch
https://blog.dagworks.io/p/llmops-production-prompt-engineering
https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://blog.dagworks.io/p/expressing-pyspark-transformations
https://blog.dagworks.io/p/containerized-pdf-summarizer-with

2023-08 Dynamic DAGs: Counting Stars with Apache Hamilton

2023-08 Featurization: Integrating Apache Hamilton with Feast

2023-07 Simplify Prefect Workflow Creation and Maintenance with Apache Hamilton

2023-07 Building a maintainable and modular LLM application stack with Apache Hamilton

2023-06 Simplify Airflow DAG Creation and Maintenance with Apache Hamilton

2023-05 Lineage + Apache Hamilton in 10 minutes

2022-11 Apache Hamilton + DBT in 5 minutes

2022-07 Tidy production pandas with Apache Hamilton

2022-06 Developing Scalable Feature Engineering DAGs with Metaflow & Apache Hamilton

2022-05 Apache Hamilton backstory and intro post on TDS

2022-05 Apache Hamilton + Pandas in five minutes

2022-05 Iterating with Apache Hamilton in a Notebook

🎙 Podcasts

2024-03 Apache Hamilton mention in Real Python, about ipython magic command post

2023-06 Exploring the Intersection of DAGs, ML Code, and Complex Code Bases: An Elegant

Solution Unveiled with Stefan Krawczyk of DAGWorks

2022-08 S01 E08 - MLOps Week 8: The MLOps Mindset with Stefan Krawczyk

2022-04 MLOps dla 100 data scientistów (in Polish)

2021-09 Aggressively Helpful Platform teams

Contributing

We are open contributions big and small. See our contributing guidelines.

We also operate under a Code of Conduct, and expect contributors to do the same.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

57 Get Started

https://blog.dagworks.io/p/counting-stars-with-hamilton
https://blog.dagworks.io/p/featurization-integrating-hamilton
https://blog.dagworks.io/p/simplify-prefect-workflow-creation
https://blog.dagworks.io/p/building-a-maintainable-and-modular
https://blog.dagworks.io/p/supercharge-your-airflow-dag-with
https://blog.dagworks.io/p/lineage-hamilton-in-10-minutes-c2b8a944e2e6
https://blog.dagworks.io/p/hamilton-dbt-in-5-minutes-62e4cb63f08f
https://towardsdatascience.com/tidy-production-pandas-with-hamilton-3b759a2bf562
https://outerbounds.com/blog/developing-scalable-feature-engineering-dags
https://towardsdatascience.com/functions-dags-introducing-hamilton-a-microframework-for-dataframe-generation-more-8e34b84efc1d
https://towardsdatascience.com/how-to-use-hamilton-with-pandas-in-5-minutes-89f63e5af8f5
https://towardsdatascience.com/how-to-use-hamilton-with-pandas-in-5-minutes-89f63e5af8f5
https://realpython.com/podcasts/rpp/196/
https://datastackshow.com/podcast/exploring-the-intersection-of-dags-ml-code-and-complex-code-bases-an-elegant-solution-unveiled-with-stefan-krawczyk-of-dagworks/
https://datastackshow.com/podcast/exploring-the-intersection-of-dags-ml-code-and-complex-code-bases-an-elegant-solution-unveiled-with-stefan-krawczyk-of-dagworks/
https://rss.com/podcasts/mlops-weekly/571949/
https://nieliniowy.pl/mlops-dla-100-data-scientistow-stefan-krawczyk-stitch-fix/
https://www.youtube.com/watch?v=az8lXG9v4uo
https://github.com/apache/hamilton/blob/main/CONTRIBUTING.md
https://www.apache.org/foundation/policies/conduct.html

License

Apache Hamilton is released under the Apache 2.0 License.

Usage analytics & data privacy
By default, when using Apache Hamilton, it collects anonymous usage data to help improve

Apache Hamilton and know where to apply development efforts.

We capture three types of events: one when the Driver object is instantiated, one when the

execute() call on the Driver object completes, and one for most Driver object function invocations.

No user data or potentially sensitive information is or ever will be collected. The captured data is

limited to:

Operating System and Python version

A persistent UUID to indentify the session, stored in ~/.hamilton.conf.

Error stack trace limited to Apache Hamilton code, if one occurs.

Information on what features you’re using from Apache Hamilton: decorators, adapters, result

builders.

How Apache Hamilton is being used: number of final nodes in DAG, number of modules, size of

objects passed to execute(), the name of the Driver function being invoked.

Else see Telemetry for how to disable telemetry.

Otherwise we invite you to inspect telemetry.py for details.

•

•

•

•

•

58 Get Started

https://github.com/apache/hamilton/blob/main/LICENSE

Concepts

Now that you’re familiar with the basics and have run your own dataflow, let’s dive into the

concepts that makes Apache Hamilton unique and powerful.

Glossary

Before we dive into the concepts, let’s clarify the terminology we’ll be using:

Directed Acyclic

Graph (DAG)

A directed acyclic graph is a computer science/mathematics term for

representing the world with “nodes” and “edges”, where “edges” only

flow in one direction. It is called a graph because it can be drawn and

visualized.

Dataflow The organization of functions and dependencies. This is a DAG – it’s

directed (one function is running before the other), acyclic, (there are

no cycles, i.e., no function runs before itself), and a graph (it is easily

naturally represented by nodes and edges) and can be represented

visually. See Functions, nodes & dataflow.

Node | Hamilton

node | Transform

A single step in the dataflow DAG representing a computation –

usually 1:1 with functions but decorators break that pattern – in which

case multiple transforms trace back to a single function. See

Functions, nodes & dataflow.

Function | Python

function | Hamilton

function | Node

definition

A Python function written by a user to create a single node (in the

standard case) or many (using function modifiers). See Functions,

nodes & dataflow.

Module | Python

module

Python code organized into a .py file. These are natural groupings of

functions that turn to a set of nodes. See Code Organization for more

details.

59 Concepts

https://en.wikipedia.org/wiki/Directed_acyclic_graph

Driver | Hamilton

Driver

An object that loads Python modules to build a dataflow. It is

responsible for visualizing and executing the dataflow. See Driver.

script | runner |

driver code

The piece of code where you create the Driver and execute the

dataflow to get results.

Config Data that dictates the way the DAG is constructed. See Driver.

Function modifiers |

Decorators

A function that modifies how your Hamilton function is compiled into

a Hamilton node. See Function modifiers.

Functions, nodes & dataflow

On this page, you’ll learn how Apache Hamilton converts your Python functions into nodes and

then creates a dataflow.

Functions

Apache Hamilton requires you to write your code using functions. To get started, you simply need

to:

Annotate the type of the function parameters and return value.

Specify the function dependencies with the parameter names.

Store your code in Python modules (.py files).

Since your code doesn’t depend on special “Apache Hamilton code”, you can reuse it however you

want!

Specifying dependencies
In Apache Hamilton, you define dependencies by matching parameter names with the names of

other functions. Below, the function name and return type A() -> int match the parameter A:

int found in functions B() and C() .

def A() -> int:
"""Constant value 35"""

•

•

•

60 Concepts

https://docs.python.org/3/library/typing.html

return 35

def B(A: int) -> float:
"""Divide A by 3"""
return A / 3

def C(A: int, B: float) -> float:
"""Square A and multiply by B"""
return A**2 * B

The figure shows how Apache Hamilton automatically assembled the functions A() , B() , and

C() .

Helper function
You can prefix a function name with an underscore (_) to prevent it from being included in a

dataflow. Below, A() and B() are part of the dataflow, but _round_three_decimals() isn’t.

def _round_three_decimals(value: float) -> float:
"""Round value by 3 decimals"""
return round(value, 3)

def A(external_input: int) -> int:
"""Modulo 3 of input value"""
return external_input % 3

def B(A: int) -> float:
"""Divide A by 3"""
b = A / 3
return _round_three_decimals(b)

Function naming tips
Apache Hamilton strongly agrees with the Zen of Python #2: “Explicit is better than implicit”.

Meaningful function names help document what functions do, so don’t shy away from longer

names. If you were to come across a function named life_time_value versus ltv versus l_t_v ,

which one is most obvious? Remember your code usually lives a lot longer than you ever think it

will.

61 Concepts

https://peps.python.org/pep-0020/

Unlike the common practice of including meaningful verbs in function names (e.g.,

get_credentials() , statistical_test()), with Apache Hamilton, the function name should

more closely align with nouns. That’s because the function name determines the node name and

how data will be queried. Therefore, names that describe the node result rather than its action

may be more readable (e.g., credentials() , statistical_results()).

Nodes

A node is a single “operation” or “step” in a dataflow. Apache Hamilton users write Python

functions that Apache Hamilton converts into nodes. User never directly create nodes.

Anatomy of a node
The following figure and table detail how a Python function maps to a Hamilton node.

id Function components Node components

1 Function name and return type annotation Node name and type

2 Parameter names and type annotations Node dependencies

3 Docstring Description of the node return value

62 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/function_anatomy.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/function_anatomy.png

id Function components Node components

4 Function body Implementation of the node

Since functions almost always map to nodes 1-to-1, the two terms are often used interchangeably.

However, there are exceptions that we’ll discuss later in this guide.

Dataflow

From a collection of nodes, Apache Hamilton automatically assembles the dataflow. For each

node, it creates edges between itself and its dependencies, resulting in a dataflow (or a graph in

more mathematical terms).

From the user perspective, you give Apache Hamilton a Python module containing your functions

and it will generate your dataflow! This is a key difference with popular orchestration / pipeline /

workflow frameworks (Airflow, Kedro, Prefect, VertexAI, SageMaker, etc.)

How other frameworks build graphs
In most frameworks, you first define nodes / steps / tasks / components. Then, you need to create

your dataflow by explicitly specifying the relationship between each node.

Readability
In that case, the code for step A doesn’t tell you how it relates step B or the broader dataflow.

Apache Hamilton solves this problem by tying functions, nodes, and dataflow definitions in a

single place. The ratio of reading to writing code can be as high as 10:1, especially for complex

dataflows, so optimizing for readability is high-value.

Maintainability
Typically, editing a dataflow (new feature, debugging, etc.) alters both what a node does and how

the dataflow is structured. Consequently, changes to step A require you to manually ensure

consistent edits to the definition of dataflows, which is likely in another file. In enterprise settings,

it can become difficult to discover and track every location where step A is used (potentially 10s

or 100s of pipelines), increasing the likelihood of breaking changes. Apache Hamilton avoids this

problem entirely because changes to the node definitions, and thus the dataflow, will propagate

to all places the code is used. This greatly improves maintainability and development speed by

facilitating code changes.

63 Concepts

https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://www.goodreads.com/quotes/835238-indeed-the-ratio-of-time-spent-reading-versus-writing-is

Recap

Users write Python functions into modules with proper naming and typing

Helper functions use an underscore prefix (e.g., _helper())

Apache Hamilton converts functions into nodes

Apache Hamilton automatically assembles nodes into a dataflow

Next step

So far, we learned how to write Apache Hamilton code for our dataflow. Next, we’ll explore how we

can effectively

Convert a Python module into dataflow

Visualize a dataflow

Execute a dataflow

Gather and store results of a dataflow

Driver

Once you defined your dataflow in a Python module, you need to create a Hamilton Driver to

execute it. This page details the Driver basics, which include:

Defining the Driver

Visualizing the dataflow

Executing the dataflow

For this page, let’s pretend we defined the following module my_dataflow.py :

my_dataflow.py
def A() -> int:

"""Constant value 35"""
return 35

def B(A: int) -> float:
"""Divide A by 3"""
return A / 3

•

•

•

•

1.

2.

3.

4.

1.

2.

3.

64 Concepts

def C(A: int, B: float) -> float:
"""Square A and multiply by B"""
return A**2 * B

Define the Driver

First, you need to create a driver.Driver object. This is done by passing Python modules to the

driver.Builder() object along other configurations and calling .build() .

The most basic Driver is built like this:

run.py
from hamilton import driver
import my_dataflow # <- module containing functions to define
dataflow

variable `dr` is of type `driver.Driver`
it is created by a `driver.Builder` object
dr = driver.Builder().with_modules(my_dataflow).build()

The .build() method will fail if the definition found in my_dataflow is invalid (e.g., type

mismatch, missing annotations) allowing you to fix issues and iterate quickly.

The Driver is defined in the context you intend to run, separately from your dataflow module. It

can be in a script, notebook, server, web app, or anywhere else Python can run. As a convention,

most Apache Hamilton code examples use a script named run.py .

Visualize the dataflow

Once you successfully created your Driver, you can visualize the entire dataflow with the following:

run.py
from hamilton import driver
import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).build()
dr.display_all_functions("dag.png") # outputs a file dag.png
dr.display_all_functions() # to view directly in a notebook

Dataflow visualizations are useful for documenting your project and quickly making sense of what

a dataflow does (see Visualization).

65 Concepts

Execute the dataflow

From the Driver, you can request the value of specific nodes by calling

dr.execute(final_vars=[...]) , where final_vars is a list of node names. By default, results are

returned in a dictionary with {node_name: result} .

The following requests the node C and visualizes the dataflow execution:

run.py
from hamilton import driver
import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).build()
dr.visualize_execution(["C"], "execute_c.png")
results = dr.execute(["C"])

print(results["C"]) # access results dictionary

The Driver automatically determines the minimum required path to compute requested nodes.

See the respective outputs for dr.visualize_execution(["C"]) and

dr.visualize_execution(["B"]) :

Development tips

With Apache Hamilton, development time is mostly spent writing functions for your dataflow in a

Python module. Rebuilding the Driver and visualizing your dataflow as you make changes helps

iterative development. Find below two useful development workflows.

66 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/execute_c.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/execute_c.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/execute_b.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/execute_b.png

With a Python module
One approach is to define the dataflow and the Driver in the same file (e.g., my_dataflow.py).

Then, you can execute it as a script with python my_dataflow.py to rebuild the Driver and

visualize your dataflow. This ensures your dataflow definition remains valid as you make changes.

For example:

my_dataflow.py
def A() -> int:

"""Constant value 35"""
return 35

... more functions

is True when calling `python my_dataflow.py`
if __name__ == "__main__":

from hamilton import driver
__main__ refers to the file itself
and yes, a file can import itself as a module!
import __main__

dr = driver.Builder().with_modules(__main__).build()
dr.display_all_functions("dag.png")
dr.execute(["C"])

With a Jupyter notebook
Another approach is to define the dataflow in a module (e.g., my_dataflow.py) and reload the

Driver in a Jupyter notebook. This allows for a more interactive experience when you want to

inspect the results of functions as you’re developing.

By default, Python only imports a module once and subsequent import statements don’t reload

the module. We reload our imported module with importlib.reload(my_dataflow) and rebuild

the Driver as we make changes to our dataflow.

notebook.ipynb
%%cell 1
import importlib
from hamilton import driver
import my_dataflow

%%cell 2
this will reload an already imported module
importlib.reload(my_dataflow)

rebuild the `Driver` with the reloaded module and execute again
dr = driver.Builder().with_modules(my_dataflow).build()

67 Concepts

dr.display_all_functions("dag.png")
results = dr.execute(["C"])

%%cell 3
do something with results
print(results["C"])

Learn other Jupyter development tips on the page Jupyter notebooks.

Recap

The Driver automatically assembles a dataflow from Python modules

The Driver visualizes the dataflow created from your code

Functions are executed by requesting nodes to driver .execute()

Next step

Now, you know the basics of authoring and executing Apache Hamilton dataflows! We encourage

you to:

Write some code with our interactive tutorials

Kickstart your project with community resources

The next Concepts pages cover notions to write more expressive and powerful code. If you feel

stuck or constrained with the basics, it’s probably a good time to (re)visit them. They include:

Materialization: interact with external data sources

Function modifiers: write expressive dataflows without repeating code

Builder: how to customize your Driver

Visualization

After assembling the dataflow, several visualization features become available to the Driver.

Apache Hamilton dataflow visualizations are great for documentation because they are directly

derived from the code.

•

•

•

•

•

•

•

•

68 Concepts

https://www.tryhamilton.dev/intro
file:///home/runner/work/hamilton/hamilton/docs/_build/ecosystem/index.html

On this page, you’ll learn:

the available visualization functions

how to answer lineage questions

how to apply a custom style to your visualization

For this page, we’ll assume we have the following dataflow and Driver:

my_dataflow.py
def A() -> int:

"""Constant value 35"""
return 35

def B(A: int) -> float:
"""Divide A by 3"""
return A / 3

def C(A: int, B: float) -> float:
"""Square A and multiply by B"""
return A**2 * B

def D(A: int) -> str:
"""Say `hello` A times"""
return "hello "

def E(D: str) -> str:
"""Say hello*A world"""
return D + "world"

run.py
from hamilton import driver
import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).build()

Available visualizations

View full dataflow
During development and for documentation, it’s most useful to view the full dataflow and all

nodes.

dr.display_all_functions(...)

•

•

•

69 Concepts

View executed dataflow
Visualizing exactly which nodes were executed is more helpful than viewing the full dataflow when

logging driver execution (e.g., ML experiments).

You should produce the visualization before executing the dataflow. Otherwise, the figure won’t be

generated if the execution fails first.

pull variables to ensure .execute() and
.visualize_execution() receive the same
arguments
final_vars = ["A", "C", "E"]
inputs = dict()
overrides = dict(B=36.1)

dr.visualize_execution(
final_vars=final_vars,
inputs=inputs,
overrides=overrides,

)
dr.execute(

final_vars=final_vars,
inputs=inputs,
overrides=overrides,

)

70 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/display_all.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/display_all.png

An equivalent method is available if you’re using materialization.

materializer = to.json(
path="./out.json",
dependencies=["C", "E"],
combine=base.DictResult(),
id="results_to_json",

)
additional_vars = ["A"]
inputs = dict()
overrides = dict(B=36.1)

dr.visualize_materialization(
materializer,
additional_vars=additional_vars,
inputs=inputs,
overrides=dict(B=36.1),
output_file_path="dag.png"

)
dr.materialize(

materializer,
additional_vars=additional_vars,
inputs=inputs,
overrides=dict(B=36.1),

)

71 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/execution.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/execution.png

Learn more about Materialization.

View node dependencies

Representing data pipelines, ML experiments, or LLM applications as a dataflow helps reason

about the dependencies between operations. The Hamilton Driver has the following utilities to

select and return a list of nodes (to learn more Lineage + Apache Hamilton):

.what_is_upstream_of(*node_names: str)

.what_is_downstream_of(*node_names: str)

.what_is_the_path_between(upstream_node_name: str, downstream_node_name: str)

These functions are wrapped into their visualization counterparts:

Display ancestors of B :

dr.display_upstream(["B"])

Display descendants of D and its immediate parents (A only).

•

•

•

72 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/materialization.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/materialization.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/upstream.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/upstream.png

dr.display_downstream(["D"])

Filter nodes to the necessary path:

dr.visualize_path-between("A", "C")
dr.visualize_path-between("C", "D") would return
ValueError: No path found between C and D.

Configure your visualization

All of the above visualization functions share parameters to customize the visualization (e.g., hide

legend, hide inputs). Learn more by reviewing the API reference for Driver.display_all_functions();

parameters should apply to all other visualizations.

Custom node labels with display_name
Use the @tag decorator with display_name to show human-readable labels in visualizations

while keeping valid Python identifiers as function names. This is useful for creating presentation-

ready diagrams or adding business-friendly names:

73 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/downstream.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/downstream.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/between.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/between.png
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions

from hamilton.function_modifiers import tag

@tag(display_name="Parse Raw JSON")
def parse_raw_json(raw_data: str) -> dict:

return json.loads(raw_data)

@tag(display_name="Transform to DataFrame")
def transform_to_df(parse_raw_json: dict) -> pd.DataFrame:

return pd.DataFrame(parse_raw_json)

When visualized, nodes will display “Parse Raw JSON” and “Transform to DataFrame” instead of

their function names. This keeps your code Pythonic while making visualizations more readable

for stakeholders.

Note that display_name only affects visualization labels - the actual node names used in code

and execution remain the function names.

Apply custom style
By default, each node is labeled with name and type, and stylized (shape, color, outline, etc.). By

passing a function to the parameter custom_style_function , you can customize the node style

based on its attributes. This pairs nicely with the @tag function modifier (learn more Add

metadata to a node)

Your own custom style function must:

Use only keyword arguments, taking in node and node_class .

Return a tuple (style, node_class, legend_name) where:

style : dictionary of valid graphviz node style attributes.

node_class : class used to style the default visualization - we recommend returning

the input node_class

legend_name : text to display in the legend. Return None for no legend entry.

For the execution-focused visualizations, your custom styles are applied before the modifiers

for outputs and overrides are applied.

If you need more customization, we suggest getting the graphviz object produced, and modifying it

directly.

This online graphviz editor can help you get started!

def custom_style(
*, node: graph_types.HamiltonNode, node_class: str

1.

2.

◦

◦

◦

3.

74 Concepts

https://edotor.net/

) -> Tuple[dict, Optional[str], Optional[str]]:
"""Custom style function for the visualization.

 :param node: node that Apache Hamilton is styling.
 :param node_class: class used to style the default visualization
 :return: a triple of (style, node_class, legend_name)
 """

if node.type in [float, int]:
style = ({"fillcolor": "aquamarine"}, node_class, "numbers")

else:
style = ({}, node_class, None)

return style

dr.display_all_functions(custom_style_function=custom_style)

See the full code example for more details.

Materialization

So far, we executed our dataflow using the Driver.execute() method, which can receive an

inputs dictionary and return a results dictionary (by default). However, you can also execute

code with Driver.materialize() to directly read from / write to external data sources (file,

database, cloud data store).

On this page, you’ll learn:

How to load and save data in Apache Hamilton

Why use materialization

What are DataSaver and DataLoader objects

•

•

•

75 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/custom_style.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/custom_style.png
https://github.com/apache/hamilton/tree/main/examples/styling_visualization

The difference between .execute() and .materialize()

The basics to write your own materializer

Different ways to write the same dataflow

Below are 6 ways to write a dataflow that:

loads a dataframe from a parquet file

preprocesses the dataframe

trains a machine learning model

saves the trained model

The first two options don’t use the concept of materialization and the next four do.

Without materialization

From nodes From Driver

import pandas as pd
import xgboost

def raw_df(data_path: str) -> pd.DataFrame:
"""Load raw data from parquet file"""
return pd.read_parquet(data_path)

def preprocessed_df(raw_df: pd.DataFrame) ->
pd.DataFrame:

"""preprocess raw data"""
return ...

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:

"""Train model on preprocessed data"""
return ...

import pandas as pd
import xgboost

def preprocessed_df(raw_df: pd.DataFrame) ->
pd.DataFrame:

"""preprocess raw data"""
return ...

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:

"""Train model on preprocessed data"""
return ...

if __name__ == "__main__":
import __main__

from hamilton import driver

•

•

1.

2.

3.

4.

1. 1.

76 Concepts

From nodes From Driver

def save_model(model: xgboost.XGBModel, model_dir:
str) -> None:

"""Save trained model to JSON format"""
model.save_model(f"{model_dir}/model.json")

if __name__ == "__main__":
import __main__

from hamilton import driver

dr =
driver.Builder().with_modules(__main__).build()

data_path = "..."
model_dir = "..."
inputs = dict(data_path=data_path,

model_dir=model_dir)
final_vars = ["save_model"]
results = dr.execute(final_vars, inputs=inputs)
results["save_model"] == None

dr =
driver.Builder().with_modules(__main__).build()

data_path = "..."
model_dir = "..."
inputs = dict(raw_df=pd.read_parquet(data_path))
final_vars = ["model"]

results = dr.execute(final_vars, inputs=inputs)
results["model"].save_model(f"{model_dir}/

model.json")

Observations:

These two approaches load and save data using pandas and xgboost without any Apache

Hamilton constructs. These methods are transparent and simple to get started, but as the

number of node grows (or across projects) defining one node per parquet file to load

introduces a lot of boilerplate.

1. 1.

1.

77 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/node_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/node_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/driver_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/driver_ctx.png

Using 1) from nodes improves visibility by including loading & saving in the dataflow (as

illustrated).

Using 2) from ``Driver`` facilitates modifying loading & saving before code execution when

executing the code, without modifying the dataflow itself. It is particularly useful when moving

from development to production.

Limitations
Apache Hamilton’s approach to “materializations” aims to solve 3 limitations:

Redundancy: deduplicate loading & saving code to improve maintainability and debugging

Observability: include loading & saving in the dataflow for full observability and allow hooks

Flexibility: change the loading & saving behavior without editing the dataflow

With materialization

Simple Materialization Static materializers Dynamic materializers Function modifiers

import pandas as pd
import xgboost

from hamilton.function_modifiers import dataloader,
datasaver
from hamilton.io import utils

@dataloader()
def raw_df(data_path: str) -> tuple[pd.DataFrame,
dict]:

"""Load raw data from parquet file"""
df = pd.read_parquet(data_path)
return df,

utils.get_file_and_dataframe_metadata(data_path, df)

def preprocessed_df(raw_df: pd.DataFrame) ->
pd.DataFrame:

"""preprocess raw data"""
return ...

import pandas as pd
import xgboost

def preprocessed_df(raw_df: pd.DataFrame) ->
pd.DataFrame:

"""preprocess raw data"""
return ...

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:

"""Train model on preprocessed data"""
return ...

if __name__ == "__main__":
import __main__

from hamilton import driver
from hamilton.io.materialization import from_, to

data_path = "..."

import pandas as pd
import xgboost

def preprocessed_df(raw_df: pd.DataFrame) ->
pd.DataFrame:

"""preprocess raw data"""
return ...

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:

"""Train model on preprocessed data"""
return ...

if __name__ == "__main__":
import __main__

from hamilton import driver
from hamilton.io.materialization import from_, to

data_path = "..."

import pandas as pd
import xgboost

from hamilton.function_modifiers import load_from,
save_to, source

source("data_path") allows to read the input value
for `data_path`
@load_from.parquet(path=source("data_path"))
def preprocessed_df(raw_df: pd.DataFrame) ->
pd.DataFrame:

"""preprocess raw data"""
return ...

@save_to.json(path=source("model_path"))
def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:

"""Train model on preprocessed data"""
return ...

2.

3.

1.

2.

3.

1. 1. 1. 1.

78 Concepts

Simple Materialization Static materializers Dynamic materializers Function modifiers

def model(preprocessed_df: pd.DataFrame) ->
xgboost.XGBModel:

"""Train model on preprocessed data"""
return ...

@datasaver()
def save_model(model: xgboost.XGBModel, model_dir:
str) -> dict:

"""Save trained model to JSON format"""
model.save_model(f"{model_dir}/model.json")
return utils.get_file_metadata(f"{model_dir}/

model.json")

if __name__ == "__main__":
import __main__

from hamilton import driver

dr =
driver.Builder().with_modules(__main__).build()

data_path = "..."
model_dir = "..."
inputs = dict(data_path=data_path,

model_dir=model_dir)
final_vars = ["save_model"]
results = dr.execute(final_vars, inputs=inputs)
results["save_model"] == None

model_dir = "..."
materializers = [

from_.parquet(target="raw_df",
path=data_path),

to.json(
id="model__json", # name of the

DataSaver node
dependencies=["model"],
path=f"{model_dir}/model.json",

),
]
dr = (

driver.Builder()
.with_modules(__main__)
.with_materializers(*materializers)
.build()

)

results = dr.execute(["model", "model__json"])
results["model"] <- the model
results["model__json"] <- metadata from saving

the model

model_dir = "..."
materializers = [

from_.parquet(target="raw_df",
path=data_path),

to.json(
id="model__json", # name of the

DataSaver node
dependencies=["model"],
path=f"{model_dir}/model.json",

),
]
dr =

driver.Builder().with_modules(__main__).build()
executes all `to.` materializers; use

`additional_vars` to execute other nodes
metadata, results =

dr.materialize(*materializers,
additional_vars=["model"])

results["model"] <- the model

metadata["model__json"] <- metadata from saving the
model

if __name__ == "__main__":
import __main__

from hamilton import driver

dr =
driver.Builder().with_modules(__main__).build()

data_path = "..."
model_path = "..."
inputs = dict(data_path=data_path,

model_path=model_path)
final_vars = ["save.model", "model"]
results = dr.execute(final_vars, inputs=inputs)
results["model"] <- the model
results["save.model"] <- metadata from saving

the model

1. 1. 1. 1.

79 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/simple_materializer_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/simple_materializer_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/static_materializer_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/static_materializer_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/dynamic_materializer_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/dynamic_materializer_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/decorator_ctx.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/decorator_ctx.png

Simple Materialization
When you don’t need to hide the implementation details of how you read and write, but you want

to track what was read and written, you need to expose extra metadata. This is where the

@datasaver() and @dataloader() decorators come in. They allow you to return metadata about

what was read and written, and this metadata is then used to track what was read and written.

This is our recommended first step when you’re starting to use materialization in Apache

Hamilton.

Static materializers
Passing from_ and to Apache Hamilton objects to Builder().with_materializers() injects into

the dataflow standardized nodes to load and save data. It solves the 3 limitations highlighted in

the previous section:

Redundancy ✅: Using the from_ and to Apache Hamilton constructs reduces the boilerplate

to load and save data from common formats (JSON, parquet, CSV, etc.) and to interact with 3rd

party libraries (pandas, matplotlib, xgboost, dlt, etc.)

Observability ✅: Loaders and savers are part of the dataflow. You can view them with

Driver.display_all_functions() and execute nodes by requesting them with

Driver.execute() .

Flexibility ✅: The loading and saving behavior is decoupled from the dataflow and can

modified easily when creating the Driver and executing code.

Dynamic materializers
The dataflow is executed by passing from_ and to objects to Driver.materialize() instead of

the regular Driver.execute() . This approach ressembles 2) from Driver:

 Note

Driver.materialize() can receive data savers (from_) and loaders (to) and will execute all

to passed. Like Driver.execute() , it can receive inputs , and overrides , but instead of

final_vars it receives additional_vars .

Redundancy ✅: Uses from_ and to Apache Hamilton constructs.

Observability 🚸: Materializers are visible with Driver.visualize_materialization() , but can’t

be introspected otherwise. Also, you need to rely on Driver.materialize() which has a

different call signature.

1.

2.

3.

1.

2.

80 Concepts

Flexibility ✅: Loading and saving is decoupled from the dataflow.

 Note

Using static materializers is typically preferrable. Static and dynamic materializers can be used

together with dr = Builder.with_materializers().build() and later dr.materialize() .

Function modifiers
By adding @load_from and @save_to function modifiers (Load and save external data) to

Hamilton functions, materializers are generated when using Builder.with_modules() . This

approach ressembles 1) from Driver:

 Note

Under the hood, the @load_from modifier uses the same code as from_ to load data, same

for @save_to and to .

Redundancy 🚸: Using @load_from and @save_to reduces redundancy. However, to make

available to multiple nodes a loaded table, you would need to decorate each node with the

same @save_to . Also, it might be impractical to decorate dynamically generated nodes (e.g.,

when using the @parameterize function modifier).

Observability ✅: Loaders and savers are part of the dataflow.

Flexibility 🚸: You can modify the path and materializer kwargs at runtime using source() in

the decorator definition, but you can’t change the format itself (e.g., from parquet to CSV).

 Note

It can be desirable to couple loading and saving to the dataflow using function modifiers. It

makes it clear when reading the dataflow definition which nodes should load or save data

using external sources.

3.

1.

2.

3.

81 Concepts

DataLoader and DataSaver

In Apache Hamilton, DataLoader and DataSaver are classes that define how to load or save a

particular data format. Calling Driver.materialize(DataLoader(), DataSaver()) adds nodes to

the dataflow (see visualizations above).

Here are simplified snippets for saving and loading an XGBoost model to/from JSON.

DataLoader DataSaver

import dataclasses
from os import PathLike
from typing import Any,
Collection, Dict, Tuple, Type,
Union

import xgboost

from hamilton.io import utils
from hamilton.io.data_adapters
import DataLoader

@dataclasses.dataclass
class
XGBoostJsonReader(DataLoader):

path: Union[str, bytearray,
PathLike]

@classmethod
def applicable_types(cls) ->

Collection[Type]:
return [xgboost.XGBModel]

def load_data(self, type_:
Type) -> Tuple[xgboost.XGBModel,
Dict[str, Any]]:

uses the XGBoost library
model = type_()

model.load_model(self.path)
metadata =

utils.get_file_metadata(self.path)
return model, metadata

@classmethod

import dataclasses
from os import PathLike
from typing import Any,
Collection, Dict, Type, Union

import xgboost

from hamilton.io import utils
from hamilton.io.data_adapters
import DataSaver

@dataclasses.dataclass
class
XGBoostJsonWriter(DataSaver):

path: Union[str, PathLike]

@classmethod
def applicable_types(cls) ->

Collection[Type]:
return [xgboost.XGBModel]

def save_data(self, data:
xgboost.XGBModel) -> Dict[str,
Any]:

uses the XGBoost library
data.save_model(self.path)
return

utils.get_file_metadata(self.path)

@classmethod
def name(cls) -> str:

return "json" # the name
for `to.{name}`

82 Concepts

DataLoader DataSaver

def name(cls) -> str:
return "json" # the name

for `from_.{name}`

To define your own DataSaver and DataLoader, the Apache Hamilton XGBoost extension provides a

good example

Function modifiers

In Functions, nodes & dataflow, we discussed how to write Python functions to define Hamilton

nodes and dataflow. In the basic case, each function defines one node.

Yet, it’s common to need nodes with similar purposes but different dependencies, such as

preprocessing training and evaluation datasets. In that case, using a function modifier can help

create both nodes from a single Hamilton function!

On this page, you’ll learn:

Python decorators basics

Add metadata to node

Validate node output

Split node output into n nodes

Define one function, create n nodes

Select nodes to load from module

This page covers important conceptual notions but is not exhaustive. To find details about all

function modifiers see API references Decorators.

Decorators

Python decorators are statements that begin with @ located above function definitions. Apache

Hamilton uses decorators to implement function modifiers and reduce the amount of code you

have to write to make expressive dataflows.

•

•

•

•

•

•

83 Concepts

https://github.com/apache/hamilton/blob/main/hamilton/plugins/xgboost_extensions.py

Multiple decorators can be stacked on a single function and are applied from bottom to top.

Apache Hamilton decorators should be insensitive to ordering, but be careful with non-Apache

Hamilton decorators (e.g., @retries, @time). See this decorator primer to learn more.

Function modifiers were designed to have clear semantics, so you should be able to figure out

what they do from their name. For instance, the following code adds metadata using @tag and

conducts some checks over the return value with check_output .

@tag(owner='Data-Science', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0),
allow_nans=False)
def height_zero_mean_unit_variance(

height_zero_mean: pd.Series, height_std_dev: pd.Series
) -> pd.Series:
"""Zero mean unit variance value of height"""
return height_zero_mean / height_std_dev

Reminder: Anatomy of a node

This section from the page Functions, nodes & dataflow details how a Python function maps to a

Hamilton node. We’ll reuse these terms to explain the function modifiers.

id Function components Node components

1 Function name and return type annotation Node name and type

84 Concepts

https://realpython.com/primer-on-python-decorators/
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/function_anatomy.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/function_anatomy.png

id Function components Node components

2 Parameter names and type annotations Node dependencies

3 Docstring Description of the node return value

4 Function body Implementation of the node

Add metadata to a node

@tag
The @tag decorator doesn’t modify the function/node. It attaches metadata to the node that can

be used by Apache Hamilton and you. It can help tag nodes by ownership, data source, version,

infrastructure, and anything else.

For example, this tags the associated data product and the sensitivity of the data.

from hamilton.function_modifiers import tag

@tag(data_product='final', pii='true')
def final_column(

intermediate_column: pd.Series
) -> pd.Series: ...

Query node by tag
Once you built your Driver, you can get all nodes with Driver.list_available_variables() and

then filter them by tag. The following gets all the nodes for which data_product="final" and

passes them to driver.execute()

dr = driver.Builder().with_modules(my_module).build()
tagged_nodes = [node.name for node in dr.list_available_variables()

if 'final' == node.tags.get('data_product')]

results = dr.execute(tagged_nodes)

85 Concepts

Customize visualization by tag
Tags are also accessible to the visualization styling feature, allowing you to highlight important

nodes for your documentation. See Apply custom style for details.

@schema
The @schema function modifiers provides a lightweight way to add type metadata to dataframes. It

works by specifying tuples of (field_name, field_type) with types as strings.

from hamilton.function_modifiers import schema

@schema.output(
("a", "int"),
("b", "float"),
("c", "str")

)
def clean_df(raw_df: pd.DataFrame) -> pd.DataFrame:

return pd.DataFrame.from_records(
{"a": [1], "b": [2.0], "c": ["3"]}

)

86 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/custom_viz.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/custom_viz.png

Validate node output

The @check_output function modifiers are applied on the node output / function return and

therefore don’t directly affect node behavior. Decorators separate data validation from the

function body where the core logic is. It improves function readability, and it helps reusing and

maintaining standardized checks across multiple functions.

 Note

In the future, validation capabilities may be added to @schema . For now, it’s only added

metadata.

@check_output*
The @check_output implements many data checks for Python objects and DataFrame/Series

including data type, min/max/between, count, fraction of null/nan values, and allow null/nan.

Failed checks are either logged (importance="warn") or make the dataflow fail

(importance="fail").

The next snippet checks if the returned Series is of type np.int32 , which is non-nullable, and if

its within the range 0-100, and logs failed checks. This allows us to manually review instances

where data validation failed.

from hamilton.function_modifiers import check_output

@check_output(data_type=np.int32, range=(0,100), importance="warn")
def quiz_grade(quiz_df: pd.DataFrame) -> pd.Series:

return ...

87 Concepts

To see all available validators, go to the file hamilton/data_quality/default_validators.py

and view the variable AVAILABLE_DEFAULT_VALIDATORS .

The function modifier @check_output_custom allows you to define your own validator.

Validators inherit the base.BaseDefaultValidator class and are essentially standardized

Hamilton node definitions (instead of functions). See hamilton/data_quality/

default_validators.py or reach out on Slack for help!

Note: @check_output_custom decorators cannot be stacked, but they instead can take multiple

validators.

 Note

As you see, validation steps effectively add nodes to the dataflow and the visualization. This

helps trace which specific check failed for instance, but it can make visualizations harder to

read.

You can hide these nodes using the custom visualization style feature (see Apply custom style)

by applying the style {"style": "invis"} to nodes with the tag

hamilton.data_quality.source_node . This will only keep the original nodes and their _raw

variant.

pandera support
Apache Hamilton has a pandera plugin for data validation that you can install with pip install

sf-hamilton[pandera] . Then, you can pass a pandera schema (for DataFrame or Series) to

@check_output(schema=...) .

•

•

•

88 Concepts

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

pydantic support
Apache Hamilton also supports data validation of pydantic models, which can be enabled with

pip install sf-hamilton[pydantic] . With pydantic installed, you can pass any subclass of the

pydantic base model to @check_output(model=...) . Pydantic validation is performed in strict

mode, meaning that raw values will not be coerced to the model’s types. For more information on

strict mode see the pydantic docs.

Split node output into n nodes

Sometimes, your node outputs multiple values that you would like to name and make available to

other nodes. These function modifiers act on the node output / function return.

 Note

To add metadata to extracted nodes, use @tag_output , which works just like @tag .

@unpack_fields
A good example is splitting a dataset into training, validation, and test splits. We use

@unpack_fields , which requires specifying the names of the fields to extract. The function must

return a tuple with at least as many elements as there are specified fields. Note that selecting a

subset of the tuple or using an indeterminate tuple size is also possible.

from typing import Tuple
from hamilton.function_modifiers import unpack_fields

@unpack_fields("X_train", "X_validation", "X_test")
def dataset_splits(X: np.ndarray) -> Tuple[np.ndarray, np.ndarray,
np.ndarray]:

"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return X_train, X_validation, X_test

89 Concepts

https://docs.pydantic.dev/latest/concepts/strict_mode/

Now, X_train , X_validation , and X_test are available to other nodes and can be queried with

.execute() . However, since dataset_splits is itself a node, you can query it to obtain all splits

in a single tuple!

@extract_fields
Additionally, we can extract fields from an output dictionary using @extract_fields . The function

must return a dictionary that contains, at a minimum, those keys specified in the decorator. In this

case, you can specify a dictionary of fields and their types:

from typing import Dict
from hamilton.function_modifiers import extract_fields

@extract_fields(dict(# fields specified as a dictionary
X_train=np.ndarray,
X_validation=np.ndarray,
X_test=np.ndarray,

))
def dataset_splits(X: np.ndarray) -> Dict:

"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(

X_train=X_train, # keys match those from @extract_fields
X_validation=X_validation,
X_test=X_test,

)

90 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/extract_fields.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/extract_fields.png

Or if you are using a generic dictionary, you can specify solely the field names.

from typing import Dict
from hamilton.function_modifiers import extract_fields

@extract_fields("X_train", "X_validation", "X_test") # field names
only
def dataset_splits(X: np.ndarray) -> Dict[str, np.ndarray]: #
generic dict

"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(

X_train=X_train,
X_validation=X_validation,
X_test=X_test,

)

If you are using a TypedDict, you can specify the just field names.

from typing import TypedDict
from hamilton.function_modifiers import extract_fields

class DatasetSplits(TypedDict):
X_train: np.ndarray
X_validation: np.ndarray
X_test: np.ndarray

@extract_fields("X_train", "X_validation", "X_test")
def dataset_splits(X: np.ndarray) -> DatasetSplits:

"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(

X_train=X_train,
X_validation=X_validation,

91 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/extract_fields.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/extract_fields.png

X_test=X_test,
)

Or you can leave the field names empty and extract all fields from the TypedDict.

from typing import TypedDict
from hamilton.function_modifiers import extract_fields

class DatasetSplits(TypedDict):
X_train: np.ndarray
X_validation: np.ndarray
X_test: np.ndarray

@extract_fields(DatasetSplits) # field names only
def dataset_splits(X: np.ndarray) -> DatasetSplits:

"""Randomly split data into train, validation, test"""
X_train, X_validation, X_test = random_split(X)
return dict(

X_train=X_train,
X_validation=X_validation,
X_test=X_test,

)

Again, X_train , X_validation , and X_test are now available to other nodes, or you can query

the dataset_splits node to retrieve all splits in a dictionary.

@extract_columns
@extract_columns is a specialized version of @extract_fields to get individual columns of a

dataframe (pandas, polars, Spark, etc.). It enables column-level lineage which improves visibility

over data transformations and facilitates reusing feature transformations. Also, it can reduce

memory usage by avoiding moving large dataframe through nodes.

Since it knows how to extract series from a dataframe, you just have to specify the column names.

from hamilton.function_modifiers import extract_columns

assuming `user_id` and `weekday` are existing columns
note that strings are passed directly, without a list
@extract_columns("user_id", "weekday")
def clean_df(raw_df: pd.DataFrame) -> pd.DataFrame:

"""Clean my data"""
clean_df = clean_my_data(raw_df)
return clean_df

92 Concepts

Define one function, create n nodes

The family of @parameterize function modifiers allows the creation of multiple nodes with the

same node implementation / function body (and therefore output type), but different node

inputs.

This has many applications, such as producing the same performance plot for multiple models or

computing groupby aggregates along different dimensions.

@parameterize
You need to specify the generated node name, a dictionary of dependencies, and optionally a

docstring. For the dependencies, you can pass constants with value() or get them from the

dataflow by passing a node name to source() . These notions are tricky at first, but let’s look at

an example:

We create 3 nodes: revenue_by_age , revenue_by_country , revenue_by_occupation . For each, we

get the dataframe df from the dataflow using source() and specify a different groupby_col

with value() . Also, the docstring uses {groupby_col} to have the value inserted.

from hamilton.function_modifiers import parameterize
from hamilton.function_modifiers import source, value

@parameterize(
revenue_by_age=dict(df=source("df"), groupby_col=value("age")),
revenue_by_country=dict(df=source("df"),

groupby_col=value("country")),
revenue_by_occupation=dict(df=source("df"),

groupby_col=value("occupation")),
)
def population_metrics(df: pd.DataFrame, groupby_col: str) -> dict:

"""Compute df metrics aggregates over dimension {groupby_col}"""

93 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/extract_columns.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/extract_columns.png

return df.groupby(groupby_col)["revenue"] \
.agg(["mean", "min", "max"]) \
.to_dict()

The above example mixes constant value() and dataflow source() dependencies. The syntax

is indeed verbose. Simplified syntaxes are available through @parameterize_values and

@parameterize_sources if you only need one type of dependency.

If you need to extract columns from the output of a generated node, use

@parameterize_extract_columns

Select functions to include

The family of @config decorators doesn’t modify the function. Rather, it tells the Driver which

functions from the module (and therefore nodes) to include in the dataflow. This helps projects

that need to run in different contexts (e.g., locally vs orchestrator) or need to swap different

implementations of a node (e.g., ML experiments, code migration, A/B testing).

 Note

At first, there can be confusion between @config and the inputs and overrides of the

Driver’s .execute() and .materialize() methods. In common language, people might refer

to the .execute(inputs=..., overrides=...) as a configuration. However, these two affect

the values passing through the dataflow once the Driver is built while @config determines

how the Driver is built.

@config
For the decorator, you must specify one or more key=value pairs. Then, you need to add to the

Builder .with_config() and give it a dictionary of key=value pairs. This will determine which

functions to load.

•

•

94 Concepts

This example uses @config.when() to select between a binary classifier and a regressor model.

Notice a few elements:

both functions have the same name base_model with a suffix __binary or __regression . This

is required because Python enforces unique function names. After the config determines which

function to load, Apache Hamilton will remove the suffix from the node name.

the two functions have different return types, so train_model needs to annotate base_model

as a Union[] type.

model_training.py
from hamilton.function_modifiers import config

@config.when(task="binary_classification")
def base_model__binary() -> XGBClassifier:

return XGBClassifier(...)

@config.when(task="continuous_regression")
def base_model__regression() -> XGBRegressor:

return XGBRegressor(...)

def train_model(
base_model: Union[XGBClassifier, XGBRegressor],
X: np.ndarray,
y: np.ndarray,

) -> Union[XGBClassifier, XGBRegressor]:
return ...

run.py
dr = (

driver.Builder()
.with_modules(model_training)
.with_config(dict(task="continuous_regression"))
.build()

)

•

•

95 Concepts

In the above example, if the Driver receives no value for the key task or the value isn’t

"binary_classification" or "continuous_regression" , there would be no base_model node

loaded and train_model would fail.

Using @config.when_not() can help set up a default case and ensure a base_model node is

always loaded.

@config.when(library="xgboost")
def base_model__xgboost() -> XGBClassifier:

return XGBClassifier(...)

@config.when_not(library="xgboost")
def base_model__default() -> sklearn.ensemble.RandomForestRegressor:

return sklearn.ensemble.RandomForestRegressor(...)

There exists also @config.when_in() and @config.when_not_in() that accept a list of values to

check. Expanding on the previous example:

@config.when(library="xgboost")
def base_model__xgboost() -> XGBClassifier:

return XGBClassifier(...)

@config.when(library="lightgbm")
def base_model__lightgbm() -> LGBMClassifier:

return LGBMClassifier(...)

@config.when_not_in(library=["xgboost", "lightgbm"])
def base_model__default() -> sklearn.ensemble.RandomForestRegressor:

return sklearn.ensemble.RandomForestRegressor(...)

96 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/config_1.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/config_1.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/config_2.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/config_2.png

Load and save external data

Most dataflows require reading or writing data to external sources in some capacity. It’s a good

idea to conduct this step in a node separated from transformations to trace failures more easily.

Nevertheless, adding one function per read/write becomes tedious and hard to maintain. Apache

Hamilton provides well-tested implementations for common formats (JSON, CSV, Parquet, etc.)

available through @load_from and @save_to decorators and materializers (see Materialization).

More formats are available through Apache Hamilton plugins, and you should be able to add your

own custom loader/saver (reach out on Slack for help!)

@load_from
You can think of @load_from as adding an upstream node. The next example specifies the path

of the file, which will be loaded in the variable raw_data . Note that the variable type should be

compatible with the loaded file (dict for JSON here).

@load_from.json(path="/path/to/file.json")
def normalized_data(raw_data: dict) -> dict:

return ...

It is possible to use source() (like in @parameterize) to specify the file path from the driver

code. See:

functions.py
@load_from.json(path=source("raw_data_path"))
def normalized_data(raw_data: dict) -> dict:

return ...

run.py
dr = driver.Builder().with_modules(functions).build()
dr.execute(["normalized_data"], inputs=dict(raw_data_path="./this/
file.json"))

97 Concepts

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/load_from.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/load_from.png

You will need to use the inject_ keyword when you load multiple files into a node or your

function has multiple parameters.

@load_from.json(path="/path/to/logs.json", inject_="logs1")
@load_from.json(path="/path/to/other/logs.json", inject_="logs2")
def merged_logs(logs1: dict, logs2: dict) -> dict:

return ...

@save_to
The @save_to decorator works very similarly to @load_from . In this case, path=... specifies

where the data will be saved, and an output_name_ is required to be able to request the node

from Driver.execute() . Here again, source() can be used.

functions.py
@save_to.json(path=source("metrics_path"),
output_name_="metrics_to_json")
def eval_metric(x: np.ndarray, y: np.ndarray) -> dict:

return dict(...)

run.py
dr = driver.Builder().with_modules(functions).build()
dr.execute(["metrics_to_json"], inputs=dict(metrics_path="./out/
metrics.json"))

98 Concepts

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/load_from_inject.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/load_from_inject.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/save_to.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/save_to.png

Builder

The Driver page covered the basics of building the Driver, visualizing the dataflow, and executing

the dataflow. We learned how to create the dataflow by passing a Python module to

Builder().with_modules() .

On this page, how to configure your Driver with the driver.Builder() . There will be mentions of

advanced concepts, which are further explained on their respective page.

 Note

As your Builder code grows complex, defining it over multiple lines can improve readability.

This is possible by using parentheses after the assignment =

dr = (
driver.Builder()
.with_modules(my_dataflow)
.build()

)

The order of Builder statements doesn’t matter as long as .build() is last.

with_modules()

This passes dataflow modules to the Driver. When passing multiple modules, the Driver assembles

them into a single dataflow.

my_dataflow.py
def A() -> int:

"""Constant value 35"""
return 35

def B(A: int) -> float:
"""Divide A by 3"""
return A / 3

my_other_dataflow.py
def C(A: int, B: float) -> float:

"""Square A and multiply by B"""
return A**2 * B

99 Concepts

run.py
from hamilton import driver
import my_dataflow
import my_other_dataflow

dr = driver.Builder().with_modules(my_dataflow,
my_other_dataflow).build()

It encourages organizing code into logical modules (e.g., feature processing, model training, model

evaluation). features.py might depend on PySpark and model_training.py on XGBoost. By

organizing modules by dependencies, it’s easier to reuse the XGBoost model training module in a

project that doesn’t use PySpark and avoid version conflicts.

run.py
from hamilton import driver
import features
import model_training
import model_evaluation

dr = (
driver.Builder()
.with_modules(features, model_training, model_evaluation)
.build()

)

 Note

Your modules may have same named functions which will raise an error when using .build()

since we cannot have two nodes with the same name. You can use the method

.allow_module_overrides() and Apache Hamilton will choose the function from the later

imported module.

dr = (
driver.Builder()
.with_modules(module_A, module_B)
.allow_module_overrides()

100 Concepts

.build()
)

If module_A and module_B both have the function foo() , Apache Hamilton will use

module_B.foo() when constructing the DAG. See https://github.com/apache/hamilton/tree/

main/examples/module_overrides for more info.

with_config()

This is directly related to the @config function decorator (see Select functions to include) and

doesn’t have any effect in its absence. By passing a dictionary to with_config() , you configure

which functions will be used to create the dataflow. You can’t change the config after the Driver is

created. Instead, you need to rebuild the Driver with the new config values.

my_dataflow.py
from hamilton.function_modifiers import config

def A() -> int:
"""Constant value 35"""
return 35

@config.when_not(version="remote")
def B__default(A: int) -> float:

"""Divide A by 3"""
return A / 3

@config.when(version="remote")
def B__remote(A: int) -> float:

"""Divide A by 2"""
return A / 2

run.py
from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_config(dict(version="remote"))
.build()

)

dr.display_all_functions("dag.png")

101 Concepts

https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides

with_materializers()
Adds DataSaver and DataLoader nodes to your dataflow. This allows to visualize these nodes

using Driver.display_all_functions() and be executed by name with Driver.execute() . More

details on the Materialization documentation page.

my_dataflow.py
import pandas as pd
from hamilton.function_modifiers import config

def clean_df(raw_df: pd.DataFrame) -> pd.DataFrame:
return ...

def features_df(clean_df: pd.DataFrame) -> pd.DataFrame:
return ...

run.py
from hamilton import driver
from hamilton.io.materialization import from_, to
import my_dataflow

loader = from_.parquet(target="raw_df", path="/my/raw_file.parquet")
saver = to.parquet(

id="features__parquet",
dependencies=["features_df"],
path="/my/feature_file.parquet"

102 Concepts

)

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_materializers(loader, saver)
.build()

)
dr.display_all_functions("dag.png")

dr.execute(["features__parquet"])

with_cache()

This enables Apache Hamilton’s caching feature, which allows to automatically store intermediary

results and reuse them in subsequent executions to skip computations. Learn more in the Caching

section.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache()
.build()

)

with_adapters()

This allows to add multiple Lifecycle hooks to the Driver. This is a very flexible abstraction to

develop custom plugins to do logging, telemetry, alerts, and more. The following adds a hook to

launch debugger when reaching the node "B" :

103 Concepts

run.py
from hamilton import driver, lifecycle
import my_dataflow

debug_hook = lifecycle.default.PDBDebugger(node_filter="B",
during=True)
dr = (

driver.Builder()
.with_modules(my_dataflow)
.with_adapters(debug_hook)
.build()

)

Other hooks are available to output a progress bar in the terminal, do experiment tracking for

your Apache Hamilton runs, cache results to disk, send logs to DataDog, and more!

enable_dynamic_execution()

This directly relates to the Builder with_local_executor() and with_remote_executor() and the

Parallelizable/Collect functions (see Dynamic DAGs/Parallel Execution). For the Driver to be

able to parse them, you need to set allow_experimental_mode=True like the following:

run.py
from hamilton import driver
import my_dataflow # <- this contains Parallelizable/Collect nodes

dr = (
driver.Builder()
.enable_dynamic_execution(allow_experimental_mode=True) # set

True
.with_modules(my_dataflow)
.build()

)

By enabling dynamic execution, reasonable defaults are used for local and remote executors. You

also specify them explicitly as such:

run.py
from hamilton import driver
from hamilton.execution import executors
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)

104 Concepts

.enable_dynamic_execution(allow_experimental_mode=True)

.with_local_executor(executors.SynchronousLocalTaskExecutor())

.with_remote_executor(executors.MultiProcessingExecutor(max_tasks=5))

.build()
)

Caching

Caching enables storing execution results to be reused in later executions, effectively skipping

redundant computations. This speeds up execution and saves resources (computation, API credits,

GPU time, etc.), and has applications both for development and production.

To enable caching, add .with_cache() to your Builder() .

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_module(my_dataflow)
.with_cache()
.build()

)

dr.execute([...])
dr.execute([...])

The first execution will store metadata and results next to the current directory under

./.hamilton_cache . The next execution will retrieve results from cache when possible to skip

execution.

 Note

We highly suggest viewing the Caching tutorial for a practical introduction to caching.

How does it work?

Caching relies on multiple components:

Cache adapter: decide to retrieve a result or execute the node•

105 Concepts

Metadata store: store information about past node executions

Result store: store results on disk, it is unaware of other cache components.

At a high-level, the cache adapter does the following for each node:

Before execution: determine the cache_key

At execution:

if the cache_key finds a match in the metadata store (cache hit), retrieve the

data_version of the result .

If there’s no match (cache miss), execute the node and store the data_version of the

result in the metadata store.

After execution: if we had to execute the node, store the result in the result store.

The caching mechanism is highly performant because it can pass data_version (small strings)

through the dataflow instead of the actual data until a node needs to be executed.

The result store is a mapping of {data_version: result} . While a cache_key is unique to

determine retrieval or execution, multiple cache keys can point to the same data_version , which

avoid storing duplicate results.

Cache key
Understanding the cache_key is important to understand why a node is recomputed or not. It is

composed of:

node_name : name of the node

code_version : version of the node’s code

dependencies_data_versions : data_version of each dependency of the node

{
"node_name": "processed_data",
"code_version":

"c2ccafa54280fbc969870b6baa445211277d7e8cfa98a0821836c175603ffda2",
"dependencies_data_versions": {

"raw_data": "WgV5-4SfdKTfUY66x-msj_xXsKNPNTP2guRhfw==",
"date": "ZWNhd-XNlIF0YV9-2ZXJzaW9u_YGAgKA==",

}
}

By traversing the cache keys’ dependencies_data_versions , we can actually reconstruct the

dataflow structure!

•

•

1.

2.

1.

2.

3.

•

•

•

106 Concepts

 Warning

Cache keys could be unstable across Python and Apache Hamilton versions (because of new

features, bug fixes, etc.). Upgrading Python or Apache Hamilton could require starting with a

new empty cache for reliable behavior.

Observing the cache

Caching is best understood throung interacting with it. Apache Hamilton offers many utilities to

observe and introspect the cache manually.

Logging
To see how the cache works step-by-step, start your code (script, notebook, etc.) by getting the

logger and setting the level to DEBUG . Using INFO will be less noisy and only log GET_RESULT and

EXECUTE_NODE events.

import logging

logger = logging.getLogger("hamilton.caching")
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())
this handler will print to the console

The logs follow the structure {node_name}::{task_id}::{actor}::{event_type}::{message} ,

omitting empty sections.

example INFO logs for nodes foo, bar, and baz
foo::result_store::get_result::hit
bar::adapter::execute_node
baz::adapter::execute_node

Visualization
After Driver execution, calling dr.cache.view_run() will create a visualization of the dataflow

with results retrieved from the cache highlighted.

By default, it shows the latest run, but it’s possible to view previous runs by passing a run_id .

Specify a output_file_path to save the visualization.

107 Concepts

... define and execute a `Driver`

select the 3rd unique run_id
run_id_3 = dr.cache.run_ids[2]
dr.cache.view_run(run_id=run_id_3,
output_file_path="cached_run_3.png")

Visualization produced by dr.cache.view_run() . Retrieved results are outlined.

 Note

The method .view_run() doens’t currently support task-based execution or Parallelizable/

Collect .

Structured logs
Structured logs are stored on the Driver.cache and can be inspected programmatically. By

setting .with_cache(log_to_file=True) , structured logs will also be appended to a .jsonl file

as they happen; this is ideal for production usage.

To access log, use Driver.cache.logs() . You can .logs(level=...) to "info" or "debug" to

view only GET_RESULT and EXECUTE_NODE or all events. Specifying .logs(run_id=...) will return

logs from a given run, and leaving it empty will returns logs for all executions of this Driver .

dr.execute(...)
dr.cache.logs(level="info")

The shape of the returned object is slightly diffrent if specifying a run_id or not. Specifying a

run_id will give {node_name: List[CachingEvent]}

Legend

full_cdf

Series

probability_before_date

Series
due_date

datetime

full_pdf

Series

possible_dates

Series

probability_distribution

rv_continuous

probability_on_date

Series
start_date datetime

start_date datetime

current_date Optional

input

function

output

from cache

108 Concepts

Requesting Driver.cache.logs() will return a dictionary with run_id as key and list of

CachingEvent as values {run_id: List[CachingEvent]} . This is useful for comparing run and

verify nodes were properly executed or retrieved.

dr.cache.logs(level="debug", run_id=dr.cache.last_run_id)
{
'raw_data': [CachingEvent(...), ...],
'processed_data': [CachingEvent(...), ...],
'amount_per_country': [CachingEvent(...), ...]
}

dr.cache.logs(level="debug")
{
'run_id_1': [CachingEvent(...), ...],
'run_id_2': [CachingEvent(...), ...]
}

 Note

When using Parallelizable/Collect , nodes part of the “parallel branches” will have a

task_id key too {node_name: {task_id: List[CachingEvent]}} while nodes outside

branches will remain {node_name: List[CachingEvent]}

Cached result format

By default, caching uses the pickle format because it can accomodate almost all Python objects.

Although, it has caveats. The cache decorator allows you to use a different format for a given

node (JSON , CSV , Parquet , etc.).

The next snippet caches clean_dataset as parquet , and statistics as json . These formats

maybe more reliable, efficient, and easier to work with.

my_dataflow.py
import pandas as pd
from hamilton.function_modifiers import cache

def raw_data(path: str) -> pd.DataFrame:
return pd.read_csv(path)

@cache(format="parquet")
def clean_dataset(raw_data: pd.DataFrame) -> pd.DataFrame:

raw_data = raw_data.fillna(0)

109 Concepts

https://grantjenks.com/docs/diskcache/tutorial.html#caveats

return raw_data

@cache(format="json")
def statistics(clean_dataset: pd.DataFrame) -> dict:

return ...

import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache()
.buid()

)

first execution will product a ``parquet`` file for
``clean_dataset``
and a ``json`` file for ``statistics``
dr.execute(["statistics"])
second execution will use these parquet and json files when loading
results
dr.execute(["statistics"])

 Note

Internally, this uses Materializers

Caching behavior

The caching behavior refers to the caching logic used to: - version data - load and store metadata

- load and store results - execute or not a node

The DEFAULT behavior aims to be easy to use and facilitate iterative development. However, other

behavior may be desirble in particular scenarios or when going to production. The behavior can

be set node-by-node.

DEFAULT : Try to retrieve results from cache instead of executing the node. Node result and

metadata are stored.

RECOMPUTE : Always execute the node / never retrieve from cache. Result and metadata are

stored. This can be useful to ensure external data is alawys reloaded.

1.

2.

110 Concepts

DISABLE : Act as if caching isn’t enabled for this node. Nodes depending on a disabled node will

miss metadata for cache retrieval, forcing their re-execution. Useful for disabling caching in

parts of the dataflow.

IGNORE : Similar to Disable, but downstream nodes will ignore the missing metadata and can

successfully retrieve results. Useful to ignore “irrelevant” nodes that shouldn’t impact the

results (e.g., credentials, API clients, database connections).

 See also

Learn more in the Caching logic reference section.

 Note

There are other caching behaviors theoretically possible, but these four should cover most

cases. Let us know if you have a use case that is not covered.

Setting caching behavior
The caching behavior can be specified at the node-level via the @cache function modifier or at

the builder-level via .with_cache(...) arguments. Note that the behavior specified by the

Builder will override the behavior from @cache since it’s closer to execution.

via @cache
Below, we set raw_data to RECOMPUTE because the file it loads data from may change between

executions. After executing and versioning the result of raw_data , if the data didn’t change from

previous execution, we’ll be able to retrieve clean_dataset and statistics from cache.

my_dataflow.py
import pandas as pd
from hamilton.function_modifiers import cache

@cache(behavior="recompute")
def raw_data(path: str) -> pd.DataFrame:

return pd.read_csv(path)

def clean_dataset(raw_data: pd.DataFrame) -> pd.DataFrame:
raw_data = raw_data.fillna(0)
return raw_data

3.

4.

111 Concepts

def statistics(clean_dataset: pd.DataFrame) -> dict:
return ...

via Builder().with_cache()
Equivalently, we could set this behavior via the Builder . You can pass a list of node names to the

keyword arguments recompute , ignore , and disable . Using True to enable that behavior for all

nodes. For example, using recompute=True will force execution of all nodes and store their results

in cache. Having disable=True is equivalent to not having the .with_cache() clause.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(recompute=["raw_data"])
.build()

)

Set a default behavior
By default, caching is “opt-out” meaning all nodes are cached unless specified otherwise. To make

it “opt-in”, where only the specified nodes are cached, set default_behavior="disable" . You can

also try different default behaviors.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(

default=["raw_data", "statistics"], # set behavior DEFAULT
default_behavior="disable" # all other nodes are DISABLE

)
.build()

)

Code version

The code_version of a node is determined by hashing its source code, ignoring docstring and

comments.

112 Concepts

Importantly, Apache Hamilton will not version nested function calls. If you edit utility functions or

upgrade Python libraries, the cache might incorrectly assume the code to be the same.

For example, take the following function foo :

def _increment(x):
return x + 1

def foo():
return _increment(13)

foo's code version:
129064d4496facc003686e0070967051ceb82c354508a58440910eb82af300db

Despite editing the nested _increment() , we get the same code_version because the content of

foo() hasn’t changed.

def _increment(x):
return x + 2

def foo():
return _increment(13)

foo's code version:
129064d4496facc003686e0070967051ceb82c354508a58440910eb82af300db

In that case, foo() should return 13 + 2 instead of 13 + 1 . Unaware of the change in

_increment() , the cache will find a cache_key match and return 13 + 1 .

A solution is to set the caching behavior to RECOMPUTE to force execute foo() . Another is to

delete stored metadata or results to force re-execution.

Data version

Caching requires the ability to uniquely identify data (e.g., create a hash). By default, all Python

primitive types (int , str , dict , etc.) are supported and more types can be added via extensions

(e.g., pandas). For types not explicitly supported, caching can still function by versioning the

object’s internal __dict__ instead. However, this could be expensive to compute or less reliable

than alternatives.

113 Concepts

Recursion depth
To version complex objects, we recursively hash its values. For example, versioning an object

List[Dict[str, float]] involves hashing all keys and values of all dictionaries. Versioning

complex objects with large __dict__ state can become expensive.

In practice, we need to need a maximum recursion depth because there’s a trade-off between the

computational cost of hashing data and how accurately it uniquely identifies data (reduce hashing

collisions).

Here’s how to set the max depth:

from hamilton.io import fingerprinting
fingerprinting.set_max_depth(depth=3)

Support additional types
Additional types can be supported by registering a hashing function via the module

hamilton.io.fingerprinting . It uses @functools.singledispatch to register the hashing function

per Python type. The function must return a str . The code snippets shows how to support polars

DataFrame :

import polars as pl
from hamilton.io import fingerprinting

specify the type via the decorator
@fingerprinting.hash_value.register(pl.DataFrame)
def hash_polars_dataframe(obj, *args, **kwargs) -> str:

"""Convert a polars dataframe to a list of row hashes, then hash
the list.
 We consider that row order matters.
 """

obj is of type `pl.DataFrame`
hash_per_row = obj.hash_rows(seed=0)
fingerprinting.hash_value(...) will automatically hash

primitive Python types
return fingerprinting.hash_value(hash_per_row)

Alternatively, you can register functions without using decorators.

from hamilton.io import fingerprinting

def hash_polars_dataframe(obj, *args, **kwargs) -> str: ...

fingerprinting.hash_value.register(pl.DataFrame,
hash_polars_dataframe)

114 Concepts

https://docs.python.org/3/library/functools.html#functools.singledispatch

If you want to override the base case, the one defined by the function hash_value() , you can do

so by registering a function for the type object .

@fingerprinting.hash_value.register(object)
def hash_object(obj, *args, **kwargs) -> str: ...

Storage

The caching feature is powered by two data storages:

Metadata store: It contains information about past Driver executions (code version, data

version, run id, etc.). From this metadata, Apache Hamilton determines if a node needs to be

executed or not. This metadata is generally lightweight.

Result store: It’s a key-value store that maps a data version to a result. It’s completely unaware

of nodes, executions, etc. and simply holds the results. The result store can significantly grow in

size depending on your usage. By default, all results are pickled, but other formats are possible.

Setting the cache path
By default, the metadata and results are stored under a new subdirectory ./.hamilton_cache/ ,

next to the current directory. Alternatively, you can set a path via .with_cache(path=...) that will

be applied to both stores.

By project
Centralizing your cache by project is useful when you have nodes that are reused across multiple

dataflows (e.g., training and inference ML pipelines, feature engineering).

training_script.py
from hamilton import driver
import training

cache_path = "/path/to/project/hamilton_cache"
train_dr =
driver.Builder().with_modules(training).with_cache(path=cache_path).build()

inference_script.py
from hamilton import driver
import inference

cache_path = "/path/to/project/hamilton_cache"
predict_dr =
driver.Builder().with_modules(inference).with_cache(path=cache_path).build()

•

•

115 Concepts

Globally
Using a global cache is easier storage management. Since the metadata and the results for all

your Apache Hamilton dataflows are in one place, it can be easier to cleanup disk space.

import pathlib
from hamilton import driver
import my_dataflow

set the cache under the user's global directory for any operating
system
The `Path` is converted to a string.
cache_path = str(pathlib.expanduser().joinpath("/.hamilton_cache"))
dr =
driver.Builder().with_module(my_dataflow).with_cache(path=cache_path).build()

 Hint

It can be a good idea to store the cache path in an environment variable.

Separate locations
If you want the metadata and result stores to be at different location, you can instantiate and

pass them to .with_cache() . In that case, .with_cache() ’s path parameter will be ignored.

from hamilton import driver
from hamitlon.io.store import SQLiteMetadataStore, ShelveResultStore

metadata_store = SQLiteMetadataStore(path="~/.hamilton_cache")
result_store = ShelveResultStore(path="/path/to/my/project")

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache(

metadata_store=metadata_store,
result_store=result_store,

)
.build()

)

Inspect storage
It is possible to directly interact with the metadata and result stores either by creating them or via

Driver.cache .

116 Concepts

from hamilton.caching.stores.sqlite import SQLiteMetadataStore
from hamilton.caching.stores.file import FileResultStore

metadata_store = SQLiteMetadataStore(path="~/.hamilton_cache")
result_store = FileResultStore(path="/path/to/my/project")

metadata_store.get(context_key=...)
result_store.get(data_version=...)

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache()
.build()

)

dr.cache.metadata_store.get(context_key=...)
dr.cache.result_store.get(data_version=...)

A useful pattern is using the Driver.cache state or structured logs <caching-structured-logs> to

retrieve a data version and query the result store.

from hamilton import driver
from hamilton.caching.adapter import CachingEventType
import my_dataflow

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache()
.build()

)

dr.execute(["amount_per_country"])

via `cache.data_versions`; this points to the latest run
data_version = dr.cache.data_versions["amount_per_country"]
stored_result = dr.cache.result_store.get(data_version)

via structured logs; this allows to query any run
run_id = ...
for event in dr.cache.logs(level="debug")[run_id]:

if (
event.event_type == CachingEventType.SET_RESULT
and event.node_name == "amount_per_country"

117 Concepts

):
data_version = event.value
break

stored_result = dr.cache.result_store(data_version)

In-memory
You can enable in-memory caching by using the InMemoryMetadataStore and

InMemoryResultStore . Caching behaves the same, but metadata and results are never persisted

to disk. This is useful in notebooks and interactive sessions where results are only temporary

relevant (e.g., experimentating with new features).

 Warning

In-memory caching can quickly fill memory. We suggest selectively caching results to limit this

issue.

from hamilton import driver
from hamilton.caching.stores.memory import InMemoryMetadataStore,
InMemoryResultStore
import dataflow

dr = (
driver.Builder()
.with_modules(dataflow)
.with_cache(

metadata_store=InMemoryMetadataStore(),
result_store=InMemoryResultStore(),

)
.build()

)

In-memory stores also allow you to persist your entire in-memory session to disk or start your in-

memory session by loading an existing cache. This is compatible with most implementations.

Persist cache
This snippet shows how to persist an in-memory cache to an sqlite-backed metadata store and a

file-based result store. Note that you should persist both the metadata and results stores for this

to be useful. The .persist_to() method will repeatedly call .set() on the destination store.

Persisting multiple times will add to the already cached data.

118 Concepts

from hamilton import driver
from hamilton.caching.stores.sqlite import SQLiteMetadataStore
from hamilton.caching.stores.file import FileResultStore
from hamilton.caching.stores.memory import InMemoryMetadataStore,
InMemoryResultStore
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(

metadata_store=InMemoryMetadataStore(),
result_store=InMemoryResultStore(),

)
.build()

)

execute the Driver several time. This will populate the in-memory
stores
dr.execute(...)

persist to disk
dr.cache.metadata_store.persist_to(SQLiteMetadataStore(path="./.hamilton_cache"))
dr.cache.result_store.persist_to(FileResultStore(path="./.hamilton_cache"))

Load cache
This snippet loads in-memory data from persisted metadata and result stores. The .load_from()

is a classmethod and returns an instance of the in-memory store. The method

InMemoryResultStore.load_from(...) must receive as argument a result store, but also a

metadata store or a list of data_version to load. This is because ResultStore implementations

don’t have a registry of stored results.

from hamilton import driver
from hamilton.caching.stores.sqlite import SQLiteMetadataStore
from hamilton.caching.stores.file import FileResultStore
from hamilton.caching.stores.memory import InMemoryMetadataStore,
InMemoryResultStore
import my_dataflow

create persisted stores
metadata_store = SQLiteMetadataStore(path="./.hamilton_cache")
result_store = FileResultStore(path="./.hamilton_cache")

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(

119 Concepts

create in-memory stores by loading from persisted store

metadata_store=InMemoryMetadataStore.load_from(metadata_store),
result_store=InMemoryResultStore.load_from(

result_store=result_store,
metadata_store=metadata_store,

),
)
.build()

)

Roadmap

Caching is a significant Apache Hamilton feature and there are plans to expand it. Here are some

ideas and areas for development. Feel free comment on them or make other suggestions via Slack

or GitHub!

Apache Hamilton UI integration: caching introduces the concept of data_version . This

metadata could be captured by the Apache Hamilton UI to show how different values are used

across dataflow executions. This would be particularly useful for experiment tracking and

lineage.

Distributed caching support: the initial release supports multithreading and multiprocessing on

a single machine. For distributed execution, we will need ResultStore and MetadataStore that

can be remote and are safe for concurrent access.

Integrate with remote execution (Ray, Skypilot, Modal, Runhouse): facilitate a pattern where the

dataflow is executed locally, but some nodes can selectively be executed remotely and have

their results cached locally.

async support: Support caching with AsyncDriver . This requires a significant amount of code,

but the core logic shouldn’t change much.

cache eviction: Allow to set up a max storage (in size or number of items) or time-based policy

to delete data from the metadata and result stores. This would help with managing the cache

size.

more store backends: The initial release includes backend supported by the Python standard

library (SQLite metadata and file-based results). Could support more backends via fsspec (AWS,

Azure, GCP, Databricks, etc.)

support more types: Include specialized hashing functions for complex objects from popular

libraries. This can be done through Apache Hamilton extensions.

•

•

•

•

•

•

•

120 Concepts

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://filesystem-spec.readthedocs.io/en/latest/?badge=latest

Function modifiers (Advanced)

 Warning

This page is a work in progress. Refer to the API reference for more documentation and please

ask a public question on Slack if you need help!

The page Function modifiers details how to use decorators to write expressive dataflows. The e

presented function modifiers are highly expressive and should be sufficient in the large majority

of cases.

Nonetheless, there exists higher level abstractions for power users that may be useful for

integrations with your existing platform. If you want to use complex machinery instead of writing 1

additional function, comeback when it’s your 10th manually addition 🛠

This page assumes an advanced understanding of Apache Hamilton and will cover:

@pipe

@subdag

@parameterize_subdag

@resolve

Dynamic DAGs/Parallel Execution

There are two approaches to parallel execution in Apache Hamilton:

Using an adapter that submits each node/function to a system that handles execution, e.g. ray,

dask, async, or a threadpool.

Using the Parallelizable[] and Collect[] types + delegating to an executor.

Using an Adapter

The adapter approach effectively farms out the execution of each node/function to a system that

can handle resolving futures. That is, Apache Hamilton walks the DAG and submits each node to

the adapter, which then submits the node for execution, and internally the execution resolves any

Futures from prior submitted nodes.

•

•

•

•

1.

2.

121 Concepts

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

To make use of this, the general pattern is you apply an adapter to the driver and don’t need to

touch your Hamilton functions!:

from hamilton import driver
from hamilton.execution import executors
from hamilton.plugins.h_threadpool import FutureAdapter
from hamilton.plugins.h_ray import RayGraphAdapter
from hamilton.plugins.h_dask import DaskGraphAdapter

dr = (
driver.Builder()
.with_modules(foo_module)
.with_adapter(FutureAdapter())
.build()

)

dr.execute(["my_variable"], inputs={...}, overrides={...})

The code above will execute the DAG submitting to a ThreadPoolExecutor (see

h_threadpool.FutureAdapter), which is great if you’re doing a lot of I/O bound work, e.g. making

API calls, reading from a database, etc.

See this Threadpool based example for a complete example.

Other adapters, e.g. Ray h_ray.RayGraphAdapter, Dask h_dask.DaskGraphAdapter, etc… will submit

to their respective executors, but will involve object serialization (see caveats below).

Using the Parallelizable[] and Collect[] types

Apache Hamilton now has pluggable execution, which allows for the following:

Grouping of nodes into “tasks” (discrete execution unit between serialization boundaries)

Executing the tasks in parallel, using any executor of your choice

You can run this executor using the Builder, a utility class that allows you to build a driver piece

by piece. Note that you currently have to call

enable_dynamic_execution(allow_experimental_mode=True) which will toggle it to use the V2

executor. Then, you can:

Add task executors to specify how to run the tasks

Add node grouping strategies

Add modules to crawl for functions

Add a results builder to shape the results

1.

2.

1.

2.

3.

4.

122 Concepts

https://github.com/apache/hamilton/blob/main/examples/parallelism/lazy_threadpool_execution/

Either constructing the driver, or using the builder and not calling enable_dynamic_execution will

give you the standard executor. We highly recommend you use the builder pattern – while the

constructor of the Driver will be fully backwards compatible according to the rules of semantic

versioning, we may change it in the future (for 2.0).

Note that the new executor is required to handle dynamic creation of nodes (E.G. using

Parallelizable[] and Collect[].

Let’s look at an example of the driver:

from my_code import foo_module, bar_module

from hamilton import driver
from hamilton.execution import executors

dr = (
driver.Builder()
.with_modules(foo_module)
.enable_dynamic_execution(allow_experimental_mode=True)
.with_config({"config_key": "config_value"})
.with_local_executor(executors.SynchronousLocalTaskExecutor())
.with_remote_executor(executors.MultiProcessingExecutor(max_tasks=5))
.build()

)

dr.execute(["my_variable"], inputs={...}, overrides={...})

Note that we set a remote executor, and a local executor. While you can bypass this and instead

set an execution_manager in the builder call (see Builder for documentation on the Builder),this

goes along with the default grouping strategy, which is to place each node in its own group, except

for dynamically generated (Parallelizable[]) blocks, which are each made into one group, and

executed locally.

Thus, when you write a DAG like this (a simple map-reduce pattern):

from hamilton.htypes import Parallelizable, Collect

def url() -> Parallelizable[str]:
for url_ in _list_all_urls():

yield url_

def url_loaded(url: str) -> str:
return _load(urls)

def counts(url_loaded: str) -> int:
return len(url_loaded.split(" "))

123 Concepts

def total_words(counts: Collect[int]) -> int:
return sum(counts)

The block containing counts and url_loaded will get marked as one task, repeated for each URL in

url_loaded, and run on the remote executor (which in this case is the ThreadPoolExecutor).

Note that we currently have the following caveats:

No nested Parallelizable[]/Collect[] blocks – we only allow one level of parallelization

Serialization for Multiprocessing is suboptimal – we currently use the default pickle serializer,

which breaks with certain cases. Ray, Dask, etc… all work well, and we plan to add support for

joblib + cloudpickle serialization.

Collect[] input types are limited to one per function – this is another caveat that we intend to

get rid of, but for now you’ll want to concat/put into one function before collecting.

Known Caveats

If you’re familiar with multi-processing then these caveats will be familiar to you. If not, then you

should be aware of the following:

Serialization
Challenge:

Objects are by default pickled and sent to the remote executor, and then unpickled.

This can be slow, and can break with certain types of objects, e.g. OpenAI Client, DB Client, etc.

Solution:

Make sure that your objects are serializable.

If you’re using a library that doesn’t support serialization, then one option is to have Apache

Hamilton instantiate the object in each parallel block. You can do this by making the code

depend on something within the parallel block.

Another option is write a custom wrapper function that uses __set_state__ and __get_state__ to

serialize and deserialize the object.

See this issue for details and possible features to make this simpler to deal with.

1.

2.

3.

•

•

•

•

•

•

124 Concepts

https://github.com/apache/hamilton/issues/743

Multiple Collects
Currently, by design (see all limitations here), you can only have one “collect” downstream of

“parallel”.

So the following code WILL NOT WORK:

import logging

from hamilton import driver
from hamilton.execution.executors import SynchronousLocalTaskExecutor
from hamilton.htypes import Collect, Parallelizable
import pandas as pd

ANALYSIS_OB = tuple[tuple[str,...], pd.DataFrame]
ANALYSIS_RES = dict[str, str | float]

def split_by_cols(full_data: pd.DataFrame, columns: list[str]) ->
Parallelizable[ANALYSIS_OB]:

for idx, grp in full_data.groupby(columns):
yield (idx, grp)

def sub_metric_1(split_by_cols: ANALYSIS_OB, number: float=1.0) ->
ANALYSIS_RES:

idx, grp = split_by_cols
return {"key": idx, "mean": grp["spend"].mean() + number}

def sub_metric_2(split_by_cols: ANALYSIS_OB) -> ANALYSIS_RES:
idx, grp = split_by_cols
return {"key": idx, "mean": grp["signups"].mean()}

def metric_1(sub_metric_1: Collect[ANALYSIS_RES], columns:
list[str]) -> pd.DataFrame:

data = [[k for k in d["key"]] + [d["mean"], "spend"] for d in
sub_metric_1]

cols = list(columns) + ["mean", "metric"]
return pd.DataFrame(data, columns=cols)

def metric_2(sub_metric_2: Collect[ANALYSIS_RES], columns:
list[str]) -> pd.DataFrame:

data = [[k for k in d["key"]] + [d["mean"], "signups"] for d in
sub_metric_2]

cols = list(columns) + ["mean", "metric"]
return pd.DataFrame(data, columns=cols)

125 Concepts

https://github.com/apache/hamilton/issues/301

this will not work because you can't have two Collect[] calls
downstream from a Parallelizable[] call
def all_agg(metric_1: pd.DataFrame, metric_2: pd.DataFrame) ->
pd.DataFrame:

return pd.concat([metric_1, metric_2])

if __name__ == "__main__":
from hamilton.execution import executors
import __main__

from hamilton.log_setup import setup_logging
setup_logging(log_level=logging.DEBUG)

local_executor = executors.SynchronousLocalTaskExecutor()

dr = (
driver.Builder()
.enable_dynamic_execution(allow_experimental_mode=True)
.with_modules(__main__)
.with_remote_executor(local_executor)
.build()

)
df = pd.DataFrame(

index=pd.date_range('20230101', '20230110'),
data={

"signups": [1, 10, 50, 100, 200, 400, 700, 800, 1000,
1300],

"spend": [10, 10, 20, 40, 40, 50, 100, 80, 90, 120],
"region": ["A", "B", "C", "A", "B", "C", "A", "B", "C",

"X"],
}

)
ans = dr.execute(

["all_agg"],
inputs={

"full_data": df,
"number": 3.1,
"columns": ["region"],

}
)
print(ans["all_agg"])

To fix this, (this is documented in this issue) you can either create a new function that combines

the two Collect[] calls that could be combined with @config.when.

def all_metrics(sub_metric_1: ANALYSIS_RES, sub_metric_2:
ANALYSIS_RES) -> ANALYSIS_RES:

return ... # join the two dicts in whatever way you want

126 Concepts

https://github.com/apache/hamilton/issues/742

def all_agg(all_metrics: Collect[ANALYSIS_RES]) -> pd.DataFrame:
return ... # join them all into a dataframe

Or you use @resolve, with @group (scroll down a little), @inject, to set what should be

determined to be collected at DAG construction time:

@resolve(
when=ResolveAt.CONFIG_AVAILABLE,
decorate_with= lambda metric_names:

inject(# this will annotate the function with @inject

it will then inject a group of values corresponding to the sources
wanted

sub_metrics=group(*[source(x) for x in metric_names])
),

)
def all_metrics(sub_metrics: list[ANALYSIS_RES], columns: list[str])
-> pd.DataFrame:

frames = []
for a in sub_metrics:

frames.append(_to_frame(a, columns))
return pd.concat(frames)

then in your driver:
from hamilton import settings
_config = {settings.ENABLE_POWER_USER_MODE:True}
_config["metric_names"] = ["sub_metric_1", "sub_metric_2"]

Then in the driver building pass in the configuration:
.with_config(_config)

UI Overview

Apache Hamilton comes with a fully open-source UI that can be run both for local deployment

and on a remote server. The UI consists of the following features:

Telemetry for hamilton executions – both on the history of executions and the data itself.

A feature/artifact catalog for browsing/connecting executions of nodes -> results.

A dataflow (i.e. DAG) visualizer for exploring and looking at your code, and determining lineage.

A project explorer for viewing curating projects and viewing versions of your Apache Hamilton

dataflows.

1.

2.

3.

4.

127 Concepts

In short, the Apache Hamilton UI aims to combine a large swath of MLOps/data observability

systems in one simple application.

—

The Apache Hamilton UI has two modes: 1. Run locally using sqlite3 2. Run on docker images with

postgres (meant for deployment)

Local Mode

To run the hamilton UI in local mode, you can do the following:

pip install "sf-hamilton[ui,sdk]"
hamilton ui
python -m hamilton.cli.__main__ ui # on windows

This will launch a browser window in localhost:8241. You can then navigate to the UI and start

using it! While this can potentially handle a small production workflow, you may want to run on

postgres with a separate frontend/backend/db for full scalability and a multi-read/write db.

128 Concepts

Docker/Deployed Mode

The Apache Hamilton UI can be contained within a set of Docker images. You launch with docker-

compose, and it will start up the UI, the backend server, and a Postgres database. If you’d like a

quick overview of some of the features, you can watch the following:

Note: if you run into the “Invalid HTTP_HOST” error, then please set the environment variable

HAMILTON_ALLOWED_HOSTS=”*” (or comma separated list of domains of choice) for the backend

docker container. You can inject this via -e or in the docker-compose[-prod].yml file itself.

Install

If you’d like a video walkthrough on getting set up, you can watch the following:

As prerequisites, you will need to have Docker installed – you can follow instructions here.

Clone the Apache Hamilton repository locally

git clone https://github.com/apache/hamilton

Navigate to the hamilton/ui directory

cd hamilton/ui

Execute the installation script with the following command

./run.sh

This will:

Pull all Docker images from the Docker Hub

Start a local Postgres database

Start the backend server

Start the frontend server

1.

1.

1.

•

•

•

•

129 Concepts

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/install/

This takes a bit of time! So be patient. The server will be running on port 8242.

Then navigate to http://localhost:8242 in your browser, and enter your email (this will be the

username used within the app).

Building the Docker Images locally

If building the Docker containers from scratch, increase your Docker memory to 10gb or more –

you can do this in the Docker Desktop settings.

To build the images locally, you can run the following command:

from the hamilton/ui directory
./dev.sh --build

This will build the containers from scratch. If you just want to mount the local code, you can run

just

./dev.sh

Self-Hosting

If you know docker, you should be good to go. The one environment variable to know is

HAMILTON_ALLOWED_HOSTS, which you can set to * to allow all hosts, or a comma separated list

of hosts you want to allow.

To host the UI on a subpath, set REACT_APP_HAMILTON_SUB_PATH to the subpath required. For

example, to run on https://domain.com/hamilton:

- REACT_APP_HAMILTON_SUB_PATH=/hamilton

Make sure that the sub path environment variable begins with / if set.

Please reach out to us if you want to deploy on your own infrastructure and need help - join slack.

More extensive self-hosting documentation is in the works, e.g. Snowflake, Databricks, AWS, GCP,

Azure, etc.; we’d love a helm chart contribution!

1.

130 Concepts

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

Running on Snowflake

You can run the Apache Hamilton UI on Snowflake Container Services. For a detailed guide, see

the blog post Observability of Python code and application logic with Apache Hamilton UI on

Snowflake Container Services by Greg Kantyka and the Apache Hamilton Snowflake Example.

Get started

Now that you have your server running, you can run a simple dataflow and watch it in the UI! You

can follow instructions in the UI when you create a new project, or follow the instructions here.

First, install the SDK:

pip install "sf-hamilton[sdk]"

Then, navigate to the project page (dashboard/projects), in the running UI, and click the green +

New DAG button.

Remember the project ID – you’ll use it for the next steps.

Existing Apache Hamilton Code

Add the following adapter to your code if you have existing Apache Hamilton code:

131 Concepts

https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka
https://github.com/apache/hamilton/tree/main/examples/snowflake/hamilton_ui

from hamilton_sdk import adapters

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}

)

dr = (
driver.Builder()

.with_config(your_config)

.with_modules(*your_modules)

.with_adapters(tracker)

.build()
)

Then run your DAG, and follow the links in the logs! Note that the link is correct if you’re using the

local mode – if you’re on postgres it links to 8241 (but you’ll want to follow it to 8241).

I need some Apache Hamilton code to run

If you don’t have Apache Hamilton code to run this with, you can run Apache Hamilton UI example

under examples/hamilton_ui:

we assume you're in the Apache Hamilton repository root
cd examples/hamilton_ui
make sure you have the right python packages installed
pip install -r requirements.txt
run the pipeline providing the email and project_id you created in
the UI
python run.py --email <email> --project_id <project_id>

You should see links in the logs to the UI, where you can see the DAG run + the data summaries

captured.

Features

Once you get to the UI, you can navigate to the projects page (left hand nav-bar). Assuming you

have created a project and logged to it, you can then navigate to view it and then more details

about it. E.g. versions, code, lineage, catalog, execution runs. See below for a few screenshots of

the UI.

132 Concepts

https://github.com/apache/hamilton/tree/main/examples/hamilton_ui
http://localhost:8242/dashboard/projects

Dataflow versioning

Select a dataflow versions to compare and visualize.

Assets/features catalog

View functions, nodes, and assets across a history of runs.

133 Concepts

Browser

View dataflow structure and code.

Run tracking + telemetry

View a history of runs, telemetry on runs/comparison, and data for specific runs:

134 Concepts

135 Concepts

SDK Configuration

This section documents HamiltonTracker configuration options.

Changing where data is sent

You can change where telemetry is logged by passing in hamilton_api_url and/or hamilton_ui_url

to the HamiltonTracker constructor. By default, these are set to localhost:8241/8242.

from hamilton_sdk import adapters

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"},
hamilton_api_url="http://YOUR_DOMAIN_HERE:8241",
hamilton_ui_url="http://YOUR_DOMAIN_HERE:8242" # if using docker

the UI is on 8242.
)

dr = (
driver.Builder()

.with_config(your_config)

.with_modules(*your_modules)

.with_adapters(tracker)

.build()
)

136 Concepts

Changing behavior of what is captured

By default, a lot is captured and sent to the Apache Hamilton UI.

Here are a few options that can change that - these can be found in

hamilton_sdk.tracking.constants. You can either change the defaults by directly changing the

constants, by specifying them in a config file, or via environment variables.

Here we first explain the options:

Simple Invocation

Option Default Explanation

CAPTURE_DATA_STATISTICS True Whether to capture any data insights/

statistics

MAX_LIST_LENGTH_CAPTURE 50 Max length for list capture

MAX_DICT_LENGTH_CAPTURE 100 Max length for dict capture

DEFAULT_CONFIG_URI ~/.hamilton.conf Default config file URI.

To change the defaults via a config file, you can do the following:

[SDK_CONSTANTS]
MAX_LIST_LENGTH_CAPTURE=100
MAX_DICT_LENGTH_CAPTURE=200

save this to ~/.hamilton.conf

To change the defaults via environment variables, you can do the following, prefixing them with

HAMILTON_:

export HAMILTON_MAX_LIST_LENGTH_CAPTURE=100
export HAMILTON_MAX_DICT_LENGTH_CAPTURE=200
python run_my_hamilton_code.py

To change the defaults directly, you can do the following:

137 Concepts

from hamilton_sdk.tracking import constants

constants.MAX_LIST_LENGTH_CAPTURE = 100
constants.MAX_DICT_LENGTH_CAPTURE = 200

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}

)

dr = (
driver.Builder()

.with_config(your_config)

.with_modules(*your_modules)

.with_adapters(tracker)

.build()
)
dr.execute(...)

In terms of precedence, the order is:

Module default.

Config file values.

Environment variables.

Directly set values.

Best Practices

A set of best-practices to help you get the most out of Apache Hamilton quickly and easily.

Function Naming

Here are three important points about function naming:

It enables you to define your Apache Hamilton dataflow.

It drives collaboration & code reuse.

It serves as documentation itself.

1.

2.

3.

4.

1.

2.

3.

138 Concepts

You don’t need to get this right the first time – search and replace is really easy with Apache

Hamilton code bases – but it is something to converge thinking on!

It enables you to define your Apache Hamilton dataflow
As the name of a hamilton function defines the name of the created artifact, naming is vital to a

readable, extensible hamilton codebase. Names must mean something:

def foo_bar(input1: int, input2: pd.Series) -> pd.Series:
"""docs..."""
...

In this case, foo_bar is not helpful - it’s unclear what this function produces at all. Remember

you want function names to mean something, since that will enable clarity when using Apache

Hamilton, what is being requested, and will help document what the function itself is doing.

It drives collaboration and reuse
When people come to encounter your code, they’ll need to understand it, add to it, modify it, etc.

You’ll want to ensure some standardization to enable:

Mapping business concepts to function names. E.g. That will help people to find things in the

code that map to things that happen within your business.

Ensuring naming uniformity across the code base. People usually follow the precedent of the

code around them, so if everything in a particular module for say, date features, has a D_

prefix, then they will likely follow that naming convention. This is likely something you will

iterate on – and it’s best to try to converge on a team naming convention once you have a feel

for the Hamilton functions being written by the team.

We suggest that long functions names that are separated by _ aren’t a bad thing. E.g. if you were

to come across a function named life_time_value versus ltv versus l_t_v , which one is more

obvious as to what it is and what it represents?

It serves as documentation itself
Remember your code usually lives a lot longer that you ever think it will. So our suggestion is to

always err to the more obvious way of naming to ensure it’s clear what a function represents.

Again, if you were to come across a function named life_time_value versus

ltv` versus ``l_t_v , which one is more obvious as to what it is and what it represents?

1.

2.

139 Concepts

Migrating to Apache Hamilton

Here are two suggestions for helping you migrate to Apache Hamilton

Continuous Integration for Comparisons
Create a way to easily & frequently compare results.

Integrate with continuous integration (CI) system if you can.

🔎🐛 Having a means that tests code early & often will helps diagnose bugs in your old code

(most likely) or your new implementation (less likely).

Specifically, have a system to compare the output of your Apache Hamilton code, to compare to

the output of your existing system.

Integrate into your code base via a “custom wrapper object”
If you have existing systems that you want to integrate Apache Hamilton into, it might require

non-trivial effort for you to change those systems to be able to use Apache Hamilton. If that’s the

case, then we suggest creating a “custom object” to “wrap” Apache Hamilton, so that it’s easier to

migrate to it.

Specifically, this custom wrapper object class’s purpose is to match your existing API expectations.

It will act as the translation layer from your existing API expectations, to what running Apache

Hamilton requires, and back. In Apache Hamilton terminology, this is a Custom Driver Wrapper,

since it wraps around the Hamilton Driver class.

1.

2.

3.

140 Concepts

This is a best practice because:

When migrating, it’s best to avoid making too many changes. So don’t change your API

expectations if you can.

It allows you to easily insert Apache Hamilton into any context. Thereby minimizing potential

migration problems.

Code Organization

Apache Hamilton will force you to organize your code! Here’s some tips.

Apache Hamilton forces you to put your code into modules that are distinct from where you run

your code.

You’ll soon find that a single python module does not make sense, and so you’ll organically start

to (very likely) put like functions with like functions, i.e. thus creating domain specific modules –>

use this to your development advantage!

At Stitch Fix we:

Use modules to model team thinking, e.g. date_features.py.

Use modules to helps isolate what you’re working on.

Use modules to replace parts of your Apache Hamilton dataflow very easily for different

contexts.

Team thinking
You’ll need to curate your modules. We suggest orienting this around how teams think about the

business.

E.g. marketing spend features should be in the same module, or in separate modules but in the

same directory/package.

1.

2.

1.

2.

3.

141 Concepts

This will then make it easy for people to browse the code base and discover what is available.

Helps isolate what you’re working on
Grouping functions into modules then helps set the tone for what you’re working on. It helps set

the “namespace”, if you will, for that function. Thus you can have the same function name used in

multiple modules, as long as only one of those modules is imported to build the DAG.

Thus modules help you create boundaries in your code base to isolate functions that you’ll want

to change inputs to.

Enables you to replace parts of your DAG easily for different contexts
The names you provide as inputs to functions form a defined “interface”, to borrow a computer

science term, so if you want to swap/change/augment an input, having a function that would map

to it defined in another module(s) provides a lot of flexibility. Rather than having a single module

with all functions defined in it, separating the functions into different modules could be a

productivity win.

Why? That’s because when you come to tell Apache Hamilton what functions constitute your

dataflow (i.e. DAG), you’ll be able to simply replace/add/change the module being passed. So if

you want to compute inputs for certain functions differently, this composability of including/

excluding modules, when building the DAG provides a lot of flexibility that you can exploit to make

your development cycle faster.

Common Indices

If you’re creating dataframes, then this will apply to you!

While Apache Hamilton is a general-purpose framework, we’ve found a common pattern is to

manipulate datasets that have shared indices (spines) for creating dataframes.

Although this might not apply towards every use-case (E.G. more complex joins with spark

dataframes), a large selection of use-cases can be enabled if every dataframe in your pipeline

shares an index. This is particularly pertinent when writing transformations over (non-event-

based) time-series data.

While Apache Hamilton currently has no means of enforcing shared-spine, it is up to the writer of

the function to validate input data as necessary. Thus we recommend the following if you are

creating a dataframe as output:

142 Concepts

Best practice:

Load data via functions, defined in their own specific module.

Take that loaded data, and transform/ensure indexes match the output you want to create.

Continue with transformations.

For time-series modeling, this will mean you provide a common time-series index. Or, if you’re

creating features for input to a classification model, e.g. over clients, then ensure the index is

client_ids.

Output Immutability

In Apache Hamilton, functions are only called once!

Immutability means, that once a “data structure”, e.g. a column is created, and output by a

function, the values in the column are not changeable.

When Apache Hamilton figures out the execution call path, it walks it and calls functions only

once. This means, that if the output of a function is immutable, then there’s only one place it was

created; it’s not modified anywhere else. This provides a great debugging experience if there are

ever issues in your dataflow. We believe that by default, one should always strive for immutability

of outputs.

However, it is up to you, the Hamilton function writer, to ensure that immutability is something

that is adhered to.

Best practice:

To preserve “immutability” of outputs, don’t mutate passed in data structures. e.g. if you get

passed in a pandas series, don’t mutate it.

Test for this in your unit tests if this is something important to you!

Otherwise YMMV with debugging:

Clearly document mutating inputs in your function documentation if you do mutate inputs

provided. That will make debugging your code that much simpler!

1.

2.

3.

1.

1.

2.

1.

143 Concepts

Using within your ETL System

Conceptually you can integrate Apache Hamilton within your existing ETL system quite easily:

Compatibility Matrix
Title

Framework /

Scheduler Compatibility

Airflow ✅ (see [airflow example](https://github.com/apache/hamilton/

tree/main/examples/airflow))

Dagster ✅

Prefect ✅ (see [prefect example](https://github.com/apache/hamilton/

tree/main/examples/prefect))

Kubeflow Pipelines ✅

CRON ✅

dbt ✅ (see dbt example)

kubernetes ✅ but you need to setup kubernetes to run an image that can run

python code - e.g. see Running a python application on kubernetes

docker ✅ but you need to setup a docker image that can execute python

code.

… in general if it runs

python 3.7+ …
✅

144 Concepts

http://airflow.org
https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/airflow
https://dagster.io
https://prefect.io
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/prefect
https://www.kubeflow.org/docs/components/pipelines
https://en.wikipedia.org/wiki/Cron
https://getdbt.com
https://kubernetes.io
https://medium.com/avmconsulting-blog/running-a-python-application-on-kubernetes-aws-56609e7cd88c
https://www.docker.com

ETL Recipe

Write Hamilton functions & “driver” code.

Publish your Hamilton functions in a package, or import via other means (e.g. checkout a

repository & include in python path).

Include sf-hamilton as a python dependency

Have your ETL system execute your “driver” code.

Profit.

Loading Data

In Apache Hamilton, data loaders are just the same as other functions in the DAG. They take in

configuration parameters, and output datasets in the desired form. Following up on the marketing

spend dataset, you might write a data loader that reads a dataframe saved in csv format on s3 like

this:

import boto3
import urllib
import pandas as pd

from hamilton.function_modifiers import extract_columns

client = boto3.client("s3")

@extract_columns('col1', 'col2', 'col3', ...)
def marketing_spend(marketing_spend_data_path: str) -> pd.DataFrame:

"""Loads marketing spend from specified path on s3
 """

if not marketing_spend_data_path.startswith("s3://"):
raise ValueError(f"Invalid s3 URI

{marketing_spend_data_path}")
return pd.read_csv(

marketing_spend_data_path,
storage_options = {...}) # See https://pandas.pydata.org/

docs/reference/api/pandas.read_csv.html#pandas-read-csv for more info

Loading data is as easy as that! Run your driver with marketing_spend_data_path as a parameter,

and you’re good to go. However, there are a few considerations you might have prior to

productionalizing this dataflow…

1.

2.

3.

4.

5.

145 Concepts

Plugging in new Data Sources
An advantage of Apache Hamilton is that it allows for rapid plug-and play for various components

of your pipeline. This is particularly important for data loading, where you might want to load your

data from different sources depending on some context. For instance – if you’re running your

pipeline in production, you may want to use the production data sources. If you’re running it in

QA, you might want to use the staging data sources. Or, if you’re running it locally, you might want

to use abbreviated, in-memory data sources for testing. While Apache Hamilton is not opinionated

on exactly _how_ you make this switch, it presents a variety of tooling that can make it more

manageable. Some options. To demonstrate some techniques, let’s continue on the example of

loading marketing spend…

Modules as Interfaces
Say you have multiple data-loading nodes in your DAG. One strategy is to put them all in a single

module. That way, if you want to load them up from different sources, you can simply switch the

module your driver utilizes. Taking the example from above, you might have the following

modules:

@extract_columns('col1', 'col2', 'col3', ...)
def marketing_spend(marketing_spend_data_path: str) -> pd.DataFrame:

"""Loads marketing spend from specified path on s3
 """

if not marketing_spend_data_path.startswith("s3://"):
raise ValueError(f"Invalid s3 URI

{marketing_spend_data_path}")
return pd.read_csv(

marketing_spend_data_path,
storage_options = {...}) # See https://pandas.pydata.org/

docs/reference/api/pandas.read_csv.html#pandas-read-csv for more info

@extract_columns('col1', 'col2', 'col3', ...)
def marketing_spend(marketing_spend_data_path: str) -> pd.DataFrame:

"""Loads marketing spend from specified path on s3
 """

if not marketing_spend_data_path.endswith("csv"):
raise ValueError(f"Invalid local data loading target

{marketing_spend_data_path}")
if not os.path.exists(marketing_spend_data_path):

raise ValueError(f"Path does not exists")
return pd.read_csv(marketing_spend_data_path)

Then, in your driver, you can choose between which module you want to use:

146 Concepts

local_data_driver = Driver(config, local_data_loaders, ...)
prod_data_driver = Driver(config, prod_data_loaders, ...)

Using the Config to Decide Sources
Note that we can utilize the config to determine where the data comes from as well. By using

config.when you can arrive at the same effect as above, while making it entirely config driven. If

you combine the two functions into the same module with @config.when it will look as follows:

@config.when(data_source='local')
@extract_columns('col1', 'col2', 'col3', ...)
def marketing_spend__local(marketing_spend_data_path: str) ->
pd.DataFrame:

...

@config.when(data_source='prod')
@extract_columns('col1', 'col2', 'col3', ...)
def marketing_spend__prod(marketing_spend_data_path: str) ->
pd.DataFrame:

...

Then you can invoke your driver but set the config differently:

driver = Driver(
{'data_source' : 'prod', 'marketing_spend_data_path' :

's3://...'},
data_loaders, ...)

Note that there are a variety of other ways you can organize your code – at this point its entirely

use-case dependent. Apache Hamilton is a language for declaring dataflows that’s applicable

towards a multitude of use-cases. It’s not going to dictate how to write your functions or where

you put them.

147 Concepts

User Guide

This portion of the documentation goes over the set of common examples for Apache Hamilton

usage, so you can apply it to your day-to-day work. Each one corresponds to an example in the

examples directory. If there’s an example you want but don’t see, reach out or open an issue on

github – we’re always looking to add more.

Jupyter notebooks

There are two main ways to use Apache Hamilton in a notebook.

Dynamically create modules within the notebook.

Import modules into the notebook.

1 - Dynamically create modules within your notebook

There’s two main ways, using the Hamilton Jupyter magic, or using ad_hoc_utils to create a

temporary module.

Use Hamilton Jupyter Magic
The Hamilton Jupyter magic allows you to dynamically create a module from a cell in your

notebook. This is useful for quick iteration and development. Once you’re then happy, it’s easy to

then write out a module with the functions you’ve developed using %%writefile magic.

To load the magic:

load some extensions / magic...
%load_ext hamilton.plugins.jupyter_magic

Then to use it:

%%cell_to_module -m MODULE_NAME # more args

To see help on the magic, you can run %%cell_to_module --help , or just ?%%cell_to_module in a

cell.

1.

2.

148 User Guide

https://github.com/apache/hamilton/tree/main/examples

It should output information similar to the following:

-m, –module_name: Module name to provide. Default is jupyter_module. -c, –config: JSON config

string, or variable name containing config to use. -r, –rebuild-drivers: Flag to rebuild drivers. -d, –

display: Flag to visualize dataflow. -v, –verbosity: of standard output. 0 to hide. 1 is normal, default.

Example use:

%%cell_to_module -m MODULE_NAME --display --rebuild-drivers

def hello() -> str:
return "hello"

def world(hello: str) -> str:
return f"{hello} world"

Once you’re happy with the functions you’ve developed, you can then write them out to a module

using the %%writefile magic:

%%writefile hello_world.py

Importing specific functions into cell modules
If you import parts of modules in a Hamilton Jupyter Magic cell, these will need to be reloaded

when changes are made to their source. This can be done either by restarting the kernel or with

the help of importlib.reload:

%%cell_to_module MODULE_NAME

first import the module itself, so it can be reloaded
import my_common_functions

reload the module
import importlib
importlib.reload(my_common_functions)
now import the specific function from the module
from my_common_functions import commonfunction

use the imported function
commonfunction()

149 User Guide

Using ad_hoc_utils to create a temporary module (e.g. use in google
colab)
You have the ability to inline define functions with your driver that can be used to build a DAG. We

strongly recommend only using this approach when absolutely necessary — it’s very easy to build

spaghetti code this way.

For example, say we want to add a function to compute the logarithm of avg_3wk_spend and not

add it to some_functions.py , we can do the following steps directly in our notebook:

Step 1 - define function
import numpy as np

def log_avg_3wk_spend(avg_3wk_spend: pd.Series) -> pd.Series:
"""Simple function taking the logarithm of spend over signups."""
return np.log(avg_3wk_spend)

We then have to create a “temporary python module” to house it in. We do this by importing

ad_hoc_utils and then calling the create_temporary_module function, passing in the functions

we want, and providing a name for the module we’re creating.

Step 2 - create a temporary modeul to house all notebook functions
from hamilton import ad_hoc_utils
temp_module = ad_hoc_utils.create_temporary_module(

log_avg_3wk_spend, module_name='function_example')

You can now treat temp_module like a python module and pass it to your driver and use Hamilton

like normal:

Step 3 - add the module to the driver and continue as usual
dr = driver.Driver(config, some_functions, temp_module)
df = dr.execute(['avg_3wk_spend', 'log_avg_3wk_spend'],
inputs=input_data)

Caveat with this approach:
Using a “temporary python module” will not enable scaling of computation by using Ray, Dask, or

Pandas on Spark. So we suggest only using this approach for development purposes only.

2 - Importing modules into your notebook

This tutorial can also be found published on TDS.

150 User Guide

https://towardsdatascience.com/how-to-iterate-with-hamilton-in-a-notebook-8ec0f85851ed

Step 1 — Install Jupyter & Apache Hamilton
I assume you already have this step set up. But just in case you don’t:

pip install jupyterlab
pip install sf-hamilton

Then to start the notebook server it should just be:

Step 2— Set up the files

Start up your Jupyter notebook.

Go to the directory where you want your notebook and Hamilton function module(s) to live.

Create a python file(s). Do that by going to “New > text file”. It’ll open a “file” editor view. Name

the file and give it a .py extension. Once you save it, you’ll see that jupyter now provides

python syntax highlighting. Keep this tab open, so you can flip back to it to edit this file.

Start up a notebook that you will use in another browser tab.

Step 3— The basic process of iteration
At a high level, you will be switching back and forth between your tabs. You will add functions to

your Hamilton function python module, and then import/reimport that module into your

notebook to get the changes. From there you will then use Apache Hamilton as usual to run and

execute things and the notebook for all the standard things you use notebooks for.

Let’s walk through an example.

Here’s a function I added to our Hamilton function module. I named the module

some_functions.py (obviously choose a better name for your situation).

import pandas as pd

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
"""Rolling 3 week average spend."""
print("foo") # will use this to prove it reloaded!
return spend.rolling(3).mean()

And here’s what I set up in my notebook to be able to use Hamilton and import this module:

Cell 1: This just imports the base things we need; see the pro-tip at the bottom of this page for

how to automatically reload changes.

1.

2.

3.

4.

151 User Guide

import importlib
import pandas as pd
from hamilton import driver

Cell 2: Import your Hamilton function module(s)

import your hamilton function module(s) here
import some_functions

Cell 3: Run this cell anytime you make and save changes to some_functions.py

use this to reload the module after making changes to it.
importlib.reload(some_functions)

What this will do is reload the module, and therefore make sure the code is up to date for you to

use.

Cell 4: Use Hamilton

config = {}
dr = driver.Driver(config, some_functions)
input_data = {'spend': pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])}
df = dr.execute(['avg_3wk_spend'], inputs=input_data)

You should see foo printed as an output after running this cell.

Okay, so let’s now say we’re iterating on our Hamilton functions. Go to your Hamilton function

module (some_functions.py in this example) in your other browser tab, and change the

print("foo") to something else, e.g. print("foo-bar"). Save the file — it should look

something like this:

def avg_3wk_spend(spend: pd.Series) -> pd.Series:
"""Rolling 3 week average spend."""
print("foo-bar")
return spend.rolling(3).mean()

Go back to your notebook, and re-run Cell 3 & Cell 4. You should now see a different output

printed, e.g. foo-bar .

Congratulations! You just managed to iterate on Apache Hamilton using a Jupyter notebook!

To summarize this is how things ended up looking on my end:

Here’s what my some_functions.py file looks like:•

152 User Guide

Here’s what my notebook looks like:

Pro-tip: You can use ipython magic to autoreload code

Open a Python module and a Jupyter notebook side-to-side, and then add %autoreload ipython

magic to the notebook to auto-reload the cell:

from hamilton.driver import Driver

load extension
%load_ext autoreload
configure autoreload to only affect specified files

•

153 User Guide

https://ipython.org/ipython-doc/3/config/extensions/autoreload.html
https://ipython.org/ipython-doc/3/config/extensions/autoreload.html

%autoreload 1
import & specify my_module to be reloaded
i.e. this is the data transformation module that I have open in
other tab
%aimport my_module

hamilton_driver = Driver({}, my_module)
hamilton_driver.execute(['desired_output1', 'desired_output2'])

You’d then follow the following process:

Write your data transformation in the open python module

In the notebook, instantiate a Hamilton Driver and test the DAG with a small subset of data.

Because of %autoreload, the module is reimported with the latest changes each time the

Hamilton DAG is executed. This approach prevents out-of-order notebook executions, and

functions always reside in clean .py files.

Credit: Thierry Jean’s blog post.

Pro-tip: You can import functions directly

The nice thing about forcing Hamilton functions into a module, is that it’s very easy to re-use in

another context. E.g. another notebook, or directly.

For example, it is easy to directly use the functions in the notebook, like so:

some_functions.avg_3wk_spend(pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10]))

Which calls the avg_3wk_spend function we defined in the some_functions.py module.

Loading data

While we’ve been injecting data in from the driver in previous examples, Hamilton functions are

fully capable of loading their own data. In the following example, we’ll show how to use Apache

Hamilton to:

Load data from an external source (CSV file and duckdb database)

Alter the source of data depending on how the DAG is parameterized/created

1.

2.

3.

1.

2.

154 User Guide

https://medium.com/@thijean/the-perks-of-creating-dataflows-with-hamilton-36e8c56dd2a

Mock data for a test-setting (so you can quickly execute your DAG without having to wait for

data to load)

See the full tutorial here.

Licensed to the Apache Software Foundation (ASF) under one or more contributor license

agreements. See the NOTICE file distributed with this work for additional information regarding

copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the

“License”); you may not use this file except in compliance with the License. You may obtain a copy

of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License

is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied. See the License for the specific language governing permissions and

limitations under the License.

Caching

In Hamilton, caching broadly refers to “reusing results from previous executions to skip redundant

computation”. If you change code or pass new data, it will automatically determine which results

can be reused and which nodes need to be re-executed. This improves execution speed and

reduces resource usage (computation, API credits, etc.).

 Note

Open the notebook in Google Colab for an interactive version and better syntax highlighting.

Throughout this tutorial, we’ll be using the Hamilton notebook extension to define dataflows

directly in the notebook (see tutorial).

from hamilton import driver

load the notebook extension
%reload_ext hamilton.plugins.jupyter_magic

We import the logging module and get the logger from hamilton.caching . With the level set to

INFO , we’ll see GET_RESULT and EXECUTE_NODE cache events as they happen.

import logging

3.

155 User Guide

https://github.com/apache/hamilton/tree/main/examples/data_loaders
https://colab.research.google.com/github/DAGWorks-Inc/hamilton/blob/main/examples/caching/tutorial.ipynb
https://github.com/apache/hamilton/blob/main/examples/jupyter_notebook_magic/example.ipynb

logger = logging.getLogger("hamilton.caching")
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())

The next cell deletes the cached data to ensure this notebook can be run from top to bottom

without any issues.

import shutil

shutil.rmtree("./.hamilton_cache", ignore_errors=True)

Basics

Throughout this notebook, we’ll use the same simple dataflow that processes transactions in

various locations and currencies.

We use the cell magic %%cell_to_module from the Hamilton notebook extension. It will convert

the content of the cell into a Python module that can be loaded by Hamilton. The --display flag

allows to visualize the dataflow.

%%cell_to_module basics_module --display
import pandas as pd

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56],
 "country": ["USA", "USA", "USA", "Canada", "Canada"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD"],
}

def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]

156 User Guide

 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.73
 return df

Then, we build the Driver with caching enabled and execute the dataflow.

basics_dr =
driver.Builder().with_modules(basics_module).with_cache().build()

basics_results_1 = basics_dr.execute(["processed_data"],
inputs={"cutoff_date": "2024-09-01"})
print()
print(basics_results_1["processed_data"].head())

raw_data::adapter::execute_node
processed_data::adapter::execute_node

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.2300
1 Los Angeles 2024-09-12 251.67 USA USD 251.6700
2 Chicago 2024-09-11 989.34 USA USD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 541.7622
4 Vancouver 2024-09-09 584.56 Canada CAD 426.7288

We can view what values were retrieved from the cache using dr.cache.view_run() . Since this

was the first execution, nothing is retrieved.

Legend

raw_data

DataFrame
processed_data

DataFrame

cutoff_date str

input

function

157 User Guide

basics_dr.cache.view_run()

On the second execution, processed_data is retrieved from cache as reported in the logs and

highlighted in the visualization

basics_results_2 = basics_dr.execute(["processed_data"],
inputs={"cutoff_date": "2024-09-01"})
print()
print(basics_results_2["processed_data"].head())
print()
basics_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.2300
1 Los Angeles 2024-09-12 251.67 USA USD 251.6700
2 Chicago 2024-09-11 989.34 USA USD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 541.7622
4 Vancouver 2024-09-09 584.56 Canada CAD 426.7288

Legend

raw_data

DataFrame
processed_data

DataFrame

cutoff_date str

input

function

output

158 User Guide

Understanding the cache_key
The Hamilton cache stores results using a cache_key . It is composed of the node’s name

(node_name), the code that defines it (code_version), and its data inputs (data_version of its

dependencies).

For example, the cache keys for the previous cells are:

{
"node_name": "raw_data",
"code_version":

"9d727859b9fd883247c3379d4d25a35af4a56df9d9fde20c75c6375dde631c68",
"dependencies_data_versions": {} // it has no dependencies

}
{

"node_name": "processed_data",
"code_version":

"c9e3377d6c5044944bd89eeb7073c730ee8707627c39906b4156c6411f056f00",
"dependencies_data_versions": {

"cutoff_date": "WkGjJythLWYAIj2Qr8T_ug==", // input value
"raw_data": "t-BDcMLikFSNdn4piUKy1mBcKPoEsnsYjUNzWg==" //

raw_data's result

Legend

raw_data

DataFrame
processed_data

DataFrame

cutoff_date str

input

output

from cache

159 User Guide

}
}

Results could be successfully retrieved because nodes in the first execution and second execution

shared the same cache_key .

The cache_key objects are internal and you won’t have to interact with them directly. However,

keep that concept in mind throughout this tutorial. Towards the end, we show how to manually

handle the cache_key for debugging.

Adding a node

Let’s say you’re iteratively developing your dataflow and you add a new node. Here, we copy the

previous module into a new module named adding_node_module and define the node

amount_per_country .

In practice, you would edit the cell directly, but this makes the notebook easier to

read and maintain

%%cell_to_module adding_node_module --display
import pandas as pd

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56],
 "country": ["USA", "USA", "USA", "Canada", "Canada"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD"],
}

def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.73
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:

160 User Guide

 """Sum the amount in USD per country"""
 return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

We build a new Driver with adding_node_module and execute the dataflow. You’ll notice that

raw_data and processed_data are retrieved and only amount_per_country is executed.

adding_node_dr =
driver.Builder().with_modules(adding_node_module).with_cache().build()

adding_node_results = adding_node_dr.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(adding_node_results["amount_per_country"].head())
print()
adding_node_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::adapter::execute_node

 amound_in_usd
country
Canada 968.491
USA 1719.240

Legend

raw_data

DataFrame
processed_data

DataFrame

amount_per_country

DataFrame

cutoff_date str

input

function

161 User Guide

Even though this is the first execution of adding_node_dr and the module adding_node_module ,

the cache contains results for raw_data and processed_data . We’re able to retrieve values

because they have the same cache keys (code version and dependencies data versions).

This means you can reuse cached results across dataflows. This is particularly useful with training

and inference machine learning pipelines.

Changing inputs

We reuse the same dataflow adding_node_module , but change the input cutoff_date from

"2024-09-01" to "2024-09-11" .

This new input forces processed_data to be re-executed. This produces a new result for

processed_data , which cascades and also forced amount_per_country to be re-executed.

changing_inputs_dr =
driver.Builder().with_modules(adding_node_module).with_cache().build()

changing_inputs_results_1 = changing_inputs_dr.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-11"}

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

162 User Guide

)
print()
print(changing_inputs_results_1["amount_per_country"].head())
print()
changing_inputs_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

 amound_in_usd
country
USA 729.9

Now, we execute with the cutoff_date value "2024-09-05" , which forces processed_data to be

executed.

changing_inputs_results_2 = changing_inputs_dr.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-05"}

)

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

163 User Guide

print()
print(changing_inputs_results_2["amount_per_country"].head())
print()
changing_inputs_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::result_store::get_result::hit

 amound_in_usd
country
Canada 968.491
USA 1719.240

Notice that the cache could still retrieve amount_per_country . This is because processed_data

return a value that had been cached previously (in the Adding a node section).

In concrete terms, filtering rows by the date "2024-09-05" or "2024-09-01" includes the same

rows and produces the same dataframe.

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

164 User Guide

print(adding_node_results["processed_data"])
print()
print(changing_inputs_results_2["processed_data"])

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.2300
1 Los Angeles 2024-09-12 251.67 USA USD 251.6700
2 Chicago 2024-09-11 989.34 USA USD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 541.7622
4 Vancouver 2024-09-09 584.56 Canada CAD 426.7288

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.2300
1 Los Angeles 2024-09-12 251.67 USA USD 251.6700
2 Chicago 2024-09-11 989.34 USA USD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 541.7622
4 Vancouver 2024-09-09 584.56 Canada CAD 426.7288

Changing code

As you develop your dataflow, you will need to edit upstream nodes. Caching will automatically

detect code changes and determine which node needs to be re-executed. In processed_data() ,

we’ll change the conversation rate from 0.73 to 0.71 .

NOTE. changes to docstrings and comments # are ignored when versioning a node.

%%cell_to_module changing_code_module
import pandas as pd

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56],
 "country": ["USA", "USA", "USA", "Canada", "Canada"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD"],
}

def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:

165 User Guide

 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71 # <-
VALUE CHANGED FROM module_2
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
 """Sum the amount in USD per country"""
 return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

We need to execute processed_data because the code change created a new cache_key and led

to a cache miss. Then, processed_data returns a previously unseen value, forcing

amount_per_country to also be re-executed

changing_code_dr_1 =
driver.Builder().with_modules(changing_code_module).with_cache().build()

changing_code_results_1 = changing_code_dr_1.execute(
["processed_data", "amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(changing_code_results_1["amount_per_country"].head())
print()
changing_code_dr_1.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

 amound_in_usd
country
Canada 941.957
USA 1719.240

166 User Guide

We make another code change to processed_data to accomodate currency conversion for Brazil

and Mexico.

%%cell_to_module changing_code_module_2
import pandas as pd

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56],
 "country": ["USA", "USA", "USA", "Canada", "Canada"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD"],
}

def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

167 User Guide

USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
 df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18 # <-
LINE ADDED
 df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05 # <-
LINE ADDED
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
 """Sum the amount in USD per country"""
 return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

Again, the code change forces processed_data to be executed.

changing_code_dr_2 =
driver.Builder().with_modules(changing_code_module_2).with_cache().build()

changing_code_results_2 =
changing_code_dr_2.execute(["processed_data","amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})
print()
print(changing_code_results_2["amount_per_country"].head())
print()
changing_code_dr_2.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::result_store::get_result::hit

 amound_in_usd
country
Canada 941.957
USA 1719.240

168 User Guide

However, amount_per_country can be retrieved because processed_data returned a previously

seen value.

In concrete terms, adding code to process currency from Brazil and Mexico didn’t change the

processed_data result because it only includes data from the USA and Canada.

NOTE. This is similar to what happened at the end of the section Changing inputs.

print(changing_code_results_1["processed_data"])
print()
print(changing_code_results_2["processed_data"])

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.2300
1 Los Angeles 2024-09-12 251.67 USA USD 251.6700
2 Chicago 2024-09-11 989.34 USA USD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 526.9194
4 Vancouver 2024-09-09 584.56 Canada CAD 415.0376

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.2300
1 Los Angeles 2024-09-12 251.67 USA USD 251.6700

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

169 User Guide

2 Chicago 2024-09-11 989.34 USA USD 989.3400
3 Montréal 2024-09-11 742.14 Canada CAD 526.9194
4 Vancouver 2024-09-09 584.56 Canada CAD 415.0376

Changing external data

Hamilton’s caching mechanism uses the node’s code_version and its dependencies

data_version to determine if the node needs to be executed or the result can be retrieved from

cache. By default, it assumes idempotency of operations.

This section covers how to handle node with external effects, such as reading or writing external

data.

Idempotency
To illustrate idempotency, let’s use this minimal dataflow which has a single node that returns the

current date and time:

import datetime

def current_datetime() -> datetime.datetime:
return datetime.datetime.now()

The first execution will execute the node and store the resulting date and time. On the second

execution, the cache will read the stored result instead of re-executing. Why? Because the

code_version is the same and the dependencies data_version (it has no dependencies) haven’t

changed.

A similar situation occurs when reading from external data, as shown here:

import pandas as pd

def dataset(file_path: str) -> pd.DataFrame:
return pd.read_csv(file_path)

Here, the code of dataset() and the value for file_path can stay the same, but the file itself

could be updated (e.g., new rows added).

The next sections show how to always re-execute a node and ensure the latest data is used. The

DATA constant is modified with transactions in Brazil and Mexico to simulate raw_data loading a

new dataset.

170 User Guide

https://www.astronomer.io/docs/learn/dag-best-practices#review-idempotency

%%cell_to_module changing_external_module
import pandas as pd

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",
"Rio de Janeiro"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],
 "country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],
}

def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
 df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18
 df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
 """Sum the amount in USD per country"""
 return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

At execution, we see raw_data being retrieved along with all downstream nodes. Also, we note

that the printed results don’t include Brazil nor Mexico.

changing_external_dr =
driver.Builder().with_modules(changing_external_module).with_cache().build()

changing_external_results =
changing_external_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})
print()

171 User Guide

print(changing_external_results["amount_per_country"].head())
print()
changing_external_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit

 amound_in_usd
country
Canada 941.957
USA 1719.240

.with_cache() to specify caching behavior
Here, we build a new Driver with the same changing_external_module , but we specify in

.with_cache() to always recompute raw_data .

The visualization shows that raw_data was executed, and because of the new data, all

downstream nodes also need to be executed. The results now include Brazil and Mexico.

changing_external_with_cache_dr =
driver.Builder().with_modules(changing_external_module).with_cache(recompute=["raw_data"]).build()

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

output

from cache

172 User Guide

changing_external_with_cache_results =
changing_external_with_cache_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})
print()
print(changing_external_with_cache_results["amount_per_country"].head())
print()
changing_external_with_cache_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

@cache to specify caching behavior
Another way to specify the RECOMPUTE behavior is to use the @cache decorator.

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

173 User Guide

%%cell_to_module changing_external_decorator_module
import pandas as pd
from hamilton.function_modifiers import cache

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",
"Rio de Janeiro"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],
 "country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],
}

@cache(behavior="recompute")
def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
 df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18
 df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
 """Sum the amount in USD per country"""
 return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

We build a new Driver with changing_external_cache_decorator_module , which includes the

@cache decorator. Note that we don’t specify anything in .with_cache() .

changing_external_decorator_dr = (
driver.Builder()
.with_modules(changing_external_decorator_module)
.with_cache()
.build()

174 User Guide

)

changing_external_decorator_results =
changing_external_decorator_dr.execute(

["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(changing_external_decorator_results["amount_per_country"].head())
print()
changing_external_decorator_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

175 User Guide

We see that raw_data was re-executed. Then, processed_data and amount_per_country can be

retrieved because they were produced just before by the changing_external_with_cache_dr

When to use @cache vs. .with_cache() ?
Specifying the caching behavior via .with_cache() or @cache is entirely equivalent. There are

benefits to either approach:

@cache : specify behavior at the dataflow-level. The behavior is tied to the node and will be

picked up by all Driver loading the module. This can prevent errors or unexpected behaviors

for users of that dataflow.

.with_cache() : specify behavior at the Driver -level. Gives the flexiblity to change the

behavior without modifying the dataflow code and committing changes. You might be ok with

DEFAULT during development, but want to ensure RECOMPUTE in production.

Importantly, the behavior specified in .with_cache(...) overrides whatever is in @cache

because it is closer to execution. For example, having .with_cache(default=["raw_data"])

@cache(behavior="recompute") would force DEFAULT behavior.

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

•

•

176 User Guide

⛔ Important: Using the @cache decorator alone doesn’t enable caching; adding

.with_cache() to the Builder does. The decorator is only a mean to specify special

behaviors for a node.

Force recompute all

By specifying .with_cache(recompute=True) , you are setting the behavior RECOMPUTE for all

nodes. This forces recomputation, which is useful for producing a “cache refresh” with up-to-date

values.

recompute_all_dr = (
driver.Builder()
.with_modules(changing_external_decorator_module)
.with_cache(recompute=True)
.build()

)

recompute_all_results = recompute_all_dr.execute(
["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(recompute_all_results["amount_per_country"].head())
print()
recompute_all_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

177 User Guide

We see that all nodes were recomputed.

Setting default behavior

Once you enable caching using .with_cache() , it is a “opt-out” feature by default. This means all

nodes are cached unless you set the DISABLE behavior via @cache or

.with_cache(disable=[...]) . This can become difficult to manage as the number of nodes

increases.

You can make it an “opt-in” feature by setting default_behavior="disable" in .with_cache() .

This way, you’re using caching, but only for nodes explicitly specified in @cache or

.with_cache() .

Here, we build a Driver with the changing_external_decorator_module , where raw_data was

set to have behavior RECOMPUTE , and set the default behavior to DISABLE .

default_behavior_dr = (
driver.Builder()
.with_modules(changing_external_decorator_module)
.with_cache(default_behavior="disable")
.build()

)

default_behavior_results = default_behavior_dr.execute(
["amount_per_country"],

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

178 User Guide

inputs={"cutoff_date": "2024-09-01"}
)
print()
print(default_behavior_results["amount_per_country"].head())
print()
default_behavior_dr.cache.view_run()

raw_data::adapter::execute_node
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

default_behavior_dr.cache.behaviors[default_behavior_dr.cache.last_run_id]

{'amount_per_country': <CachingBehavior.DISABLE: 3>,
 'processed_data': <CachingBehavior.DISABLE: 3>,

Legend

processed_data

DataFrame

amount_per_country

DataFrame

raw_data

DataFrame

cutoff_date str

input

function

output

179 User Guide

 'raw_data': <CachingBehavior.RECOMPUTE: 2>,
 'cutoff_date': <CachingBehavior.DISABLE: 3>}

Materializers

NOTE. You can skip this section if you’re not using materializers.

DataLoader and DataSaver (collectively “materializers”) are special Hamilton nodes that connect

your dataflow to external data (files, databases, etc.). These constructs are safe to use with

caching and are complementary.

Caching

writing and reading shorter-term data to be used with the dataflow

strong connection between the code and the data

automatically handle multiple versions of the same dataset

Materializers

robust mechanism to read/write data from many sources

data isn’t necessarily meant to be used with Hamilton (e.g., loading from a warehouse,

outputting a report).

typically outputs to a static destination; each write overwrites the previous stored dataset.

The next cell uses @dataloader and @datasaver decorators. In the visualization, we see the

added raw_data.loader and saved_data nodes.

%%cell_to_module materializers_module -d
import pandas as pd
from hamilton.function_modifiers import dataloader, datasaver

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",
"Rio de Janeiro"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",
"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],
 "country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],

•

•

•

•

•

•

180 User Guide

}

@dataloader()
def raw_data() -> tuple[pd.DataFrame, dict]:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 data = pd.DataFrame(DATA)
 metadata = {"source": "notebook", "format": "json"}
 return data, metadata

def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
 df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18
 df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.DataFrame:
 """Sum the amount in USD per country"""
 return processed_data.groupby("country")
["amound_in_usd"].sum().to_frame()

@datasaver()
def saved_data(amount_per_country: pd.DataFrame) -> dict:
 amount_per_country.to_parquet("./saved_data.parquet")
 metadata = {"source": "notebook", "format": "parquet"}
 return metadata

Next, we build a Driver as usual.

Legend

amount_per_country

DataFrame

saved_data

saved_data()

raw_data

DataFrame
processed_data

DataFrame

raw_data.loader

raw_data()

cutoff_date str

input

function

materializer

181 User Guide

materializers_dr = (
driver.Builder()
.with_modules(materializers_module)
.with_cache()
.build()

)

materializers_results = materializers_dr.execute(
["amount_per_country", "saved_data"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(materializers_results["amount_per_country"].head())
print()
materializers_dr.cache.view_run()

raw_data.loader::adapter::execute_node
raw_data::adapter::execute_node
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
saved_data::adapter::execute_node

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

182 User Guide

We execute the dataflow a second time to show that loaders and savers are just like any other

node; they can be cached and retrieved.

materializers_results = materializers_dr.execute(
["amount_per_country", "saved_data"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(materializers_results["amount_per_country"].head())
print()
materializers_dr.cache.view_run()

raw_data.loader::result_store::get_result::hit
raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
saved_data::result_store::get_result::hit

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

Legend

raw_data.loader

raw_data()

raw_data

DataFrame
processed_data

DataFrame

amount_per_country

DataFrame

saved_data

saved_data()

cutoff_date str

input

function

output

materializer

from cache

183 User Guide

Usage patterns
Here are a few common scenarios:

Loading data is expensive: Your dataflow uses a DataLoader to get data from Snowflake. You

want to load it once and cache it. When executing your dataflow, you want to use your cached

copy to save query time, egress costs, etc.

Use the DEFAULT caching behavior for loaders.

Only save new data: You run the dataflow multiple times (maybe with different parameters or on a

schedule) and only want to write to destination when the data changes.

Use the DEFAULT caching behavior for savers.

Always read the latest data: You want to use caching, but also ensure the dataflow always uses

the latest data. This involves executing the DataLoader every time, get the data in-memory,

version it, and then determine what needs to be executed (see Changing external data).

Use the RECOMPUTE caching behavior for loaders.

Use the parameters default_loader_behavior or default_saver_behavior of the .with_cache()

clause to specify the behavior for all loaders or savers.

NOTE. The Caching + materializers tutorial notebook details how to achieve granular

control over loader and saver behaviors.

materializers_dr_2 = (
driver.Builder()
.with_modules(materializers_module)
.with_cache(

Legend

raw_data.loader

raw_data()

raw_data

DataFrame
processed_data

DataFrame

amount_per_country

DataFrame

saved_data

saved_data()

cutoff_date str

input

output

materializer

from cache

•

•

•

184 User Guide

default_loader_behavior="recompute",
default_saver_behavior="disable"

)
.build()

)

materializers_results_2 = materializers_dr_2.execute(
["amount_per_country", "saved_data"],
inputs={"cutoff_date": "2024-09-01"}

)
print()
print(materializers_results_2["amount_per_country"].head())
print()
materializers_dr_2.cache.view_run()

raw_data.loader::adapter::execute_node
raw_data::adapter::execute_node
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
saved_data::adapter::execute_node

 amound_in_usd
country
Brazil 77.9004
Canada 941.9570
Mexico 46.2170
USA 2959.7600

Legend

raw_data.loader

raw_data()

raw_data

DataFrame
processed_data

DataFrame

amount_per_country

DataFrame

saved_data

saved_data()

cutoff_date str

input

function

output

materializer

from cache

185 User Guide

materializers_dr_2.cache.behaviors[materializers_dr_2.cache.last_run_id]

{'amount_per_country': <CachingBehavior.DEFAULT: 1>,
 'processed_data': <CachingBehavior.DEFAULT: 1>,
 'raw_data.loader': <CachingBehavior.RECOMPUTE: 2>,
 'raw_data': <CachingBehavior.RECOMPUTE: 2>,
 'saved_data': <CachingBehavior.DISABLE: 3>,
 'cutoff_date': <CachingBehavior.DEFAULT: 1>}

Changing the cache format

By default, results are stored in pickle format. It’s a convenient default but comes with caveats.

You can use the @cache decorator to specify another file format for storing results.

By default this includes:

json

parquet

csv

excel

file

feather

orc

This feature uses DataLoader and DataSaver under the hood and supports all of the same

formats (including your custom ones, as long as they take a path attribute).

This is an area of active development. Feel free to share suggestions and feedback!

The next cell sets processed_data to be cached using the parquet format.

%%cell_to_module cache_format_module
import pandas as pd
from hamilton.function_modifiers import cache

DATA = {
 "cities": ["New York", "Los Angeles", "Chicago", "Montréal",
"Vancouver", "Houston", "Phoenix", "Mexico City", "Chihuahua City",
"Rio de Janeiro"],
 "date": ["2024-09-13", "2024-09-12", "2024-09-11", "2024-09-11",

•

•

•

•

•

•

•

186 User Guide

https://grantjenks.com/docs/diskcache/tutorial.html#caveats

"2024-09-09", "2024-09-08", "2024-09-07", "2024-09-06", "2024-09-05",
"2024-09-04"],
 "amount": [478.23, 251.67, 989.34, 742.14, 584.56, 321.85,
918.67, 135.22, 789.12, 432.78],
 "country": ["USA", "USA", "USA", "Canada", "Canada", "USA",
"USA", "Mexico", "Mexico", "Brazil"],
 "currency": ["USD", "USD", "USD", "CAD", "CAD", "USD", "USD",
"MXN", "MXN", "BRL"],
}

def raw_data() -> pd.DataFrame:
 """Loading raw data. This simulates loading from a file,
database, or external service."""
 return pd.DataFrame(DATA)

@cache(format="parquet")
def processed_data(raw_data: pd.DataFrame, cutoff_date: str) ->
pd.DataFrame:
 """Filter out rows before cutoff date and convert currency to
USD."""
 df = raw_data.loc[raw_data.date > cutoff_date].copy()
 df["amound_in_usd"] = df["amount"]
 df.loc[df.country == "Canada", "amound_in_usd"] *= 0.71
 df.loc[df.country == "Brazil", "amound_in_usd"] *= 0.18
 df.loc[df.country == "Mexico", "amound_in_usd"] *= 0.05
 return df

def amount_per_country(processed_data: pd.DataFrame) -> pd.Series:
 """Sum the amount in USD per country"""
 return processed_data.groupby("country")["amound_in_usd"].sum()

When executing the dataflow, we see raw_data recomputed because it’s a dataloader. The result

for processed_data will be retrieved, but it will be saved again as .parquet this time.

cache_format_dr =
driver.Builder().with_modules(cache_format_module).with_cache().build()

cache_format_results =
cache_format_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})
print()
print(cache_format_results["amount_per_country"].head())
print()
cache_format_dr.cache.view_run()

raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

187 User Guide

country
Canada 941.957
USA 1719.240
Name: amound_in_usd, dtype: float64

Now, under the ./.hamilton_cache , there will be two results of the same name, one with the

.parquet extension and one without. The one without is actually a pickeld DataLoader to

retrieve the .parquet file.

You can access the path programmatically via the result_store._path_from_data_version(...)

method.

data_version =
cache_format_dr.cache.data_versions[cache_format_dr.cache.last_run_id]
["processed_data"]
parquet_path =
cache_format_dr.cache.result_store._path_from_data_version(data_version).with_suffix(".parquet")
parquet_path.exists()

True

Legend

processed_data

DataFrame

amount_per_country

Series

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

188 User Guide

Introspecting the cache

The Driver.cache stores information about all executions over its lifetime. Previous run_id are

available through Driver.cache.run_ids and can be used in tandem without other utility

functions:

Resolve the node caching behavior (e.g., “recompute”)

Access structured logs

Visualize the cache execution

Also, Driver.cache.last_run_id is a shortcut to the most recent execution.

cache_format_dr.cache.resolve_behaviors(cache_format_dr.cache.last_run_id)

{'amount_per_country': <CachingBehavior.DEFAULT: 1>,
 'processed_data': <CachingBehavior.DEFAULT: 1>,
 'raw_data': <CachingBehavior.DEFAULT: 1>,
 'cutoff_date': <CachingBehavior.DEFAULT: 1>}

run_logs =
cache_format_dr.cache.logs(cache_format_dr.cache.last_run_id,
level="debug")
for event in run_logs["processed_data"]:

print(event)

processed_data::adapter::resolve_behavior
processed_data::adapter::set_cache_key
processed_data::adapter::get_cache_key::hit
processed_data::adapter::get_data_version::miss
processed_data::metadata_store::get_data_version::miss
processed_data::adapter::execute_node
processed_data::adapter::set_data_version
processed_data::metadata_store::set_data_version
processed_data::adapter::get_cache_key::hit
processed_data::adapter::get_data_version::hit
processed_data::result_store::set_result
processed_data::adapter::get_data_version::hit
processed_data::adapter::resolve_behavior

•

•

•

189 User Guide

for `.view_run()` passing no parameter is equivalent to the last
`run_id`
cache_format_dr.cache.view_run(cache_format_dr.cache.last_run_id)

Interactively explore runs
By using ipywidgets we can easily build a widget to iterate over run_id values and display

cache information. Below, we create a Driver and execute it a few times to generate data then

inspect it with a widget.

interactive_dr =
driver.Builder().with_modules(cache_format_module).with_cache().build()

interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-01"})
interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-05"})
interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-10"})
interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-11"})

Legend

processed_data

DataFrame

amount_per_country

Series

raw_data

DataFrame

cutoff_date str

input

function

output

from cache

190 User Guide

interactive_dr.execute(["amount_per_country"],
inputs={"cutoff_date": "2024-09-13"})

raw_data::result_store::get_result::hit
processed_data::result_store::get_result::hit
amount_per_country::result_store::get_result::hit
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::result_store::get_result::hit
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node
raw_data::result_store::get_result::hit
processed_data::adapter::execute_node
amount_per_country::adapter::execute_node

{'amount_per_country': Series([], Name: amound_in_usd, dtype:
float64)}

The following cell allows you to click-and-drag or use arrow-keys to navigate

from IPython.display import display
from ipywidgets import SelectionSlider, interact

@interact(run_id=SelectionSlider(options=interactive_dr.cache.run_ids))
def iterate_over_runs(run_id):

display(interactive_dr.cache.data_versions[run_id])
display(interactive_dr.cache.view_run(run_id=run_id))

Managing storage

Setting the cache path
By default, metadata and results are stored under ./.hamilton_cache , relative to the current

directory at execution time. You can also manually set the directory via .with_cache(path=...) to

isolate or centralize cache storage between dataflows or projects.

Running the next cell will create the directory ./my_other_cache .

191 User Guide

manual_path_dr =
driver.Builder().with_modules(cache_format_module).with_cache(path="./
my_other_cache").build()

Instantiating the result_store and metadata_store
If you need to store metadata and results in separate locations, you can do so by instantiating the

result_store and metadata_store manually with their own configuration. In this case, setting

.with_cache(path=...) would be ignored.

from hamilton.caching.stores.file import FileResultStore
from hamilton.caching.stores.sqlite import SQLiteMetadataStore

result_store = FileResultStore(path="./results")
metadata_store = SQLiteMetadataStore(path="./metadata")

manual_stores_dr = (
driver.Builder()
.with_modules(cache_format_module)
.with_cache(

result_store=result_store,
metadata_store=metadata_store,

)
.build()

)

Deleting data and recovering storage
As you use caching, you might be generating a lot of data that you don’t need anymore. One

straightforward solution is to delete the entire directory where metadata and results are stored.

You can also programmatically call .delete_all() on the result_store and metadata_store ,

which should reclaim most storage. If you delete results, make sure to also delete metadata. The

caching mechanism should figure it out, but it’s safer to keep them in sync.

manual_stores_dr.cache.metadata_store.delete_all()
manual_stores_dr.cache.result_store.delete_all()

192 User Guide

Usage patterns

As demonstrated here, caching works great in a notebook environment.

In addition to iteration speed, caching allows you to restart your kernel or shutdown your

computer for the day without worry. When you’ll come back, you will still be able to retrieve

results from cache.

A similar benefit is the ability resume execution between environments. For example, you might

be running Hamilton in a script, but when a bug happens you can reload these values in a

notebook and investigate.

Caching works great with other adapters like the HamiltonTracker that powers the Hamilton UI

and the MLFlowTracker for experiment tracking.

🚧 INTERNALS

If you’re curious the following sections provide details about the caching internals. These APIs are

not public and may change without notice.

Manually retrieve results
Using the Driver.cache you can directly retrieve results from previous executions. The cache

stores “data versions” which are keys for the result_store .

Here, we get the run_id for the 4th execution (index 3) and the data version for processed_data

before retrieving its value.

run_id = interactive_dr.cache.run_ids[3]
data_version = interactive_dr.cache.data_versions[run_id]
["processed_data"]
result = interactive_dr.cache.result_store.get(data_version)
print(result)

 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.23
1 Los Angeles 2024-09-12 251.67 USA USD 251.67

Decoding the cache_key
By now, you should have a better grasp on how Hamilton’s caching determines when to execute a

node. Internally, it creates a cache_key from the code_version of the node and the

•

•

•

193 User Guide

data_version of each dependency. The cache keys are stored on the Driver.cache and can be

decoded for introspection and debugging.

Here, we get the run_id for the 3rd execution (index 2) and the cache key for

amount_per_country . We then use decode_key() to retrieve the node_name , code_version , and

dependencies_data_versions .

from hamilton.caching.cache_key import decode_key

run_id = interactive_dr.cache.run_ids[2]
cache_key = interactive_dr.cache.cache_keys[run_id]
["amount_per_country"]
decode_key(cache_key)

{'node_name': 'amount_per_country',
 'code_version':
'c2ccafa54280fbc969870b6baa445211277d7e8cfa98a0821836c175603ffda2',
 'dependencies_data_versions': {'processed_data': 'WgV5-4SfdKTfUY66x-
msj_xXsKNPNTP2guRhfw=='}}

Indeed, this match the data version for processed_data for the 3rd execution.

interactive_dr.cache.data_versions[run_id]["processed_data"]

'WgV5-4SfdKTfUY66x-msj_xXsKNPNTP2guRhfw=='

Manually retrieve metadata
In addition to the result_store , there is a metadata_store that contains mapping between

cache_key and data_version (cache keys are unique, but many can point to the same data).

Using the knowledge from the previous section, we can use the cache key for

amount_per_country to retrieve its data_version and result. It’s also possible to decode its

cache_key , and get the data_version for its dependencies, making the node execution

reproducible.

run_id = interactive_dr.cache.run_ids[2]
cache_key = interactive_dr.cache.cache_keys[run_id]
["amount_per_country"]
amount_data_version =
interactive_dr.cache.metadata_store.get(cache_key)
amount_result =

194 User Guide

interactive_dr.cache.result_store.get(amount_data_version)
print(amount_result)

country
Canada 526.9194
USA 1719.2400
Name: amound_in_usd, dtype: float64

for dep_name, dependency_data_version in decode_key(cache_key)
["dependencies_data_versions"].items():

dep_result =
interactive_dr.cache.result_store.get(dependency_data_version)

print(dep_name)
print(dep_result)
print()

processed_data
 cities date amount country currency amound_in_usd
0 New York 2024-09-13 478.23 USA USD 478.23
1 Los Angeles 2024-09-12 251.67 USA USD 251.67
2 Chicago 2024-09-11 989.34 USA USD 989.34
3 Montréal 2024-09-11 742.14 Canada CAD 526.9194

Feature engineering

Apache Hamilton’s roots are in time-series offline feature engineering. But it can be used for any

type of feature engineering: offline, streaming, online. All our examples are oriented towards

Pandas, but rest assured, you can use Apache Hamilton with any python objects, e.g. numpy,

polars, and even pyspark.

Here’s a 20 minute video (slides), with brief backstory on Apache Hamilton, and an overview (at

around the 8:52 mark) of how to use it for feature engineering which was presented at the Feature

Store Summit 2022:

Otherwise here we present a high level overview and then direct users to the examples folder for

more details. We suggest reading the Offline Feature Engineering section first, since it’s the most

common use case, and helps explain the python module structure you should be going for with

Apache Hamilton. If you need more guidance here, please reach out to us on slack.

195 User Guide

https://github.com/skrawcz/talks/files/9759661/FS.Summit.2022.-.ApacheHamilton.pdf
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

Offline Feature Engineering

To use Apache Hamilton for offline feature engineering, a common pattern is:

create a data_loader module(s) that loads the data from the source(s) (e.g. a database, a csv

file, etc.).

create feature transform module(s) that transform the data into features.

create a data set module(s) that combines the data_loader and feature transform modules if

you want to connect fitting a model with Apache Hamilton. Or, you do this data set definition in

your driver code.

Here is a sketch of the above pattern:

data_loader.py
@extract_columns(*...) # you can choose to expose individual columns
def load_data(...) -> pd.DataFrame:

return pd.read_csv(...)
...
feature_transform.py
def feature_a(raw_input_a: pd.Series, ...) -> pd.Series:

return raw_input_a + ...
...
dataset.py (optional)
def model_set_x(feature_a: pd.Series, ...) -> pd.DataFrame:

return pd.DataFrame({'feature_a': feature_a, ...})
run.py
def main():

dr = driver.Driver(config, data_loader, feature_transform,
dataset)

feature_df = dr.execute([feature_transform.feature_a, ...])
...

Apache Hamilton Example
We do not provide a specific example here, since most of the examples in the examples folder fall

under this category. Some examples to browse:

Hello World shows the basics of how to use Apache Hamilton.

Data Quality shows how to incorporate runtime data quality checks into your feature

engineering pipeline.

Time-series Kaggle Example shows one way to structure your code to ingest, create features,

and fit a model.

1.

2.

3.

•

•

•

196 User Guide

https://github.com/apache/hamilton/tree/main/examples/hello_world
https://github.com/apache/hamilton/tree/main/examples/data_quality
https://github.com/apache/hamilton/tree/main/examples/model_examples/time-series

Feature engineering in multiple contexts helps show how you can use Apache Hamilton in

multiple contexts reusing code where possible, e.g. offline, & online.

PySpark UDF Map Examples shows how to use Apache Hamilton to encode map operations for

use with PySpark.

Streaming Feature Engineering

Right now, there is no specific streaming support. Instead, we model the problem as we would for

offline. Apache Hamilton has an inputs= argument to the execute() function in the driver. This

allows you to then instantiate a Apache Hamilton Driver once, and then call execute() multiple

times with different inputs. Otherwise you’d have a similar python module structure as for offline

feature engineering – perhaps just dropping the data_loader module since you would provide the

inputs directly to the execute() function.

Here’s a sketch of how you might use Apache Hamilton in conjunction with a Kafka Client:

run.py
def main():

kakfa_client = KafkaClient(...)
dr = driver.Driver(config, feature_transform)
for batch in kafka_client.get_batches(): # this is pseudo code,

but you get the idea
feature_df = dr.execute([feature_transform.feature_a, ...],

inputs=batch.to_dict())
do something / emit back to kafka, etc.

Caveats to think about. Here are some things to think about when using Apache Hamilton for

streaming feature engineering:

aggregation features, you likely want to understand whether you want to aggregate

over the entire stream or just the current batch, or load values that were computed

offline.

Apache Hamilton Example
Currently we don’t have a streaming example. But we are working on it. We direct users to look at

the online example for now, since conceptually from a modularity stand point, things would be set

up in a similar way.

•

•

•

197 User Guide

https://github.com/apache/hamilton/tree/main/examples/feature_engineering/feature_engineering_multiple_contexts
https://github.com/apache/hamilton/tree/main/examples/spark/pyspark_udfs

Online Feature Engineering

Online feature engineering can be quite simple or quite complex, depending on your situation.

However, good news is, that Apache Hamilton should be able to help you in any situation. The

modularity of Apache Hamilton allows you to swap out implementations of features easily, as well

as override values, and even ask the Driver what features are required from the source data to

create the features that you want. We think Apache Hamilton can help you keep things simple, but

then extend to helping you handle more complex situations.

The basic structure of your python modules, does not change. Depending on whether you want

Apache Hamilton to load data from a feature store, or you have all the data passed in, you just

need to appropriately segment your feature transforms into modules, or use the @config.*

decorator, to help you segment your feature computation dataflow to give you the flexibility you

need.

Caveats to think about. Here are some things to think about when using Apache Hamilton for

online feature engineering:

aggregation features, most likely you’ll want to load aggregated feature values that

were computed offline, rather than compute them live.

We skip showing a sketch of structure here, and invite you to look at the examples below.

Apache Hamilton Example
We direct users to look at Feature engineering in multiple contexts that currently describes two

scenarios around how you could incorporate Apache Hamilton into an online web-service, and

have it aligned with your batch offline processes. Note, these examples should give you the high

level first principles view of how to do things. Since having something running in production , we

didn’t want to get too specific.

Write once, run anywhere blog post:

For a comprehensive post on writing a feature once and using it anywhere see this blog. The

companion example code can be found here.

Best Egg Platform Blog Post:

For an overview of how Best Egg built their feature platform on Apache Hamilton see this blog.

•

198 User Guide

https://github.com/apache/hamilton/tree/main/examples/feature_engineering/feature_engineering_multiple_contexts
https://blog.dagworks.io/p/feature-engineering-with-hamilton
https://github.com/apache/hamilton/tree/main/examples/feature_engineering/write_once_run_everywhere_blog_post
https://blog.dagworks.io/p/building-a-better-feature-platform?r=2cg5z1&utm_campaign=post&utm_medium=web

FAQ

Q. Can I use Apache Hamilton for feature engineering with Feast?
Yes, you can use Apache Hamilton with Feast. See our [Feast example](https://github.com/

apache/hamilton/tree/main/examples/feast) and accompanying [blog post](https://

blog.dagworks.io/p/featurization-integrating-hamilton). Typically people use Apache Hamilton on

the offline side to compute features that then get pushed to Feast. For the online side it varies as

to how to integrate the two.

Model training

As Apache Hamilton is a generic library for representing dataflows in pandas, it can be used for a

wide array of tasks. One of the more common applications is using hamilton for training, testing,

and executing machine learning models, all the way from feature-engineering through training

and inference.

The following two examples show how to use Apache Hamilton to model an entire ML pipeline:

A classification pipeline for the iris dataset using scikit-learn

An implementation of the m5 kaggle competition to do time-series forecasting on unit sales for

using Walmart data.

The goal of these is to get you comfortable with building out ML pipelines using hamilton,

potentially giving you inspiration/templates from which you can get started.

LLM workflows

Apache Hamilton is great for describing dataflows, and a lot of “actions” you want an “agent” to

perform can be described as one, e.g. create an embedding of some passed in text, query a vector

database, find the nearest documents, etc.

The benefit of using Apache Hamilton within an LLM Powered app is that:

you can visualize the dataflow.

you can easily test, modify, compose, and reuse dataflows. For example, you can easily test the

dataflow that creates an embedding of some text without having to worry about the rest of the

dataflow.

1.

2.

1.

2.

199 User Guide

https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/apache/hamilton/tree/main/examples/feast
https://blog.dagworks.io/p/featurization-integrating-hamilton
https://blog.dagworks.io/p/featurization-integrating-hamilton
https://github.com/apache/hamilton/tree/main/examples/model_examples/scikit-learn
https://github.com/apache/hamilton/tree/main/examples/model_examples/time-series

you can easily swap out the implementation details of components surgically. For example, you

can swap out the vector database client based on configuration, this helps in ensuring you can

quickly and easily modify/update your dataflow and have confidence around the impact of that

change.

you can use functionality like runtime data quality checks/extend Apache Hamilton’s

capabilities with your own needs to inject/augment your dataflow with additional functionality,

e.g. caching, logging, etc.

you can request the intermediate outputs of a dataflow by requesting it as output without any

surgery required to any of your code to do so. This is useful for debugging.

The following examples show how to use Apache Hamilton for LLM workflows:

How to use “OpenAI functions” with a Knowledge Base

Modular LLM Stack with blog post

PDF Summarizer which shows a partial RAG workflow (just missing going to a vector store to get

the PDF/content) that runs inside FastAPI with a Streamlit frontend.

Data quality

Apache Hamilton comes with data quality included out of the box. While you can read more about

this in the API reference, we have a few examples to help get you started.

The following two examples showcase a similar workflow, one using the vanilla hamilton data

quality decorator, and the other using the pandera integration. The goal of this is to show how to

use runtime data quality checks in a larger, more complex ETL.

Data quality with hamilton

Data quality with pandera

3.

4.

5.

•

•

•

1.

2.

200 User Guide

https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/knowledge_retrieval/
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/modular_llm_stack
https://blog.dagworks.io/p/building-a-maintainable-and-modular
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/pdf_summarizer
https://github.com/apache/hamilton/tree/main/examples/data_quality/simple
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera

Lineage + Apache Hamilton

Example lineage graph generated by Apache Hamilton when you write Apache Hamilton code.

Here we showcase Apache Hamilton’s lineage abilities. We will use the Titanic data set to model a

hypothetical company set up where there is data engineering and data science team collaborating

together.

If you want to see code and what it does we invite you to jump straight into browsing the

lineage_snippets notebook. For those coming from the lineage blog post, you can find the code

shown in lineage_script.py.

For those who want to continue, let’s first talk about some common problems people encounter,

then more formally frame what we mean by lineage, and then explain how Apache Hamilton’s

lineage capabilities help you solve common problems encountered with Data and Machine

Learning.

Note: a quick word on terminology, we use function and node interchangeably because you

write functions, that get turned into nodes that are modeled in a DAG. So if you see function or

node they mean the same thing effectively.

201 User Guide

https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_snippets.ipynb
https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_script.py

Common Problems (and therefore questions)

As your data and ML work progresses, invariably time passes and someone runs into a problem

such as:

why is my model suddenly behaving badly? What columns does it use and what are its data

sources?

we used to be getting a value for this column/feature, but now we’re not. What has changed?

we ingested some bad data, and we need to know who and what is impacted.

a person on my team wants to make a change to X, but I’m afraid we’re going to break

something.

I have inherited some code running in production, and now something broke, where do I start?

Governance is asking me for information about data sources to a model, and the work required

seems arduous, how can I quickly get this information?

I’m terrified of inheriting this code base, I don’t know what’s going on.

I need to audit that we’re in compliance with GDPR, but that’s going to take forever.

These are all questions that can be answered with lineage information. Let’s talk about what we

mean by lineage more concretely.

What is “Lineage”?

In the context of machine learning and data work, “lineage” refers to the historical record or

traceability of data, models, and processes. It encompasses the entire life cycle of data, from its

origin to its final usage. Lineage helps establish the provenance, quality, and reliability of data and

aids in understanding how the data has been transformed.

In the context of machine learning models, lineage provides information about the training data,

preprocessing steps, hyperparameters, and algorithms used to train the model. It helps

researchers, data scientists, and stakeholders understand how a model was developed and

evaluate its reliability and potential biases.

For data pipelines and workflows, lineage tracks the flow of data through different processing

steps, transformations, and analyses. It helps identify dependencies, troubleshoot issues, and

reproduce results by capturing the sequence of operations performed on the data.

•

•

•

•

•

•

•

•

202 User Guide

Lineage information is valuable for various reasons, including:

Reproducibility: Lineage enables the replication of experiments and analyses by recording the

exact steps taken, ensuring that results can be reproduced reliably.

Auditing and Compliance: Lineage provides transparency and accountability, which is crucial for

regulatory compliance and ensuring data privacy.

Troubleshooting and Debugging: Lineage helps identify errors, inconsistencies, or unexpected

results by tracing data transformations and model training processes.

Collaboration: Lineage allows different stakeholders to understand the data’s history, facilitating

collaboration between teams working on different parts of a project.

Apache Hamilton’s Lineage Capabilities

Good news: Apache Hamilton provides a lot of the functionality needed for storing lineage and

asking questions of it. Here we’ll walk through a few features of Apache Hamilton that will help

answer and empower teams targeting the four points above:

reproducibility

auditing and compliance

troubleshooting and debugging

collaboration

Lineage as Code
To start, Apache Hamilton by design, encodes lineage information as code. This means, as you

write each Apache Hamilton function, you are encoding lineage information required to compute

it, i.e. by specifying a dataflow you have in effect, specified lineage! This means, as you write your

code and commit to, for example a version control system, you have a record of how computation

should happen. A huge benefit of this, is when the code changes, so does this information – all

without you having to manage a separate system!

TL;DR:

No need for a separate system to store lineage information, it’s already in your code!

The one thing you need to manage is that Apache Hamilton does not store information on

artifacts it produces. If you’re producing a dataframe, a model, or some other object that your

Apache Hamilton code computes, you need to store that. The good news is, you’re likely already

doing this! But, you’re probably not storing the lineage information that produced that artifact,

and that’s where Apache Hamilton comes in.

•

•

•

•

•

•

•

•

203 User Guide

For each artifact you produce, you just need to associate the Apache Hamilton DAG that produced

it. This is as simple as storing the git SHA of the code and snapshot of configuration that created

your Apache Hamilton DAG, so you can retrieve the code and ask questions of it. Adding this extra

information is easy since most destinations to store artifacts allow for extra metadata to be

stored, e.g. from MLFlow for models, Snowflake as table metadata for tables/dataframes, to flat

files on S3.

Let’s explain how using Apache Hamilton helps get at the four points above.

Reproducibility
By writing Apache Hamilton code and connecting it with a version control system (e.g. git) you

have by definition written code that can reproduce results. This is because Apache Hamilton DAGs

are deterministic. The version control system is a straightforward way to store evolutions of your

code and configuration, and therefore your DAGs.

By versioning code, you are therefore versioning lineage information. This means you can go back

in time and ask questions about the past. For example, you can ask what the lineage information

was for a model that was trained at a specific point in time. This is as simple as checking out the

git SHA of the code that produced the model, and asking Apache Hamilton to visualize (e.g. see

visualize_execution()), the DAG and ask questions of it.

Auditing and Compliance
The @tag and (@tag_outputs) feature allows you to annotate your functions with metadata. No

extra YAML file to manage, just directly together with your Apache Hamilton code. This means you

can tag functions with information such as “PII”, “GDPR”, “HIPAA”, etc. and then ask Apache

Hamilton to return nodes with certain tags, e.g. get me all my “sources”, or “what is PII, and what

consumes it?”, etc.

The Apache Hamilton Driver has a lot of functions that allow you to ask questions of your DAGs to

make (1) easier. The driver code can be run in a CI/CD system, or as part of a reporting/auditing

pipeline. For example, you can ask:

What are all the functions and their tags via list_available_variables()

What are the possible places that consume the output of this function via

what_is_downstream_of()

What are the possible sources that feed into this function via what_is_upstream_of()

With these three functions you can the find functions with specific tags and then ask questions in

relation to them.

•

•

•

204 User Guide

https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.list_available_variables
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.list_available_variables
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.list_available_variables
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.what_is_upstream_of

Troubleshooting and Debugging
The good news is that what is great for reproducibility, auditing and reproducibility, is also great

for troubleshooting and debugging.

Debugging is methodical and procedural with Apache Hamilton. The way functions are written and

executed mean that one can easily walk through just the part of the DAG of interest to debug an

issue. To help with this, Apache Hamilton has various methods to visualize lineage so you can

more easily see what you’re walking through connects to:

display_all_functions()

display_downstream_of()

display_upstream_of()

visualize_execution()

visualize_path_between()

Collaboration
When any organization scales, or has personnel changes, it’s important to have a system that

helps people get up to in a self-service manner. Apache Hamilton’s lineage as code approach

means that new team members can easily get up to speed because functions are written in a

standard way, and the lineage information is encoded in the code itself. The Apache Hamilton

Driver code enables one to ask questions of the DAGs, and therefore the code, to get up to speed

quickly.

Recipe for using Apache Hamilton’s Lineage Capabilities

At a high level, the recipe for utilizing Apache Hamilton’s lineage capabilities is as follows:

Write Apache Hamilton code.

Use @tag and @tag_outputs to annotate functions.

Instantiate a Apache Hamilton Driver, it’ll then have a representation of how data and compute

flow as defined by your Apache Hamilton code. The Driver object can then emit/provide

information on lineage!

If you store Apache Hamilton code with your version control system, you can then go back in

time to understand how lineage changes over time, since it’s encoded in code!

In code this should look something like the following:

(1) and (2) write Apache Hamilton code and annotate with @tag (and/or @tag_outputs).

•

•

•

•

•

1.

2.

3.

4.

205 User Guide

https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_all_functions
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_downstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.display_upstream_of
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_execution
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_path_between
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_path_between
https://hamilton.apache.org/reference/drivers/Driver/#hamilton.driver.Driver.visualize_path_between
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag
https://hamilton.apache.org/reference/decorators/tag

@tag(owner="data-science", importance="production", artifact="model")
def fit_random_forest(

prefit_random_forest: base.ClassifierMixin,
X_train: pd.DataFrame,
y_train: pd.Series,

) -> base.ClassifierMixin:
"""Returns a fit RF model."""
... contents of function not important ... code skipped for

brevity

(3) Instantiate a Apache Hamilton Driver and ask questions of it.

from hamilton import base
from hamilton import driver
import data_loading, features, model_pipeline, sets # import modules
config = {} # This example has no configuration.
instantiate the driver
adapter = base.DefaultAdapter()
dr = driver.Driver(config, data_loading, features, sets,
model_pipeline, adapter=adapter)
ask questions of the driver
E.g. How do the feature encoders get computed and what flows into
them?
inputs = {

"location": "data/train.csv",
"index_col": "passengerid",
"target_col": "survived",
"random_state": 42,
"max_depth": None,
"validation_size_fraction": 0.33,

}
dr.visualize_execution(

[features.encoders], "encoder_lineage", {"format": "png"},
inputs=inputs
)
what is upstream of the fit_random_forest node?
upstream_nodes = dr.what_is_upstream_of("fit_random_forest")
can now filter the nodes by tags, and pull that information out...

what is downstream of the titanic_data node?
downstream_nodes = dr.what_is_downstream_of("titanic_data")
can now filter the nodes by tags, and pull that information out...

what nodes are PII?
pii_nodes = [n for n in dr.list_available_variables()

if n.tags.get("PII") == "true"]

what nodes are called between "age" and "fit_random_forest"?
nodes_in_path = dr.what_is_the_path_between("age",
"fit_random_forest")

206 User Guide

etc

To see more code, we invite you to:

Browse the modules to see what the functions are and what they’re annotated with.

Browse either the lineage_snippets notebook or the lineage_script to see how to use the

Apache Hamilton Driver to ask questions of your DAGs.

We invite you to then go back in time, by checking out this repository and checking out an older

commit and re-running the script or notebook and seeing how things change. The command to

“go back in time” would be:

see current lineage
python lineage_script.py
go back in time
git checkout 7e2e92a79644b904856c0a81b8faa7f1ae00c64e
see past lineage
python lineage_script.py
to reset to current lineage
git checkout main

A script you could write to ask questions of your DAGs

To help you get programmatic access to your DAGs, we have an example script you could write to

quickly get lineage answers. The script is lineage_commands.py. The main point of the script, is to

show you that it could encode a runbook for your team, or be used within your CI/CD system to

query, visualize, and otherwise emit lineage information.

Scaling computation

Apache Hamilton enables a variety of tools for allowing you to scale your data processing by

integrating with third-party libraries.

Specifically, we have four examples that show how to scale Apache Hamilton both by parallelizing

transformations (ray and dask) and running on larger, distributed datasets (pandas on spark,

pyspark map UDFs).

Integrating hamilton with pandas on spark.

Integrating hamilton with ray.

1.

2.

3.

1.

2.

207 User Guide

https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_snippets.ipynb
https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_script.py
https://github.com/apache/hamilton/blob/main/examples/lineage/lineage_commands.py
https://github.com/apache/hamilton/tree/main/examples/spark/pandas_on_spark
https://github.com/apache/hamilton/tree/main/examples/ray

Integrating hamilton with dask.

Integrating hamilton with pyspark.

Microservice

While we’ve mainly been discussing running Apache Hamilton in a batch environment, it can easily

be used in a microservice/online setting. This is valuable if you want insight into exactly how your

endpoints transform/load data, or if you want to execute the same transforms you did in batch in

an online setting.

The following example shows how to execute an asynchronous set of transforms in a microservice:

We will be releasing feature-specific examples shortly, as well.

https://github.com/apache/hamilton/tree/main/examples/async

Extension autoloading

Under hamilton.plugins , there are many modules named *_extensions (e.g.,

hamilton.plugins.pandas_extensions , hamilton.plugins.mlflow_extensions). They implement

Apache Hamilton features for 3rd party libraries, including @extract_columns , materializers

(to.parquet , from_.mlflow), and more.

Autoloading behavior

By default, Apache Hamilton attempts to load all extensions one-by-one. This means that as you

have more Python packages in your environment (e.g., pandas , pyspark , mlflow , xgboost),

importing Apache Hamilton appears to become slower because it actually imports many packages.

This behavior can be less desirable when your Apache Hamilton dataflow doesn’t use any of these

packages, but you need them in your Python environment nonetheless. For example, if only

pandas is needed for your dataflow, but you have mlflow and xgboost in your environment

their respective extensions will be loaded each time.

Disable autoloading

Disabling extension autoloading allows to import Apache Hamilton without any extensions, which

can reduce import time from 2-3 sec to less than 0.5 sec. This speedup is welcomed when you

3.

4.

208 User Guide

https://github.com/apache/hamilton/tree/main/examples/dask
https://github.com/apache/hamilton/tree/main/examples/spark/pyspark
https://github.com/apache/hamilton/tree/main/examples/async

need to restart a notebook’s kernel often or you’re operating in a low RAM environment (some

Python packages are larger than 50Mbs).

There are three ways to opt-out: programmatically, environment variables, configuration file. You

must opt-out before having any other hamilton import.

1. Programmatically

from hamilton import registry
registry.disable_autoload()

2. Environment variables
From the console

export HAMILTON_AUTOLOAD_EXTENSIONS=0

Programmatically via Python os.environ .

import os
os.environ["HAMILTON_AUTOLOAD_EXTENSIONS"] = "0"

Programmatically in Jupyter notebooks

%env HAMILTON_AUTOLOAD_EXTENSIONS=0

3. Configuration file
Using the following command disables autoloading via the configuration file ./hamilton.conf .

Apache Hamilton won’t autoload extensions anymore (i.e., you won’t need to use approach 1 or 2

each time).

hamilton-disable-autoload-extensions

To revert this configuration use the following command

hamilton-enable-autoload-extensions

209 User Guide

To reenable autoloading in specific files, you can delete the environment variable or use

registry.enable_autoload() before calling registry.initialize()

from hamilton import registry
registry.enable_autoload()
registry.initialize()

Manually loading extensions

If you disabled autoloading, extensions need to be loaded manually. You should load them before

having any other hamilton import to avoid hard-to-track bugs. There are two ways.

1. Importing the extension

from hamilton.plugins import pandas_extensions, mlflow_extensions

2. Registering the extension
This approach has good IDE support via typing.Literal

from hamilton import registry
registry.load_extensions("mlflow")

Wrapping the Driver

The APIs that the Hamilton Driver is built on, are considered internal. So it is possible for you to

define your own driver in place of the stock Hamilton Driver, we suggest the following path if you

don’t like how the current Apache Hamilton Driver interface is designed:

Write a “Wrapper” class that delegates to the Hamilton Driver.

i.e.

from hamilton import driver

class MyCustomDriver(object):
def __init__(self, constructor_arg, ...):

self.constructor_arg = constructor_arg
...

210 User Guide

some internal functions specific to your context
...

def my_execute_function(self, arg1, arg2, ...):
"""What actually calls the Hamilton"""
dr = driver.Driver(self.constructor_arg, ...)
df = dr.execute(self.outputs)
return self.augmetn(df)

That way, you can create the right API constructs to invoke Hamilton in your context, and then

delegate to the stock Hamilton Driver. By doing so, it will ensure that your code continues to work,

since we intend to honor the Hamilton Driver APIs with backwards compatibility as much as

possible.

Command line interface

This page covers the Apache Hamilton CLI. It is built directly from the CLI, but note that the

command hamilton --help always provide the most accurate documentation.

Installation

The dependencies for the Apache Hamilton CLI can be installed via

pip install sf-hamilton[cli]

You can verify the installation with

hamilton --help

hamilton (global)

Options:

--verbose / --no-verbose : [default: no-verbose]

--json-out / --no-json-out : [default: no-json-out]

--install-completion : Install completion for the current shell.

•

•

•

211 User Guide

--show-completion : Show completion for the current shell, to copy it or customize the

installation.

--help : Show this message and exit.

Commands:

build : Build a single Driver with MODULES

diff : Diff between the current MODULES and their…

version : Version NODES and DATAFLOW from dataflow…

view : Build and visualize dataflow with MODULES

hamilton build

Build a single Driver with MODULES

Usage:

$ hamilton build [OPTIONS] MODULES...

Arguments:

MODULES... : [required]

Options:

--help : Show this message and exit.

hamilton diff

Diff between the current MODULES and their specified GIT_REFERENCE

Usage:

$ hamilton diff [OPTIONS] MODULES...

Arguments:

MODULES... : [required]

•

•

•

•

•

•

•

•

•

212 User Guide

Options:

--git-reference TEXT : [default: HEAD]

--view / --no-view : [default: no-view]

--output-file-path PATH : [default: diff.png]

--help : Show this message and exit.

hamilton version

Version NODES and DATAFLOW from dataflow with MODULES

Usage:

$ hamilton version [OPTIONS] MODULES...

Arguments:

MODULES... : [required]

Options:

--help : Show this message and exit.

hamilton view

Build and visualize dataflow with MODULES

Usage:

$ hamilton view [OPTIONS] MODULES...

Arguments:

MODULES... : [required]

Options:

--output-file-path PATH : [default: ./dag.png]

--help : Show this message and exit.

•

•

•

•

•

•

•

•

•

213 User Guide

pre-commit hooks

Use pre-commit hooks for safer Apache Hamilton code changes

This page gives an introduction to pre-commit hooks and how to use custom hooks to validate

your Apache Hamilton code.

What are pre-commit hooks?

A pre-commit hook is a script or command that’s executed automatically before making a commit.

The goal of these hooks is to standardize code formatting and catch erroneous code before being

committed. For example, popular hooks include ensuring files have no syntax errors, sorting

imports, and normalizing line breaks.

Note that it’s different from testing, which focuses on the behavior of the code. You can think of

pre-commit hooks as checks and formatting you would do everytime you save a file.

Add pre-commit hooks to your project

Hooks are a mechanism of the git version control system. You can find your project’s hooks

under the .git/hooks directory (it might be hidden by default). There should be many files with

the .sample extension that serve as example scripts.

The preferred way of working with pre-commit hooks is through the pre-commit Python library.

This library allows you to import and configure hooks for your repository with a .pre-commit-

config.yaml file.

Steps to get started

install the pre-commit library

pip install pre-commit

add a .pre-commit-config.yaml to your repository

.pre-commit-config.yaml
repos:

repository with hook definitions
- repo: https://github.com/pre-commit/pre-commit-hooks

1.

2.

214 User Guide

https://pre-commit.com/

rev: v2.3.0 # release version of the repo
hooks: # list of hooks from the repo to include in this project
- id: end-of-file-fixer
- id: trailing-whitespace
- id: check-yaml

args: ['--unsafe'] # some accept arguments

download another repository with hooks
- repo: https://github.com/psf/black

rev: 22.10.0
hooks:
- id: black

install the hooks defined in .pre-commit-config.yaml

pre-commit install

Now, hooks will automatically run on git commit

to manually run hooks

pre-commit run --all-files

Custom Apache Hamilton pre-commit hooks

pre-commit hooks are great developer tools, but off-the-shelf solutions aren’t aware of the

Apache Hamilton framework. Hence, we developed a pre-commit hook to help you author Apache

Hamilton dataflows! Under the hood, they leverage the hamilton CLI, so if you are unfamiliar with

it, feel free to install it and view the --help messages.

pip install sf-hamilton[cli]
hamilton --help

Checking dataflow definition
Apache Hamilton doesn’t have many syntactic constraints, but there’s a few things we want to

catch:

functions parameters and return are type annotated

a node consistently has the same type (e.g., a parameter in multiple functions)

functions with a name starting with underscore (_) are ignored from the dataflow

3.

4.

•

•

•

215 User Guide

functions with a @config decorator received a trailing double underscore with a suffix (e.g.,

hello__weekday() , hello__weekend())

Instead of reimplementing this logic, we can try to build the Hamilton Driver with the command

hamilton build MODULES and catch errors. This also ensures the verification is always in sync with

the actual build mechanism. This hook will help prevent us from committing invalid dataflow

definitions.

Checking dataflow paths
A dataflow definition might be valid, but it might break paths in unexpected ways. The command

hamilton validate (which internally uses Driver.validate_execution()) can check if a node is

reachable.

For example, take a look at my_module.py , which contains the nodes A, B, C , and the changes

between v1 and v2 .

my_module.py - v1
def A() -> int: ...

def B(A: int) -> float: ...

def C(A: int, B: float) -> None: ...

driver code
dr = driver.Builder().with_modules(my_module).build()
dr.validate_execution(final_vars=["C"]) # <- success

my_module.py - v2
def B(X: int) -> float: ...

def C(A: int, B: float) -> None: ...

driver code
dr = driver.Builder().with_modules(my_module).build()
dr.validate_execution(final_vars=["C"]) # <- failure. missing `A`

•

216 User Guide

In v1 , the dataflow could be validated for C without any inputs. Now, a developer made B

depend on X instead of A and removed A . This change accidentally impacted C which now

depends on the external input A . Note that both v1 and v2 have a valid dataflow definition. To

catch breaking changes to the path to C , we could use hamilton validate --context

context.json my_module.py with the context:

// context.json
{ "HAMILTON_FINAL_VARS": ["C"] }
// will call .validate_execution(final_vars["C"])

 Note

pre-commit hooks can prevent commits from breaking a core path, but you should use unit

and integration tests for more robust checks.

Add Apache Hamilton pre-commit to your project

We alluded to the relationship between pre-commit hooks and the hamilton command line tool.

In fact, the basic hook is designed to take a list of hamilton commands and will execute them in

order when hooks are triggered.

To use them, add this snippet to your .pre-commit-config.yaml and adapt it to your project:

- repo: https://github.com/dagworks/hamilton-pre-commit
rev: v0.1.2 # use a ref >= 0.1.2
hooks:

217 User Guide

- id: cli-command
name: Apache Hamilton CLI command
args: [# list of CLI commands to execute

hamilton build my_module.py,
hamilton build my_module2.py,
hamilton validate --context context.json my_module.py

my_module2.py,
]

The above snippet would:

check the dataflow definition of my_module.py

check the dataflow definition of my_module2.py

validate the execution path specified in context.json for dataflow composed of my_module.py

and my_module2.py

You can pass any hamilton CLI command to the pre-commit hook, but it will only care about it

succeeding or failing.

•

•

•

218 User Guide

Apache Hamilton UI

Reference

UI Overview

Apache Hamilton comes with a fully open-source UI that can be run both for local deployment

and on a remote server. The UI consists of the following features:

Telemetry for hamilton executions – both on the history of executions and the data itself.

A feature/artifact catalog for browsing/connecting executions of nodes -> results.

A dataflow (i.e. DAG) visualizer for exploring and looking at your code, and determining lineage.

A project explorer for viewing curating projects and viewing versions of your Apache Hamilton

dataflows.

In short, the Apache Hamilton UI aims to combine a large swath of MLOps/data observability

systems in one simple application.

1.

2.

3.

4.

219 Apache Hamilton UI

—

The Apache Hamilton UI has two modes: 1. Run locally using sqlite3 2. Run on docker images with

postgres (meant for deployment)

Local Mode

To run the hamilton UI in local mode, you can do the following:

pip install "sf-hamilton[ui,sdk]"
hamilton ui
python -m hamilton.cli.__main__ ui # on windows

This will launch a browser window in localhost:8241. You can then navigate to the UI and start

using it! While this can potentially handle a small production workflow, you may want to run on

postgres with a separate frontend/backend/db for full scalability and a multi-read/write db.

Docker/Deployed Mode

The Apache Hamilton UI can be contained within a set of Docker images. You launch with docker-

compose, and it will start up the UI, the backend server, and a Postgres database. If you’d like a

quick overview of some of the features, you can watch the following:

Note: if you run into the “Invalid HTTP_HOST” error, then please set the environment variable

HAMILTON_ALLOWED_HOSTS=”*” (or comma separated list of domains of choice) for the backend

docker container. You can inject this via -e or in the docker-compose[-prod].yml file itself.

Install
If you’d like a video walkthrough on getting set up, you can watch the following:

As prerequisites, you will need to have Docker installed – you can follow instructions here.

Clone the Apache Hamilton repository locally

git clone https://github.com/apache/hamilton

Navigate to the hamilton/ui directory

1.

1.

220 Apache Hamilton UI

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/install/

cd hamilton/ui

Execute the installation script with the following command

./run.sh

This will:

Pull all Docker images from the Docker Hub

Start a local Postgres database

Start the backend server

Start the frontend server

This takes a bit of time! So be patient. The server will be running on port 8242.

Then navigate to http://localhost:8242 in your browser, and enter your email (this will be the

username used within the app).

Building the Docker Images locally
If building the Docker containers from scratch, increase your Docker memory to 10gb or more –

you can do this in the Docker Desktop settings.

To build the images locally, you can run the following command:

from the hamilton/ui directory
./dev.sh --build

This will build the containers from scratch. If you just want to mount the local code, you can run

just

./dev.sh

Self-Hosting
If you know docker, you should be good to go. The one environment variable to know is

HAMILTON_ALLOWED_HOSTS, which you can set to * to allow all hosts, or a comma separated list

of hosts you want to allow.

1.

•

•

•

•

1.

221 Apache Hamilton UI

To host the UI on a subpath, set REACT_APP_HAMILTON_SUB_PATH to the subpath required. For

example, to run on https://domain.com/hamilton:

- REACT_APP_HAMILTON_SUB_PATH=/hamilton

Make sure that the sub path environment variable begins with / if set.

Please reach out to us if you want to deploy on your own infrastructure and need help - join slack.

More extensive self-hosting documentation is in the works, e.g. Snowflake, Databricks, AWS, GCP,

Azure, etc.; we’d love a helm chart contribution!

Running on Snowflake
You can run the Apache Hamilton UI on Snowflake Container Services. For a detailed guide, see

the blog post Observability of Python code and application logic with Apache Hamilton UI on

Snowflake Container Services by Greg Kantyka and the Apache Hamilton Snowflake Example.

Get started

Now that you have your server running, you can run a simple dataflow and watch it in the UI! You

can follow instructions in the UI when you create a new project, or follow the instructions here.

First, install the SDK:

pip install "sf-hamilton[sdk]"

Then, navigate to the project page (dashboard/projects), in the running UI, and click the green +

New DAG button.

222 Apache Hamilton UI

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka/observability-of-python-code-and-application-logic-with-hamilton-ui-on-snowflake-container-services-a26693b46635
https://medium.com/@pkantyka
https://github.com/apache/hamilton/tree/main/examples/snowflake/hamilton_ui

Remember the project ID – you’ll use it for the next steps.

Existing Apache Hamilton Code
Add the following adapter to your code if you have existing Apache Hamilton code:

from hamilton_sdk import adapters

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}

)

dr = (
driver.Builder()

.with_config(your_config)

.with_modules(*your_modules)

.with_adapters(tracker)

.build()
)

Then run your DAG, and follow the links in the logs! Note that the link is correct if you’re using the

local mode – if you’re on postgres it links to 8241 (but you’ll want to follow it to 8241).

223 Apache Hamilton UI

I need some Apache Hamilton code to run
If you don’t have Apache Hamilton code to run this with, you can run Apache Hamilton UI example

under examples/hamilton_ui:

we assume you're in the Apache Hamilton repository root
cd examples/hamilton_ui
make sure you have the right python packages installed
pip install -r requirements.txt
run the pipeline providing the email and project_id you created in
the UI
python run.py --email <email> --project_id <project_id>

You should see links in the logs to the UI, where you can see the DAG run + the data summaries

captured.

Features

Once you get to the UI, you can navigate to the projects page (left hand nav-bar). Assuming you

have created a project and logged to it, you can then navigate to view it and then more details

about it. E.g. versions, code, lineage, catalog, execution runs. See below for a few screenshots of

the UI.

Dataflow versioning
Select a dataflow versions to compare and visualize.

224 Apache Hamilton UI

https://github.com/apache/hamilton/tree/main/examples/hamilton_ui
http://localhost:8242/dashboard/projects

Assets/features catalog
View functions, nodes, and assets across a history of runs.

Browser
View dataflow structure and code.

225 Apache Hamilton UI

Run tracking + telemetry
View a history of runs, telemetry on runs/comparison, and data for specific runs:

226 Apache Hamilton UI

227 Apache Hamilton UI

SDK Configuration

This section documents HamiltonTracker configuration options.

Changing where data is sent
You can change where telemetry is logged by passing in hamilton_api_url and/or hamilton_ui_url

to the HamiltonTracker constructor. By default, these are set to localhost:8241/8242.

from hamilton_sdk import adapters

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"},
hamilton_api_url="http://YOUR_DOMAIN_HERE:8241",
hamilton_ui_url="http://YOUR_DOMAIN_HERE:8242" # if using docker

the UI is on 8242.
)

dr = (
driver.Builder()

.with_config(your_config)

.with_modules(*your_modules)

.with_adapters(tracker)

.build()
)

228 Apache Hamilton UI

Changing behavior of what is captured
By default, a lot is captured and sent to the Apache Hamilton UI.

Here are a few options that can change that - these can be found in

hamilton_sdk.tracking.constants. You can either change the defaults by directly changing the

constants, by specifying them in a config file, or via environment variables.

Here we first explain the options:

Simple Invocation

Option Default Explanation

CAPTURE_DATA_STATISTICS True Whether to capture any data insights/

statistics

MAX_LIST_LENGTH_CAPTURE 50 Max length for list capture

MAX_DICT_LENGTH_CAPTURE 100 Max length for dict capture

DEFAULT_CONFIG_URI ~/.hamilton.conf Default config file URI.

To change the defaults via a config file, you can do the following:

[SDK_CONSTANTS]
MAX_LIST_LENGTH_CAPTURE=100
MAX_DICT_LENGTH_CAPTURE=200

save this to ~/.hamilton.conf

To change the defaults via environment variables, you can do the following, prefixing them with

HAMILTON_:

export HAMILTON_MAX_LIST_LENGTH_CAPTURE=100
export HAMILTON_MAX_DICT_LENGTH_CAPTURE=200
python run_my_hamilton_code.py

To change the defaults directly, you can do the following:

229 Apache Hamilton UI

from hamilton_sdk.tracking import constants

constants.MAX_LIST_LENGTH_CAPTURE = 100
constants.MAX_DICT_LENGTH_CAPTURE = 200

tracker = adapters.HamiltonTracker(
project_id=PROJECT_ID_FROM_ABOVE,
username="USERNAME/EMAIL_YOU_PUT_IN_THE_UI",
dag_name="my_version_of_the_dag",
tags={"environment": "DEV", "team": "MY_TEAM", "version": "X"}

)

dr = (
driver.Builder()

.with_config(your_config)

.with_modules(*your_modules)

.with_adapters(tracker)

.build()
)
dr.execute(...)

In terms of precedence, the order is:

Module default.

Config file values.

Environment variables.

Directly set values.

1.

2.

3.

4.

230 Apache Hamilton UI

IDE extension

Reference

Apache Hamilton VSCode

 Warning

The Apache Hamilton VSCode extension is an experimental feature under active development.

Edge cases, evolving features, and partial documentation are to be expected. Please open a

GitHub issue or reach out on Slack for troubleshooting!

The Apache Hamilton VSCode extension enables interactive dataflow development in VSCode. This

developer productivity tool helps your editor understand how Apache Hamilton works (code

completion, symbol navigation, etc.). It is powered by the Apache Hamilton Language Server and

can be installed directly from the VSCode marketplace.

Features

Dataflow visualization
Visualize the dataflow defined in the current Python file. As you type and add functions, the

visualization automatically updates. There is a UI button to rotate the visualization 90-degree.

231 IDE extension

https://marketplace.visualstudio.com/items?itemName=DAGWorks.hamilton-vsc

 Note

We suggest moving the visualization tab to the VSCode panel (CTRL+J) or the secondary

sidebar (CTRL+ALT+B) by drag-and-dropping the tab.

232 IDE extension

Completion suggestions
Get completion suggestions when defining new nodes. It will even insert the appropriate type

when selected! Completion suggestions have the Node type and can even display their docstring

when hovered over.

Outline
The OUTLINE menu now displays a Apache Hamilton VSCode entry. Nodes and inputs from the

current Python file are listed and denoted by distinct icons.

233 IDE extension

Symbol navigation
When entering symbol navigation (CTRL+SHIFT+O), you can jump directly to any node definition.

Notice from the screenshot that it even pickups node defined in a decorator.

234 IDE extension

Extension walkthrough
Under the Apache Hamilton menu (the icon at the top), you can find a list of buttons. Selecting

Walkthrough and then Get started with Apache Hamilton will launch an interactive menu to

get you set up along with some tips.

 Note

235 IDE extension

Some of this content may become outdated since the extension is evolving quickly.

Roadmap
There are many features that we’d be interested in implementing. Let us know on Slack your

favorite ones!

Go To Definition: jump to where the node defined

Go To References: jump to where the node is a dependency

Rename: rename a node across locations (can be tricky when mentioned in a decorator)

Support dataflows spanning multiple modules

Configure the visualization (i.e., match the Python features)

Integrate with the Apache Hamilton UI (e.g., click a node to open it’s Apache Hamilton UI page

and see execution details)

Visualize notebook cells using the Apache Hamilton Jupyter extension (seems possible)

Language Server

 Warning

The Apache Hamilton Language Server is an experimental feature under active development.

Edge cases, evolving features, and partial documentation are to be expected. Please open a

GitHub issue or reach out on Slack for troubleshooting!

The Apache Hamilton Language Server is an implementation of the Language Server Protocol

(LSP). It is designed to power the Apache Hamilton VSCode extension which can be installed

directly from the VSCode marketplace.

Language servers power IDE features like completion suggestion, go to definition, collect

document symbols, etc. The LSP standard was established to make servers portable across IDE

frontends (e.g., VSCode, PyCharm, Emacs). Learn more.

•

•

•

•

•

•

•

236 IDE extension

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://marketplace.visualstudio.com/items?itemName=DAGWorks.hamilton-vsc
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

Installation
If you’re using the Apache Hamilton VSCode extension, you will prompted to install the language

server if it’s not found. Simply click the button and it will install it in your current Python

interpreter.

You can also manually install the language server in your Python environment via

pip install "sf-hamilton[lsp]"

Developers
If you want to dig in the internals of the language server and integrate it with another IDE, you can

find the source code in the dev tools/ section of the Apache Hamilton GitHub repository. It is

also directly available on PyPi at sf-hamilton-lsp.

Note that the package name is hamilton_lsp when used directly via Python code.

237 IDE extension

https://github.com/apache/hamilton/tree/main/dev_tools/lsp
https://pypi.org/project/sf-hamilton-lsp/

Integrations

This section showcases how Apache Hamilton integrates with popular frameworks.

dlt

dlt stands for “data load tool”. It’s an open-source Python library providing a ton of data Sources

(Slack, Stripe, Google Analytics, Zendesk, etc.) and Destinations (S3, Snowflake, BigQuery,

Postgres, etc.). Pipelines make it easy to connect Sources and Destinations and provide

advanced engineering features such as table normalization, incremental loading, and automatic

schema evolution.

dlt is an “extract and load” tool and Apache Hamilton is a “transform” tool, allowing various usage

patterns.

On this page, you’ll learn:

Extract, Transform, Load (ETL)

Extract, Load, Transform (ELT)

dlt materializer plugin for Apache Hamilton

 Note

See this blog post for a more detailed discussion about ETL with dlt + Apache Hamilton

Extract, Transform, Load (ETL)

The key consideration for ETL is that the data has to move twice:

ingest raw data (dlt) -> transform (Apache Hamilton) -> store transformed data (dlt)

Extract: dlt moves the raw data to a processing server

Transform: on the server, Apache Hamilton executes transformations

Load: dlt moves the final data to its destination (database, dashboard, etc.)

•

•

•

1.

2.

3.

238 Integrations

https://dlthub.com/
https://blog.dagworks.io/p/slack-summary-pipeline-with-dlt-ibis

Pros

Reduce storage cost: raw data isn’t stored

Data centralization: transformed data is better separated from raw and low quality data

Cons

Increased latency: data has to move twice

Reduced flexibility: to try new transformations, data needs to

Extract

Create a dlt pipeline for raw data ingestion (see dlt guide).

Write the dlt pipeline execution code in run.py

run.py
import dlt
import slack # NOTE this is dlt code, not an official Slack library

define dlt pipeline to a local duckdb instance
extract_pipeline = dlt.pipeline(

pipeline_name="slack_raw",
destination='duckdb',
dataset_name="slack_community_backup"

)
configure dlt slack source
source = slack.slack_source(

selected_channels=["general"], replies=True
)
moves data from source to destination
raw_load_info = extract_pipeline.run(source)

Transform

Define the Apache Hamilton dataflow of transformations

transform.py
import dlt
import pandas as pd

def _table_to_df(client, table_name: str) -> pd.DataFrame:
"""Load data as DataFrame using the dlt SQL client"""
with client.execute_query("SELECT * FROM %s" % table_name) as t:

return t.df()

•

•

•

•

1.

2.

1.

239 Integrations

https://dlthub.com/docs/walkthroughs/create-a-pipeline

def general_message(pipeline: dlt.Pipeline) -> pd.DataFrame:
"""Load table `general_message` from dlt data"""
with pipeline.sql_client() as client:

return _table_to_df(client, "general_message")

def general_replies_message(pipeline: dlt.Pipeline) -> pd.DataFrame:
"""Load table `general_replies_message` from dlt data"""
with pipeline.sql_client() as client:

return _table_to_df(client, "general_replies_message")

def threads(
general_message: pd.DataFrame,
general_replies_message: pd.DataFrame,

) -> pd.DataFrame:
"""Reassemble from the union of parent messages and replies"""
columns = ["thread_ts", "ts", "user", "text"]
return pd.concat(

[general_message[columns],
general_replies_message[columns]],

axis=0
)

Add the Apache Hamilton dataflow execution code to run.py

run.py
from hamilton import driver
import transform # module containing dataflow definition

pass the `transform` module

1.

240 Integrations

dr = driver.Builder().with_modules(transform).build()
request the node `threads`; pass the dlt `pipeline` as inputs
results = dr.execute(["threads"],
inputs=dict(pipeline=extract_pipeline))
`results` is a dictionary with key `threads`

Load

Create a 2nd dlt pipeline to load the transformed data. The pipeline_name should be different

from the Extract step.

run.py
define dlt pipeline to bigquery (our prod env)
load_pipeline = dlt.pipeline(

pipeline_name="slack_final",
destination='bigquery',
dataset_name="slack_community_backup"

)
pass the results from Apache Hamilton to dlt
data = results["threads"].to_dict(orient="records")
final_load_info = load_pipeline.run(data, table_name="threads")

ETL Summary
You need to set up your dlt pipeline for raw and transformed data, and define your Apache

Hamilton transformation dataflow. Then, your execution code consist of executing the ETL step in

sequence. It should look like this:

run.py
import dlt
from hamilton import driver
import slack # NOTE this is dlt code, not an official Slack library
import transform # module containing dataflow definition

EXTRACT
extract_pipeline = dlt.pipeline(

pipeline_name="slack_raw",
destination='duckdb',
dataset_name="slack_community_backup"

)
source = slack.slack_source(

selected_channels=["general"], replies=True
)
raw_load_info = extract_pipeline.run(source)

TRANSFORM

1.

241 Integrations

dr = driver.Builder().with_modules(transform).build()
results = dr.execute(["threads"],
inputs=dict(pipeline=extract_pipeline))

LOAD
load_pipeline = dlt.pipeline(

pipeline_name="slack_final",
destination='bigquery',
dataset_name="slack_community_backup"

)
data = results["threads"].to_dict(orient="records")
final_load_info = load_pipeline.run(data, table_name="threads")

Extract, Load, Transform (ELT)

Compared to ETL, ELT moves data once.

ingest and store raw data (dlt) -> transform (Apache Hamilton)

Transformations happen within the data destination, typically a data warehouse. To achieve this,

we will leverage the Ibis library, which allows to execute data transformations directly on the

destination backend.

Extract & Load: dlt moves the raw data to the destination

Transform: Apache Hamilton + Ibis execute transformations within the destination

Pros

Deduplicate computation: redundant operations can be optimized using raw and intermediary

data

Simpler architecture: no transformation server is needed, unlike ETL

Cons

Increased storage cost: more space is required to store raw and intermediary data

Decreased data quality: the sprawl of data of various quality levels needs to be governed

Extract & Load

Create a dlt pipeline for raw data ingestion (see dlt guide).

Write the dlt pipeline execution code in run.py

1.

2.

•

•

•

•

1.

2.

242 Integrations

https://ibis-project.org/
https://dlthub.com/docs/walkthroughs/create-a-pipeline

run.py
import dlt
import slack # NOTE this is dlt code, not an official Slack library

define dlt pipeline to duckdb
pipeline = dlt.pipeline(

pipeline_name="slack",
destination='duckdb',
dataset_name="slack_community_backup"

)
load dlt slack source
source = slack.slack_source(

selected_channels=["general"], replies=True
)
execute dlt pipeline
load_info = pipeline.run(source)

Transform

Define a dataflow of transformations using Apache Hamilton + Ibis

transform.py
import ibis
import ibis.expr.types as ir

def db_con(pipeline: dlt.Pipeline) -> ibis.BaseBackend:
backend = ibis.connect(f"{pipeline.pipeline_name}.duckdb")
ibis.set_backend(backend)
return backend

def general_message(db_con: ibis.BaseBackend, pipeline:
dlt.Pipeline) -> ir.Table:

"""Load table `general_message` from dlt data"""
return db_con.table(

"general_message",
schema=pipeline.dataset_name,
database=pipeline.pipeline_name

).mutate(
thread_ts=ibis._.thread_ts.cast(str),
ts=ibis._.ts.cast(str),

)

def general_replies_message(db_con: ibis.BaseBackend, pipeline:
dlt.Pipeline) -> ir.Table:

"""Load table `general_replies_message` from dlt data"""
return db_con.table(

1.

243 Integrations

"general_replies_message",
schema=pipeline.dataset_name,
database=pipeline.pipeline_name

)

def threads(
general_message: ir.Table,
general_replies_message: ir.Table,

) -> ir.Table:
"""Create the union of `general_message` and

`general_replies_message`"""
columns = ["thread_ts", "ts", "user", "text"]
return ibis.union(

general_message.select(columns),
general_replies_message.select(columns),

)

def insert_threads(threads: ir.Table) -> bool:
db_con = ibis.get_backend() # retrieves the backend set in

`db_con()`
db_con.create_table("threads", threads)
return True

Execute the Apache Hamilton dataflow to trigger transformations on the backend

run.py
hamilton transform
from hamilton import driver
import transform # module containing dataflow definition

dr = driver.Builder().with_modules(transform).build()
dr.execute(

["insert_threads"], # execute node `insert_threads`
inputs=dict(pipeline=pipeline) # pass the dlt pipeline

)

ELT Summary
You need to set up your dlt pipeline for raw, and define your Apache Hamilton transformation

dataflow. Then, your execution code consist of using dlt to move data to the backend and Apache

Hamilton + Ibis to execute transformations.

run.py
import dlt
from hamilton import driver
import slack # NOTE this is dlt code, not an official Slack library
import transform # module containing dataflow definition

2.

244 Integrations

EXTRACT & LOAD
pipeline = dlt.pipeline(

pipeline_name="slack",
destination='duckdb',
dataset_name="slack_community_backup"

)
source = slack.slack_source(

selected_channels=["general"], replies=True
)
load_info = pipeline.run(source)

TRANSFORM
dr = driver.Builder().with_modules(transform).build()
results = dr.execute(

["insert_threads"], # query the `threads` node
inputs=dict(pipeline=pipeline) # pass the dlt load info

)

dlt materializer plugin

We added custom Data Loader/Saver to plug dlt with Apache Hamilton. Compared to the previous

approach, it allows to include the dlt operations as part of the Apache Hamilton dataflow and

improve lineage / visibility.

 Note

See this notebook for a demo.

DataLoader
The DataLoader allows to read in-memory data from a dlt.Resource . When working with

dlt.Source , you can access individual dlt.Resource with source.resource["source_name"] .

This removes the need to write utility functions to read data from dlt (with pandas or Ibis).

Contrary to the previous ETL and ELT examples, this approach is useful when you don’t want to

store the dlt Source data. It effectively connects dlt to Apache Hamilton to enable “Extract,

Transform” (ET).

run.py
from hamilton import driver
from hamilton.io.materialization import from_
import slack # NOTE this is dlt code, not an official Slack library
import transform

source = slack.source(selected_channels=["general"], replies=True)

245 Integrations

https://github.com/apache/hamilton/blob/main/examples/dlt/dlt_plugin.ipynb

dr = driver.Builder().with_modules(transform).build()

materializers = [
from_.dlt(

target="general_message", # node name assigned to the data
resource=source.resources["general_message"]

),
from_.dlt(

target="general_replies_message",
resource=source.resources["general_replies_message"]

),
]
when using only loaders (i.e., `from_`), you need to specify
`additional_vars` to compute, like you would in
`.execute(final_vars=["threads"])`
dr.materialize(*materializers, additional_vars=["threads"])

DataSaver
The DataSaver allows to write node results to any dlt.Destination . You’ll need to define a

dlt.Pipeline with the desired dlt.Destination and you can specify arguments for the

pipeline.run() behavior (e.g., incremental loading, primary key, load_file_format). This provides

a “Transform, Load” (TL) connector from Apache Hamilton to dlt.

run.py
import dlt
from hamilton import driver
from hamilton.io.materialization import to
import slack # NOTE this is dlt code, not an official Slack library
import transform

pipeline = dlt.pipeline(
pipeline_name="slack",
destination='duckdb',
dataset_name="slack_community_backup"

)

dr = driver.Builder().with_modules(transform).build()

materializers = [
to.dlt(

id="threads__dlt", # node name
dependencies=["threads"],
table_name="slack_threads",
pipeline=pipeline,

)
]

246 Integrations

dr.materialize(*materializers)

Combining both
You can also combine both the DataLoader and DataSaver . You will see below that it’s almost

identical to the ELT example, but now all operations are part of the Apache Hamilton dataflow!

run.py
import dlt
from hamilton import driver
from hamilton.io.materialization import from_, to
import slack # NOTE this is dlt code, not an official Slack library
import transform

pipeline = dlt.pipeline(
pipeline_name="slack",
destination='duckdb',
dataset_name="slack_community_backup"

)
source = slack.source(selected_channels=["general"], replies=True)

dr = driver.Builder().with_modules(transform).build()

materializers = [
from_.dlt(

target="general_message",
resource=source.resources["general_message"]

),
from_.dlt(

target="general_replies_message",
resource=source.resources["general_replies_message"]

),
to.dlt(

id="threads__dlt",
dependencies=["threads"],
table_name="slack_threads",
pipeline=pipeline,

)
]

dr.materialize(*materializers)

247 Integrations

Next steps

Our full code example to ingest Slack data and generate thread summaries is available on

GitHub.

Another important pattern in data engineering is reverse ETL, which consists of moving data

analytics back to your sources (CRM, Hubspot, Zendesk, etc.). See this dlt blog to get started.

FastAPI

FastAPI is an open-source Python web framework to create APIs. It is a modern alternative to Flask

and a more lightweight option than Django. In FastAPI, endpoints are defined using Python

functions. The parameters indicate the request specifications and the return value specifies the

response. Decorators are used to specify the HTTP methods (GET, POST, etc.) and to route the

request.

from typing import Union
from fastapi import FastAPI

app = FastAPI() # Instantiate the FastAPI server

@app.get("/") # GET method with base route "/"
def read_root():

return {"Hello": "World"}

@app.get("/items/{item_id}") # dynamic route with variable `item_id`
def read_item(item_id: int, q: Union[str, None] = None):

return {"item_id": item_id, "q": q}

•

•

248 Integrations

https://github.com/apache/hamilton/tree/main/examples/dlt
https://dlthub.com/docs/blog/reverse-etl-dlt
https://fastapi.tiangolo.com/
https://flask.palletsprojects.com/en/3.0.x/
https://www.djangoproject.com/
https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design

if __name__ == "__main__":
launch the server with `uvicorn`
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) # specify host and

port

On this page, you’ll learn how Apache Hamilton can help you:

Test you application

Reduce the friction from proof-of-concept to production

Document your API

Challenges

1. Test your FastAPI application
FastAPI endpoints are simply decorated Python function, allowing a great deal of flexibility as to

what is executed (functions, classes, web requests, etc.). On one hand, we want to test that

endpoints are defined and behave properly by starting a server and testing the GET, POST, etc.

requests. FastAPI provides great documentation and tooling to do so. On the other hand, these

tests conflate the role of the FastAPI server and the endpoint behavior. To run them, a server-

client pair need to be created, which will slow down your test suite, and endpoints need to be

mocked to avoid connecting to a production environment. By coupling the role of the FastAPI

server and the endpoint behavior, more efforts and resources are needed to write and run tests.

The content of the endpoints and the structure of your codebase might make it difficult to test

endpoint logic outside the context of a FastAPI server.

2. Document your API
FastAPI already does a great job at automating API documentation by integrating with Swagger UI

and OpenAPI. It leverages the endpoints’ name, path, docstring, and type annotations, and also

allows to add descriptions and example inputs. However, since docstrings, descriptions, and

example inputs are not directly tied to the code, they risk becoming out of sync as changes are

made.

Apache Hamilton + FastAPI

Adding Apache Hamilton to your FastAPI server can provide a better separation between the

dataflow and the API endpoints. Each endpoint can use Driver.execute() to request variables

and wrap results into an HTTP response. Then, data transformations and interactions with

•

•

•

249 Integrations

https://fastapi.tiangolo.com/tutorial/testing/
https://jestjs.io/docs/mock-functions
https://jestjs.io/docs/mock-functions
https://fastapi.tiangolo.com/how-to/configure-swagger-ui/
https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/

resources (e.g., database, web service) are curated into standalone Python modules and

decoupled from the server code.

Since Apache Hamilton dataflows will run the same way inside or outside FastAPI, you can write

simpler unit tests for Hamilton functions without defining a mock server and client. Additionnally,

visualizations for the defined Apache Hamilton dataflows can be added to the FastAPI Swagger UI

documentation. They will remain in sync with the API behavior because they are generated from

the code.

Example
In this example, we’ll build a backend for a PDF summarizer application.

The full code can be found on GitHub

Client
The client defines an HTTP POST request to send a PDF file along a selected OpenAI GPT model,

the content type of the PDF file, and a query for the summarization. The files parameter allows

for multipart encoding uploads and data sets the content of the body of the request.

client.py
from typing import IO
import requests

def post_summarize(
uploaded_pdf: IO[bytes],
openai_gpt_model: str,
content_type: str,
user_query: str,

) -> requests.Response:
"""POST request to summarize a PDF via the `/summarize`

endpoint"""
return requests.post(

url="http://0.0.0.0:8000/summarize", # http://HOST:PORT/
ENDPOINT as specified in server.py

files=dict(pdf_file=uploaded_pdf),
data=dict(

openai_gpt_model=openai_gpt_model,
content_type=content_type,
user_query=user_query,

),
)

💡 For more complex FastAPI applications, you can automatically generate the client

code in Python and other languages (TypeScript, Rust, etc.)

250 Integrations

https://fastapi.tiangolo.com/features/#automatic-docs
https://fastapi.tiangolo.com/features/#automatic-docs
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/pdf_summarizer/backend/server.py
https://requests.readthedocs.io/en/latest/user/advanced/?highlight=files#post-multiple-multipart-encoded-files
https://fastapi.tiangolo.com/advanced/generate-clients/
https://fastapi.tiangolo.com/advanced/generate-clients/

Backend dataflow with Apache Hamilton
Apache Hamilton transformations are defined in the module summarization.py . This includes

loading and chunking the raw text, summarizing chunks with the OpenAI API, and reducing chunks

into a final summary.

Visualization of the Apache Hamilton dataflow

Server definition with FastAPI
Then, the FastAPI server is defined in server.py . Notice a few things:

the Driver is built only once in the global context.

the endpoint types are set using Annotated[...] to accept multipart encoded forms

the HTTP POST request is passed as inputs to Driver.execute()

the Apache Hamilton results are wrapped into a Pydantic SummarizeResponse model

server.py
from typing import Annotated

from fastapi import FastAPI, Form, UploadFile
from pydantic import BaseModel
from hamilton import driver

import summarization

app = FastAPI()

build the Hamilton Driver with the summarization module
dr = (

driver.Builder()
.with_modules(summarization)
.build()

)

•

•

•

•

251 Integrations

https://fastapi.tiangolo.com/tutorial/request-forms-and-files/?h=form#__tabbed_2_1

class SummarizeResponse(BaseModel):
"""Response to the /summarize endpoint"""
summary: str

@app.post("/summarize") # POST request, `/summarize` endpoint
def summarize_pdf(

pdf_file: Annotated[UploadFile, Form()],
openai_gpt_model: Annotated[str, Form()],
content_type: Annotated[str, Form()],
user_query: Annotated[str, Form()],

) -> SummarizeResponse:
"""Summarize the text from the PDF file"""
results = dr.execute(

["summarized_text"],
inputs=dict(

pdf_source=pdf_file.file,
openai_gpt_model=openai_gpt_model,
content_type=content_type,
user_query=user_query,

),
)
return SummarizeResponse(summary=results["summarized_text"])

if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) # specify host and

port

Visualize endpoints’ dataflow
The Apache Hamilton dataflow visualizations can be added to the automatically generated FastAPI

Swagger UI documentation, which can be viewed at http://0.0.0.0:8000/docs

server.py
... after defining all endpoints

get the visualization
visualization = dr.visualize_execution(["summarized_text"],
inputs=dict(pdf_source=bytes(), openai_gpt_model="", user_query=""))
encode the PNG object into a base64 string
base64_viz =
base64.b64encode(visualization.pipe(format="png")).decode("utf-8")
route[-1] is the last defined, i.e. `/summarize`
append the base64 string of a PNG to the API endpoint text
description
app.routes[-1].description += f"""<img src="data:image/png;base64,
{base64_viz}"/"""

252 Integrations

https://fastapi.tiangolo.com/features/#automatic-docs

... before `if __name__ == "__main__":`

📞 If you are interested in a generic approach to add visualizations to all of your

endpoints, please reach out to us on Slack!

Benefits

Separation of concerns: the decoupling between server.py and summarization.py makes it

easier to extend and test the server separately from the data transformations.

Reusable code: the module summarization.py can be reused elsewhere with Apache Hamilton.

For instance, if you first started by building a proof-of-concept with Streamlit + Apache

Hamilton, the logic you produced could be reused to power your FastAPI server.

Richer documentation: Apache Hamilton allows to view and better understand the dataflow of

an operation. This helps onboard new API users and greatly facilitates transferring the

ownership of the API to other engineers.

•

•

•

253 Integrations

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://hamilton.apache.org/integrations/streamlit
https://hamilton.apache.org/integrations/streamlit

Ibis

Ibis is the portable Python dataframe library. It allows you to define data transformations once

and execute them in multiple backends (BigQuery, DuckDB, PySpark, SQLite, Snowflake, Postgres,

Polars; see the full list). If you never used Ibis before, it should feel similar to SQL with a touch of

dataframes (e.g., pandas). You’ll be primarily writing expressions (similar to an SQL query), which

compute values only after calling for execution via .to_pandas() for example.

On this page, you’ll learn how Ibis + Apache Hamilton can help:

Create a modular codebase for better collaboration and maintainability

Reduce the development-production gap

Standalone Ibis

Here’s an Ibis code snippet to load data from a CSV, compute features, and select columns / filter

rows. It illustrates typical feature engineering operations.

Reading the code, you’ll notice that:

We use “expression chaining”, meaning there’s a series of .method() attached one after

another.

The variable ibis._ is a special character referring to the current expression e.g., ibis._.pet

accesseses the column “pet” of the current table.

The table method .mutate(col1=, col2=, ...) assigns new columns or overwrites existing

ones.

import ibis

raw_data_path = ...
feature_selection = [

"id", "has_children", "has_pet", "is_summer_brazil",
"service_time", "seasons", "disciplinary_failure",
"absenteeism_time_in_hours",

],

write the expression
feature_set = (

ibis.read_csv(sources=raw_data_path, table_name="absenteism")
.rename("snake_case")
.mutate(

has_children=ibis.ifelse(ibis._.son > 0, 1, 0),
has_pet=ibis.ifelse(ibis._.pet > 0, 1, 0),

•

•

•

•

•

254 Integrations

https://ibis-project.org/
https://ibis-project.org/support_matrix

is_summer_brazil=ibis._.month_of_absence.isin([1, 2,
12]).cast(int),

)
.select(*feature_selection)
.filter(ibis.ifelse(ibis._.has_pet == 1, True, False))

)
execute the expression
feature_df = feature_set.to_pandas()

Challenge 1 - Maintain and test large data transformations codebases
Ibis has an SQL-like syntax and supports chaining operations, allowing for powerful queries in a

few lines of code. Conversely, there’s a risk of sprawling complexity as expressions as statements

are appended, making them harder to test and debug. Preventing this issue requires a lot of

upfront discipline and refactoring.

Challenge 2 - Orchestrate Ibis code in production
Ibis alleviates a major pain point by enabling data transformations to work across backends.

However, moving from dev to prod still requires some code changes such as changing backend

connectors, swapping unsupported operators, adding some orchestration and logging execution.

This is outside the scope of the Ibis project and is expected to be enabled by other means.

How Apache Hamilton complements Ibis

Write modular Ibis code
Apache Hamilton was initially developed to structure pandas code for a large catalog of features,

and has been adopted by multiple organizations since. Its syntax encourages users to chunk code

into meaningful and reusable components, which facilitates documentation, unit testing, code

reviews, and improves iteration speed. These benefits directly translate to organizing Ibis code.

Now, we’ll refactor the above code to use Apache Hamilton. Users have the flexibility to chunk

code at the table or the column-level depending on the needed granularity. This modularity is

particularly beneficial to Ibis because:

Well-scoped functions with type annotations and docstring are easier to understand for new

Ibis users and facilitate onboarding.

Unit testing and data validation becomes easier with smaller expressions. These checks become

more important when working across backends since the operation coverage varies and bugs

may arise.

•

•

255 Integrations

https://blog.dagworks.io/p/tidy-production-pandas-with-hamilton-3b759a2bf562
https://ibis-project.org/support_matrix

Table-level
Table-level operations might feel most familiar to SQL and Spark users. Also, Ibis + Apache

Hamilton is reminiscent of dbt for the Python ecosystem.

Working with tables is very efficient when your number of columns/features is limited, and you

don’t need full lineage. As you want to reuse components, you can progressively breakdown

“table-level code” in to “column-level code”.

The initial Ibis code is now 3 functions with type annotations and docstrings. We have a clear

sense of the expected external outputs and we could implement schema checks between

functions.

import ibis
import ibis.expr.types as ir

def raw_table(raw_data_path: str) -> ir.Table:
"""Load CSV from `raw_data_path` into a Table expression

 and format column names to snakecase
 """

return (
ibis.read_csv(sources=raw_data_path, table_name="absenteism")
.rename("snake_case")

)

def feature_table(raw_table: ir.Table) -> ir.Table:
"""Add to `raw_table` the feature columns `has_children`

 `has_pet`, and `is_summer_brazil`
 """

return raw_table.mutate(
has_children=(ibis.ifelse(ibis._.son > 0, True, False)),
has_pet=ibis.ifelse(ibis._.pet > 0, True, False),
is_summer_brazil=ibis._.month_of_absence.isin([1, 2, 12]),

)

def feature_set(
feature_table: ir.Table,
feature_selection: list[str],
condition: Optional[ibis.common.deferred.Deferred] = None,

) -> ir.Table:
"""Select feature columns and filter rows"""
return feature_table[feature_selection].filter(condition)

256 Integrations

Column-level
Apache Hamilton was built around column-level operations, which is most common in dataframe

libraries (pandas, Dask, polars).

Column-level code leads to fully-reusable feature definitions and a great level of lineage. Notably,

this allows to trace sensitive data and evaluate downstream impacts of code changes. However, it

is more verbose to get started with, but remember that code is more often read than written.

Now, the raw_table is loaded and the columns son , pet , and month_of_absence are extracted

to engineer new features. After transformations, features are joined with raw_table to create

feature_table .

import ibis
import ibis.expr.types as ir
from hamilton.function_modifiers import extract_columns
from hamilton.plugins import ibis_extensions

extract specific columns from the table
@extract_columns("son", "pet", "month_of_absence")
def raw_table(raw_data_path: str) -> ir.Table:

"""Load the CSV found at `raw_data_path` into a Table expression
 and format columns to snakecase
 """

return (
ibis.read_csv(sources=raw_data_path, table_name="absenteism")
.rename("snake_case")

)

accesses a single column from `raw_table`
def has_children(son: ir.Column) -> ir.BooleanColumn:

"""True if someone has any children"""
return ibis.ifelse(son > 0, True, False)

257 Integrations

narrows the return type from `ir.Column` to `ir.BooleanColumn`
def has_pet(pet: ir.Column) -> ir.BooleanColumn:

"""True if someone has any pets"""
return ibis.ifelse(pet > 0, True, False).cast(bool)

typing and docstring provides business context to features
def is_summer_brazil(month_of_absence: ir.Column) ->
ir.BooleanColumn:

"""True if it is summer in Brazil during this month

 People in the northern hemisphere are likely to take vacations
 to warm places when it's cold locally
 """

return month_of_absence.isin([1, 2, 12])

def feature_table(
raw_table: ir.Table,
has_children: ir.BooleanColumn,
has_pet: ir.BooleanColumn,
is_summer_brazil: ir.BooleanColumn,

) -> ir.Table:
"""Join computed features to the `raw_data` table"""
return raw_table.mutate(

has_children=has_children,
has_pet=has_pet,
is_summer_brazil=is_summer_brazil,

)

def feature_set(
feature_table: ir.Table,
feature_selection: list[str],
condition: Optional[ibis.common.deferred.Deferred] = None,

) -> ir.Table:
"""Select feature columns and filter rows"""
return feature_table[feature_selection].filter(condition)

258 Integrations

 Note

If your code is already structured with Apache Hamilton, migrating from pandas to Ibis should

be easy!

Orchestrate Ibis anywhere
Apache Hamilton is ideal orchestrate for Ibis because it has the lightest footprint and will run

anywhere Python does (script, notebook, FastAPI, pyodide, etc.) In fact, the Apache Hamilton

library only has 4 dependencies. You don’t need “framework code” to get started, just plain Python

functions. When moving to production, Apache Hamilton has all the necessary features to

complement Ibis such as swapping components, configurations, and lifecycle hooks for logging,

alerting, and telemetry.

A simple usage pattern of Apache Hamilton + Ibis is to use the @config.when function modifier. In

the following example, we have alternative implementations for the backend connection, which

will be used for computing and storing results. When running your code, specify in your config

backend="duckdb" or backend="bigquery" to swap between the two.

ibis_dataflow.py
import ibis
import ibis.expr.types as ir
from hamilton.function_modifiers import config

... entire dataflow definition

@config.when(backend="duckdb")
def backend_connection__duckdb(

connection_string: str
) -> ibis.backends.BaseBackend:

"""Connect to DuckDB backend"""
return ibis.duckdb.connect(connection_string)

@config.when(backend="bigquery")
def backend_connection__bigquery(

project_id: str,
dataset_id: str,

) -> ibis.backends.BaseBackend:
"""Connect to BigQuery backend

 Install dependencies via `pip install ibis-framework[bigquery]`
 """

return ibis.bigquery.connect(
project_id=project_id,
dataset_id=dataset_id,

)

259 Integrations

def insert_results(
backend_connection: ibis.backends.BaseBackend,
result_table: ir.Table,
table_name: str

):
"""Execute expression and insert results"""
backend_connection.insert(

table_name=table_name,P
obj=result_table

)

 Note

A potential architecture for Ibis + Apache Hamilton would be running CRON jobs on GitHub

actions to periodically launch AWS Lambda with the Apache Hamilton code to orchestrate Ibis

data transformations directly on the backend. This has the potential to save meaningful cloud

egress cost and greatly diminishes orchestration complexity.

How Ibis complements Apache Hamilton

Performance boost
Leveraging DuckDB as the default backend, Apache Hamilton users migrating to Ibis should

immediately find performance improvements both for local dev and production. In addition, the

portability of Ibis has the potential to greatly reduce development time.

Atomic data transformation documentation
Apache Hamilton can directly produce a dataflow visualization from code, helping with project

documentation. Ibis pushes this one step further by providing a detailed view of the query plan

and schemas. See this Ibis visualization for the column-level Apache Hamilton dataflow defined

above. It includes all renaming, type casting, and transformations steps (Please open the image in

a new tab and zoom in 🔎).

260 Integrations

Working across rows with user-defined functions (UDFs)
Apache Hamilton and most backends are designed to work primarily on tables and columns, but

sometimes you’d like to operate over a row (think of pd.DataFrame.apply()). However, pivoting

tables is costly and manually iterating over rows to collect values and create a new column is

quickly inconvenient. By using scalar user-defined functions (UDFs), Ibis makes it possible to

execute arbitrary Python code on rows directly on the backend.

 Note

Using @ibis.udf.scalar.python creates a non-vectorized function that iterates row-by-row.

See the docs to use backend-specific UDFs with @ibis.udf.scalar.builtin and create

vectorized scalar UDFs.

For instance, you could embed rows of a text column using an LLM API without leaving the

datawarehouse.

import ibis
import ibis.expr.types as ir

def documents(path: str) -> ir.Table:
"""load text documents from file"""
return ibis.read_parquet(sources=path, table_name="documents")

the function name would need to start
with `_` to avoid being added as a node
@ibis.udf.scalar.python
def _generate_summary(author: str, text: str, prompt_template: str) -
> str:

"""UDF Function to call the OpenAI API line by line"""
prompt = prompt_template.format(author=author, text=text)
client = openai.OpenAI(...)

261 Integrations

https://ibis-project.org/reference/scalar-udfs
https://ibis-project.org/reference/scalar-udfs
https://ibis-project.org/posts/duckdb-for-rag/

try:
response = client.chat.completions.create(...)
return_value = response.choices[0].message.content

except Exception:
return_value = ""

return return_value

def prompt_template() -> str:
return """summarize the following text from {author} and add

 contextual notes based on it biography and other written work

 TEXT
{text}

 """

def summaries(documents: ir.Table, prompt_template: str) -> ir.Table
"""Compute the UDF against the family"""
return documents.mutate(

summary=_generated_summary(
_.author,
_.text,
prompt_template=prompt_template

)
)

Ibis + Apache Hamilton - a natural pairing

What works in dev works in prod: Ibis and Apache Hamilton allows you to write and structure

code data transformations portable across backends for small and big data alike. The two being

lightweight libraries, installing dependencies on remote workers is fast and you’re unlikely to

ever encounter dependency conflicts.

•

262 Integrations

Maintainable and testable code: Modular functions facilitates writing high quality code and

promotes reusability, compounding your engineering efforts. It becomes easier for new users to

contribute to a dataflow and pull requests are merged faster.

Greater visibility: With Apache Hamilton and Ibis, you have incredible visualizations directly

derived from your code. This is a superpower for documentation, allowing users to make sense

of a dataflow, and also reason about changes.

Streamlit

Streamlit is an open-source Python library to create web applications with minimal effort. It’s an

effective solution to create simple dashboards, interactive data visualizations, and proof-of-

concepts for data science, machine learning, and LLM applications. On this page, you’ll learn how

Apache Hamilton can help you:

Write cleaner Streamlit applications

Reduce friction transition between proof-of-concept and production

Improve Streamlit performance

Challenges

1. Hard to read UI and data flows.
Complex Streamlit applications become difficult to debug because of the complex flow of

operations. In the simplest case, all the code is under the main function call app() and

components are added to the UI from top to bottom. Components can be nested under columns ,

containers , expanders , tabs , and more to organize them on the page by using the with

Python syntax. A good coding practice is to separate data transformations from UI, but Streamlit

can blur these lines. Things are further complicated when components are added or updated

outside the main scope app() . As user interactions, data transformations, state, and UI layout

become difficult to trace, risks of breaking changes increase and debugging is more challenging.

import streamlit as st

external function writing component
def greeting(name: str) -> None:

st.write(f"Hello {name}")

def app():
st.title("Apache Hamilton + Streamlit 🐱🚀")

•

•

•

•

•

263 Integrations

https://streamlit.io/

main, settings = st.tabs(["Main", "Settings"])
left, right = st.columns(2)

nesting tabs and columns
with main:

with left:
name = st.text_input(

"What's your name", value="Lambda"
)

with right:
greeting(name)

if __name__ == "__main__":
app()

⚠ This example is illustratory and real applications quickly get more complex.

2. Cache and state management
When the user interacts with the app, Streamlit reruns your entire Python code to update what’s

displayed on screen (reference). By default, no data is preserved between updates and all

computations need to be executed again. Your application suffer slow downs if you handle large

dataframes or load machine learning models in memory for instance. To overcome this limitation,

Streamlit allows to cache expensive operations via the decorators @streamlit.cache_data and

@streamlit.cache_resource and store state variables between reruns in the global dictionary

streamlit.session_state or via key attributes of input widget. State management becomes

particularly important when building a multipage app where each page is defined in a separate

Python file and can’t communicate by default.

import pandas as pd
import streamlit as st

@st.cache_data
def load_dataframe(path: str) -> pd.DataFrame:

return pd.read_parquet(path)

def app():
st.title("Apache Hamilton + Streamlit 🐱🚀")

load_dataframe() will only run the first time
df = load_dataframe(path="...")
st.dataframe(df)

If favorite flavor is known, display it.
if st.session_state("favorite"):

st.write(f"Your favorite ice cream is:
{st.session_state['favorite']}")

264 Integrations

https://docs.streamlit.io/get-started/fundamentals/main-concepts#data-flow
https://docs.streamlit.io/library/advanced-features/caching
https://docs.streamlit.io/library/api-reference/session-state
https://docs.streamlit.io/get-started/tutorials/create-a-multipage-app

Ask for the favorite ice cream until an answer is given.
else:

st.text_input(
"What's your favorite ice cream flavor?",
key="favorite", # key to st.session_state

)

if __name__ == "__main__":
app()

⚠ This example is illustratory and real applications quickly get more complex.

Apache Hamilton + Streamlit

Adding Apache Hamilton to your Streamlit application can provide a better separation between

the dataflow and the UI logic. They pair nicely together because Apache Hamilton is also stateless.

Once defined, each call to Driver.execute() is independent. Therefore, on each Streamlit rerun,

you use Driver.execute() to complete computations. Using Apache Hamilton this way allows you

to write your dataflow into Python modules and outside of the Streamlit.

Example
In this example, we will build a simple financial dashboard based on the Kaggle Bank Marketing

Dataset.

The full code can be found on GitHub

First, Apache Hamilton transformations are defined in the module logic.py . This includes

downloading the data from the web, getting unique values for job , conducting groupby

aggregates, and creating plotly figures.

logic.py
import pandas as pd
import plotly.express as px
from plotly.graph_objs import Figure

def base_df() -> pd.DataFrame:
path = "https://raw.githubusercontent.com/Lexie88rus/bank-

marketing-analysis/master/bank.csv"
return pd.read_csv(path)

def all_jobs(base_df: pd.DataFrame) -> list[str]:
return base_df["job"].unique().tolist()

265 Integrations

https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset
https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset
https://github.com/apache/hamilton/tree/main/examples/streamlit

def balance_per_job(base_df: pd.DataFrame) -> pd.DataFrame:
return base_df.groupby("job")["balance"].describe().astype(int)

def balance_per_job_boxplot(base_df: pd.DataFrame) -> Figure:
return px.box(base_df, x="job", y="balance")

def job_df(base_df: pd.DataFrame, selected_job: str) -> pd.DataFrame:
return base_df.loc[base_df['job']==selected_job]

def job_hist(job_df: pd.DataFrame) -> Figure:
return px.histogram(job_df["balance"])

266 Integrations

Then, the Streamlit UI is defined in app.py . Notice a few things:

app.py doesn’t have to depend on pandas and plotly .

@cache_resource allows to create the Driver only once.

@cache_data on _execute() will automatically cache any Apache Hamilton result based on the

combination of arguments (final_vars , inputs , and overrides)

get_state_inputs() and get_state_overrides() will collect values from user inputs.

execute() parses the inputs and overrides from the state and call _execute() .

app.py
from typing import Optional

from hamilton import driver
import streamlit as st

import logic

cache to avoid rebuilding the Driver
@st.cache_resource
def get_hamilton_driver() -> driver.Driver:

return (
driver.Builder()
.with_modules(logic)
.build()

)

cache results for the set of inputs
@st.cache_data
def _execute(

final_vars: list[str],
inputs: Optional[dict] = None,
overrides: Optional[dict] = None,

) -> dict:
"""Generic utility to cache Apache Hamilton results"""
dr = get_hamilton_driver()
return dr.execute(final_vars, inputs=inputs, overrides=overrides)

def get_state_inputs() -> dict:
keys = ["selected_job"]
return {k: v for k, v in st.session_state.items() if k in keys}

def get_state_overrides() -> dict:
keys = []
return {k: v for k, v in st.session_state.items() if k in keys}

•

•

•

•

•

267 Integrations

def execute(final_vars: list[str]):
return _execute(final_vars, get_state_inputs(),

get_state_overrides())

def app():
st.title("Apache Hamilton + Streamlit 🐱🚀")

run the base data that always needs to be displayed
data = execute(["all_jobs", "balance_per_job",

"balance_per_job_boxplot"])

display the base dataframe and plotly chart
st.dataframe(data["balance_per_job"])
st.plotly_chart(data["balance_per_job_boxplot"])

get the selection options from `data`
store the selection in the state `selected_job`
st.selectbox("Select a job", options=data["all_jobs"],

key="selected_job")
get the value from the dict
st.plotly_chart(execute(["job_hist"])["job_hist"])

if __name__ == "__main__":
app()

Benefits

Clearer scope: the decoupling between app.py and logic.py makes it easier to add data

transformations or extend UI, and debug errors associated with either.

Reusable code: the module logic.py can be reused elsewhere with Apache Hamilton.

If you are building a proof-of-concept with Streamlit, your Apache Hamilton module will be

able to grow with your project and be useful for your production pipelines.

If you are already building dataflows with Apache Hamilton, using it with Streamlit ensures

your dashboard metrics have the same implementation with your production pipeline (i.e.,

prevent implementation skew)

Performance boost: by caching the Hamilton Driver and its execution call, we are able to

effectively cache all data operations in a few lines of code. Furthermore, Apache Hamilton can

scale further by using a remote task executor on a separate machine from the Streamlit

application.

•

•

◦

◦

•

268 Integrations

https://building.nubank.com.br/dealing-with-train-serve-skew-in-real-time-ml-models-a-short-guide/

dbt

If you’re familiar with DBT, you likely noticed that it can fill a similar role to Apache Hamilton.

What DBT does for SQL files (organizing functions, providing lineage capabilities, making testing

easier), Apache Hamilton does for python functions.

Many projects span the gap between SQL and python, and Apache Hamilton is a natural next step

for an ML workflow after extracting data from DBT.

This example shows how you can use DBT’s new python capabilities to integrate a Apache

Hamilton dataflow with a DBT pipeline.

Find the full, working dbt project here.

269 Integrations

https://docs.getdbt.com/docs/build/python-models
https://github.com/apache/hamilton/tree/main/examples/dbt

Code Comparisons

This section showcases what Apache Hamilton code looks like in comparison to other popular

libraries and frameworks.

Kedro

Both Kedro and Apache Hamilton are Python tools to help define directed acyclic graph (DAG) of

data transformations. While there’s overlap between the two in terms of features, we note two

main differences:

Kedro is imperative and focuses on tasks; Apache Hamilton is declarative and focuses on

assets.

Kedro is heavier and comes with a project structure, YAML configs, and dataset definition to

manage; Apache Hamilton is lighter to adopt and you can progressively opt-in features that you

find valuable.

On this page, we’ll dive into these differences, compare features, and present some code snippets

from both tools.

 Note

See this GitHub repository to compare a full project using Kedro or Apache Hamilton.

Imperative vs. Declarative

There are 3 steps to build and run a dataflow (a DAG, a data pipeline, etc.)

Define transformation steps

Assemble steps into a dataflow

Execute the dataflow to produce data artifacts (tables, ML models, etc.)

•

•

1.

2.

3.

270 Code Comparisons

https://github.com/apache/hamilton/tree/main/examples/kedro

1. Define steps
Imperative (Kedro) vs. declarative (Apache Hamilton) leads to significant differences in Step 2

and Step 3 that will shape how you work with the tool. However, Step 1 remains similar. In fact,

both tools use the term nodes to refer to steps.

Kedro (imperative) Apache Hamilton (declarative)

nodes.py
import pandas as pd

def _is_true(x: pd.Series) ->
pd.Series:

return x == "t"

def preprocess_companies(companies:
pd.DataFrame) -> pd.DataFrame:

"""Preprocesses the data for
companies."""

companies["iata_approved"] =
_is_true(companies["iata_approved"])

return companies

def preprocess_shuttles(shuttles:
pd.DataFrame) -> pd.DataFrame:

"""Preprocesses the data for
shuttles."""

shuttles["d_check_complete"] =
_is_true(

shuttles["d_check_complete"]
)

shuttles["moon_clearance_complete"]
= _is_true(

shuttles["moon_clearance_complete"]
)
return shuttles

def create_model_input_table(
shuttles: pd.DataFrame,

companies: pd.DataFrame,
) -> pd.DataFrame:

"""Combines all data to create a
model input table."""

shuttles = shuttles.drop("id",
axis=1)

dataflow.py
import pandas as pd

def _is_true(x: pd.Series) ->
pd.Series:

return x == "t"

def
companies_preprocessed(companies:
pd.DataFrame) -> pd.DataFrame:

"""Companies with added column
`iata_approved`"""

companies["iata_approved"] =
_is_true(companies["iata_approved"])

return companies

def shuttles_preprocessed(shuttles:
pd.DataFrame) -> pd.DataFrame:

"""Shuttles with added columns
`d_check_complete`
 and
`moon_clearance_complete`."""

shuttles["d_check_complete"] =
_is_true(

shuttles["d_check_complete"]
)

shuttles["moon_clearance_complete"]
= _is_true(

shuttles["moon_clearance_complete"]
)
return shuttles

def model_input_table(
shuttles_preprocessed:

pd.DataFrame,
companies_preprocessed:

pd.DataFrame,
) -> pd.DataFrame:

271 Code Comparisons

Kedro (imperative) Apache Hamilton (declarative)

model_input_table =
shuttles.merge(

companies,
left_on="company_id", right_on="id"

)
model_input_table =

model_input_table.dropna()
return model_input_table

"""Table containing shuttles and
companies data."""

shuttles_preprocessed =
shuttles_preprocessed.drop("id",
axis=1)

model_input_table =
shuttles_preprocessed.merge(

companies_preprocessed,
left_on="company_id", right_on="id"

)
model_input_table =

model_input_table.dropna()
return model_input_table

The function implementations are exactly the same. Yet, notice that the function names and

docstrings were edited slightly. Imperative approaches like Kedro typically refer to steps as tasks

and prefer verbs to describe “the action of the function”. Meanwhile, declarative approaches such

as Apache Hamilton describe steps as assets and use nouns to refer to “the value returned by the

function”. This might appear superficial, but it relates to the difference in Step 2 and Step 3.

2. Assemble dataflow
With Kedro , you need to take your functions from Step 1 and create node objects, specifying the

node’s name, inputs, and outputs. Then, you create a pipeline from a set of nodes and Kedro

assembles the nodes into a DAG. Imperative approaches need to specify how tasks (Kedro nodes)

relate to each other.

With Apache Hamilton , you pass the module containing all functions from Step 1 and let Apache

Hamilton create the nodes and the dataflow . This is possible because in declarative approaches

like Apache Hamilton, each function defines a transform and its dependencies on other functions.

Notice how in Step 1, model_input_table() has parameters shuttles_preprocessed and

companies_preprocessed , which refers to other functions in the module. This contains all the

required information to build the DAG.

Kedro (imperative) Apache Hamilton (declarative)

pipeline.py
from kedro.pipeline import Pipeline,
node, pipeline

run.py
from hamilton import driver
import dataflow # module containing node

272 Code Comparisons

Kedro (imperative) Apache Hamilton (declarative)

from nodes import (
create_model_input_table,
preprocess_companies,
preprocess_shuttles

)

def create_pipeline(**kwargs) ->
Pipeline:

return pipeline(
[

node(

func=preprocess_companies,
inputs="companies",

outputs="preprocessed_companies",

name="preprocess_companies_node",
),
node(

func=preprocess_shuttles,
inputs="shuttles",

outputs="preprocessed_shuttles",

name="preprocess_shuttles_node",
),
node(

func=create_model_input_table,
inputs=[

"preprocessed_shuttles",

"preprocessed_companies"
],

outputs="model_input_table",

name="create_model_input_table_node",
),

]
)

definitions

pass the module to the `Builder` to create a
`Driver`
dr =
driver.Builder().with_modules(dataflow).build()

273 Code Comparisons

Benefits of adopting a declarative approach

Less errors since you skip manual node creation (i.e., strings will lead to typos).

Handle complexity since assembling a dataflow remains the same for 10 or 1000 nodes.

Maintainability improves since editing your functions (Step 1) modifies the structure of your

DAG, removing the pipeline definition as a failure point.

Readability improves because you can understand how functions relate to each other without

jumping between files.

These benefits of Apache Hamilton encourage developers to write smaller functions that are

easier to debug and maintain, leading to major code quality gains. On the opposite, the burden of

node and pipeline creation as projects grow in size lead to users stuffing more and more logic

in a single node, making it increasingly harder to maintain.

3. Execute dataflow
The primary way to execute Kedro pipelines is to use the command line tool with kedro run --

pipeline=my_pipeline . Pipelines are typically designed for all nodes to be executed while reading

data and writing results while going through nodes. It is closer to macro-orchestration frameworks

like Airflow in spirit.

On the opposite, Apache Hamilton dataflows are primarily meant to be executed

programmatically (i.e., via Python code) and return results in-memory. This makes it easy to use

Apache Hamilton within a FastAPI service service or to power an LLM application.

For comparable side-by-side code, we can dig into Kedro and use the SequentialRunner

programmatically. To return pipeline results in-memory we would need to hack further with

kedro.io.MemoryDataset .

 Note

Apache Hamilton also has rich support for I/O operations (see Feature comparison below)

Kedro (imperative) Apache Hamilton (declarative)

run.py
from kedro.runner import SequentialRunner
from kedro.framework.session import KedroSession
from kedro.framework.startup import bootstrap_project

run.py
import pandas as pd
from hamilton import driver
import dataflow

•

•

•

•

274 Code Comparisons

Kedro (imperative) Apache Hamilton (declarative)

from pipeline import create_pipeline
^ from Step 2

bootstrap_project(".")
with KedroSession.create() as session:

context = session.load_context()
catalog = context.catalog

pipeline =
create_pipeline().to_nodes("create_model_input_table")
SequentialRunner().run(pipeline, catalog)
doesn't return values in-memory

dr =
driver.Builder().with_modules(dataflow).build()
^ from Step 2
inputs = dict(

companies=pd.read_parquet("path/to/
companies.parquet"),

shuttles=pd.read_parquet("path/to/
shuttles.parquet"),
)
results = dr.execute(["model_input_table"],
inputs=inputs)
results is a dict {"model_input_table":
VALUE}

An imperative pipeline like Kedro is a series of step, just like a recipe. The user can specify “from

nodes” or “to nodes” to slice the pipeline and not have to execute it in full.

For declarative dataflows like Apache Hamilton you request assets / nodes by name and the tool

will determine the required nodes to execute (here "model_input_table") avoiding wasteful

compute.

The simple Python interface provided by Apache Hamilton allows you to potentially define and

execute your dataflow from a single file, which is great to kickstart an analysis or project. Just use

python dataflow.py to execute it!

dataflow.py
import pandas as pd

def _is_true(x: pd.Series) -> pd.Series:
return x == "t"

def preprocess_companies(companies: pd.DataFrame) -> pd.DataFrame:
"""Preprocesses the data for companies."""
companies["iata_approved"] = _is_true(companies["iata_approved"])
return companies

def preprocess_shuttles(shuttles: pd.DataFrame) -> pd.DataFrame:
"""Preprocesses the data for shuttles."""
shuttles["d_check_complete"] = _is_true(

shuttles["d_check_complete"]
)
shuttles["moon_clearance_complete"] = _is_true(

shuttles["moon_clearance_complete"]
)

275 Code Comparisons

return shuttles

def create_model_input_table(
shuttles: pd.DataFrame, companies: pd.DataFrame,

) -> pd.DataFrame:
"""Combines all data to create a model input table."""
shuttles = shuttles.drop("id", axis=1)
model_input_table = shuttles.merge(

companies, left_on="company_id", right_on="id"
)
model_input_table = model_input_table.dropna()
return model_input_table

if __name__ == "__main__":
from hamilton import driver
import dataflow # import itself as a module

dr = driver.Builder().with_modules(dataflow).build()
inputs=dict(

companies=pd.read_parquet("path/to/companies.parquet"),
shuttles=pd.read_parquet("path/to/shuttles.parquet"),

)
results = dr.execute(["model_input_table"], inputs=inputs)

Framework weight

After imperative vs. declarative, the next largest difference is the type of user experience they

provide. Kedro is a more opiniated and heavier framework; Apache Hamilton is on the opposite

end of the spectrum and tries to be the lightest library possible. This changes the learning curve,

adoption, and how each tool will integrate with your stack.

Kedro
Kedro is opiniated and provides clear guardrails on how to do things. To begin using it, you’ll

need to learn to:

Define nodes and register pipelines

Register datasets using the data catalog construct

Pass parameters to data runs

Configure environment variables and credentials

Navigate the project structure

•

•

•

•

•

276 Code Comparisons

This provides guidance when building your first data pipeline, but it’s also a lot to take in at once.

As you’ll see in the project comparison on GitHub, Kedro involves more files making it harder to

navigate. Also, it’s reliant on YAML which is generally seen as an unreliable format. If you have an

existing data stack or favorite library, it might clash with Kedro ’s way of thing (e.g., you have

credentials management tool; you prefer Hydra for configs).

Apache Hamilton w~~~~~~~~~~~~~~~

Apache Hamilton attempts to get you started quickly. In fact, this page pretty much covered what

you need to know:

Define nodes and a dataflow using regular Python functions (no need to even import

hamilton !)

Build a Driver with your dataflow module and call .execute() to get results

Apache Hamilton allows you to start light and opt-in features as your project’s requirements

evolve (data validation, scaling compute, testing, etc.). Python is a powerful language with rich

editor support and tooling hence why it advocates for “everything in Python” instead of external

configs in YAML or JSON. For example, parameters, data assets, and configurations can very much

live as dataclasses within a .py file. Apache Hamilton was built with an extensive plugin system.

There are many extensions, some contributed by users, to adapt Apache Hamilton to your project,

and it’s easy for you to extend yourself for further customization.

In fact, Apache Hamilton is so lightweight, you could even run it inside Kedro !

Feature comparison

Trait Kedro Apache Hamilton

Focuses on Tasks (imperative) Assets (declarative)

Code structure Opiniated. Makes assumptions

about pipeline creation &

registration and configuration.

Unopiniated.

In-memory

execution

Execute using a KedroSession,

but returning values in-memory

is hacky.

Default

•

•

277 Code Comparisons

https://github.com/apache/hamilton/tree/main/examples/kedro
https://noyaml.com/
https://hydra.cc/
https://docs.kedro.org/en/stable/kedro_project_setup/session.html

Trait Kedro Apache Hamilton

I/O execution Datasets and Data Catalog Data Savers & Loaders

Expressive DAG

definition
⛔ Function modifiers

Column-level

transformations
⛔ ✅

LLM applications ⛔ Limited by in-memory

execution and return values.

✅ declarative API in-memory

makes it easy (RAG app).

Static DAG

visualizations

Need Kedro Viz installed to

export static visualizations.

Visualize entire dataflow,

execution path, query what’s

upstream, etc. directly in a

notebook or output to a file

(.png , .svg , etc.). Single

dependency is graphviz .

Interactive DAG

viewer

Kedro Viz Apache Hamilton UI

Data validation Community Pandera plugin Native and Pandera plugin

Executors Sequential, multiprocessing,

multi-threading

Sequential, async,

multiprocessing, multi-threading

Executor extension Spark integration PySpark, Dask, Ray, Modal

Dynamic branching ⛔ Parallelizable/Collect for easy

parallelization.

✅ ✅

278 Code Comparisons

https://docs.kedro.org/en/stable/data/data_catalog.html
https://hamilton.apache.org/concepts/materialization/
https://hamilton.apache.org/concepts/function-modifiers/
https://github.com/apache/hamilton/tree/main/examples/LLM_Workflows/retrieval_augmented_generation
https://github.com/kedro-org/kedro-viz
https://github.com/apache/hamilton/tree/main/ui
https://github.com/Galileo-Galilei/kedro-pandera/releases
https://hamilton.apache.org/how-tos/run-data-quality-checks/
https://docs.kedro.org/en/stable/nodes_and_pipelines/run_a_pipeline.html
https://docs.kedro.org/en/stable/nodes_and_pipelines/run_a_pipeline.html
https://docs.kedro.org/en/stable/integrations/pyspark_integration.html
https://blog.dagworks.io/p/expressing-pyspark-transformations
https://hamilton.apache.org/concepts/parallel-task/

Trait Kedro Apache Hamilton

Command line tool

(CLI)

Node and pipeline

testing
✅ ✅

Jupyter notebook

extensions
✅ ✅

Both Kedro and Apache Hamilton provide applications to view dataflows/pipelines and interact

with their results. Here, Kedro provides a lighter webserver and UI, while Apache Hamilton offers

a production-ready containerized application.

Trait Kedro Viz Apache Hamilton UI

Interactive

dataflow viewer
✅ ✅

View code

definition of nodes
✅ ✅

Code versioning Git SHA (may be out of sync with

actual code)

Node-level versioning at runtime

Collapsible view ✅ ✅

Tag nodes ✅ ✅

Execution

observability
⛔ ✅

⛔ ✅

279 Code Comparisons

Trait Kedro Viz Apache Hamilton UI

Artifact lineage

and versioning

Column-level

lineage
⛔ ✅

Compare run

results
✅ ✅

Rich artifact view Preview 5 dataframe rows.

Metadata about artifact (column

count, row count, size).

Automatic statistical profiling of

various dataframe libraries.

More information

For a full side-by-side example of Kedro and Apache Hamilton, visit this GitHub repository

For more questions, join our Slack Channel

Dagster

Here are some code snippets to compare the macro orchestrator Dagster to the micro

orchestrator Apache Hamilton. Apache Hamilton can run inside Dagster, but you wouldn’t run

Dagster inside Apache Hamilton.

While the two have different scope, there’s a lot of overlap between the two both in terms of

functionality and API. Indeed, Dagster’s software-defined assets introduced in 2022 matches

Apache Hamilton’s declarative approach and should feel familiar to users of either.

280 Code Comparisons

https://github.com/apache/hamilton/tree/main/examples/kedro
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

TL;DR

Trait Apache Hamilton Dagster

Declarative API ✅ ✅

Dependencies Lightweight library with minimal

dependencies (numpy , pandas ,

typing_inspect). Minimizes

dependency conflicts.

Heavier framework/system with

several dependencies (pydantic ,

sqlalchemy , requests , Jinja2 ,

protobuf). urllib3 on which

depends requests introduced

breaking changes several times

and pydantic v1 and v2 are

incompatible.

Macro

orchestration

DIY or in tandem with Dagster,

Airflow, Prefect, Metaflow, etc.

Includes: manual, schedules,

sensors, conditional execution

Micro orchestration

(i.e., dbt ,

LangChain)

Can run anywhere (locally,

notebook, macro orchestrator,

FastAPI, Streamlit, pyodide, etc.)

❌

Code structure Since it’s micro, there are no

restrictions.

Since it’s macro, a certain code

structure is required to properly

package code. The prevalent use

of relative imports in the tutorial

reduces code reusability.

LLM applications Well-suited for LLM applications

since it’s a micro orchestration

framework.

❌

Lineage Fine-grained / column-level

lineage. Includes utilities to

explore lineage.

Coarser operations to reduce

orchestration and I/O overhead.

281 Code Comparisons

https://hamilton.apache.org/integrations/fastapi/
https://hamilton.apache.org/integrations/streamlit/
https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch
https://hamilton.apache.org/how-tos/use-hamilton-for-lineage/
https://hamilton.apache.org/how-tos/use-hamilton-for-lineage/

Trait Apache Hamilton Dagster

Visualization View the dataflow and produce

visual artifacts. Configurable and

supports extensive custom

styling.

Export Daster UI in .svg . No

styling.

Run tracking DAGWorks (premium) Dagster UI

Experiment

Managers

Has an experiment manager

plugin
❌

Materializers Data Savers & Loaders IO Managers

Data validation Native validators and pandera

plugin

Asset checks (experimental),

pandera integration

Versioning

operations

Nodes and dataflow versions are

derived from code.

Asset code version is specified

manually.

Versioning data Automated code version + data

value are used to read from

cache or compute new results

with DiskCacheAdapter

Manual asset code version +

upstream changes are used to

trigger re-materialization

In-memory

Execution

Default Materialize in-memory

Task-based

Execution

TaskBasedExecutor Default

Dynamic branching Parallelizable/Collect Mapping/Collect

Hooks Lifecycle hooks (easier to extend) Op Hooks

282 Code Comparisons

https://hamilton.apache.org/concepts/visualization/
https://hamilton.apache.org/concepts/visualization/
https://docs.dagworks.io/capabilities
https://blog.dagworks.io/p/building-a-lightweight-experiment
https://blog.dagworks.io/p/building-a-lightweight-experiment
https://hamilton.apache.org/concepts/materialization/
https://docs.dagster.io/_apidocs/io-managers
https://hamilton.apache.org/how-tos/run-data-quality-checks/
https://hamilton.apache.org/how-tos/run-data-quality-checks/
https://docs.dagster.io/_apidocs/asset-checks
https://docs.dagster.io/integrations/pandera
https://docs.dagster.io/concepts/assets/software-defined-assets#asset-code-versions
https://docs.dagster.io/concepts/assets/software-defined-assets#asset-code-versions
https://docs.dagster.io/concepts/assets/software-defined-assets#asset-code-versions
https://docs.dagster.io/_apidocs/io-managers
https://hamilton.apache.org/reference/drivers/Driver/#taskbasedgraphexecutor
https://hamilton.apache.org/concepts/parallel-task/
https://docs.dagster.io/_apidocs/dynamic
https://hamilton.apache.org/reference/lifecycle-hooks/
https://docs.dagster.io/concepts/ops-jobs-graphs/op-hooks#op-hooks

Trait Apache Hamilton Dagster

Plugins Spark, Dask, Ray, Datadog, polars,

pandera, and more (Apache

Hamilton is less restrictive and

easier to extend)

Spark, Dask, polars, pandera,

Databricks, Snowflake, Great

Expections, and more (Dagster

integrations are more involved to

develop)

Interactive

Development

Jupyter Magic, VSCode extension ❌

Dataflow definition

HackerNews top stories

Apache Hamilton Dagster

from hamilton.function_modifiers import
extract_columns

NEWSTORIES_URL = "https://hacker-
news.firebaseio.com/v0/topstories.json"

def topstory_ids(newstories_url: str =
NEWSTORIES_URL) -> list[int]:

"""Query the id of the top HackerNews
stories"""

return
requests.get(newstories_url).json()[:100]

@extract_columns("title")
def topstories(topstory_ids: list[int]) -
> pd.DataFrame:

"""Query the top HackerNews stories
based on ids"""

results = []
for item_id in topstory_ids:

item = requests.get(
f"https://hacker-

news.firebaseio.com/v0/item/
{item_id}.json"

from dagster import AssetExecutionContext,
MetadataValue, asset, MaterializeResult

@asset
def topstory_ids() -> None:

newstories_url = "https://hacker-
news.firebaseio.com/v0/topstories.json"

top_new_story_ids =
requests.get(newstories_url).json()[:100]

os.makedirs("data", exist_ok=True)
with open("data/topstory_ids.json", "w")

as f:
json.dump(top_new_story_ids, f)

@asset(deps=[topstory_ids])
def topstories(context: AssetExecutionContext)
-> MaterializeResult:

with open("data/topstory_ids.json", "r")
as f:

topstory_ids = json.load(f)

results = []
for item_id in topstory_ids:

283 Code Comparisons

https://blog.dagworks.io/p/expressing-pyspark-transformations
https://hamilton.apache.org/reference/lifecycle-hooks/DDOGTracer/
https://docs.dagster.io/integrations
https://docs.dagster.io/integrations
https://docs.dagster.io/integrations
https://hamilton.apache.org/how-tos/use-in-jupyter-notebook/#use-hamilton-jupyter-magic
https://marketplace.visualstudio.com/items?itemName=ThierryJean.hamilton

Apache Hamilton Dagster

).json()
results.append(item)

return pd.DataFrame(results)

def most_frequent_words(title: pd.Series)
-> dict[str, int]:

"""Compute word frequency in
HackerNews story titles"""

STOPWORDS = ["a", "the", "an", "of",
"to", "in",

"for", "and", "with",
"on", "is", "\u2013"]

word_counts = {}
for raw_title in title:

for word in
raw_title.lower().split():

word = word.strip(".,-!?:;()
[]'\"-")

if len(word) == 0:
continue

if word in STOPWORDS:
continue

word_counts[word] =
word_counts.get(word, 0) + 1

return word_counts

def
top_25_words_plot(most_frequent_words:
dict[str, int]) -> Figure:

"""Bar plot of the frequency of the
top 25 words in HackerNews titles"""

top_words = {
pair[0]: pair[1]
for pair in sorted(

most_frequent_words.items(),
key=lambda x: x[1], reverse=True

)[:25]
}

fig = plt.figure(figsize=(10, 6))
plt.bar(list(top_words.keys()),

list(top_words.values()))
plt.xticks(rotation=45, ha="right")

plt.title("Top 25 Words in Hacker News
Titles")

item = requests.get(
f"https://hacker-

news.firebaseio.com/v0/item/{item_id}.json"
).json()
results.append(item)

if len(results) % 20 == 0:
context.log.info(f"Got

{len(results)} items so far.")

df = pd.DataFrame(results)
df.to_csv("data/topstories.csv")

return MaterializeResult(
metadata={

"num_records": len(df),
"preview":

MetadataValue.md(df.head().to_markdown()),
}

)

@asset(deps=[topstories])
def most_frequent_words() -> MaterializeResult:

stopwords = ["a", "the", "an", "of", "to",
"in",

"for", "and", "with", "on",
"is"]

topstories = pd.read_csv("data/
topstories.csv")

word_counts = {}
for raw_title in topstories["title"]:

title = raw_title.lower()
for word in title.split():

word = word.strip(".,-!?:;()
[]'\"-")

if cleaned_word in stopwords or
len(cleaned_word) < 0:

continue

word_counts[cleaned_word] =
word_counts.get(word, 0) + 1

top_words = {
pair[0]: pair[1]
for pair in sorted(

word_counts.items(), key=lambda x:
x[1], reverse=True

284 Code Comparisons

plt.tight_layout()
return fig

@extract_columns("registered_at")
def signups(hackernews_api:
DataGeneratorResource) -> pd.DataFrame:

"""Query HackerNews signups using a
mock API endpoint"""

return
pd.DataFrame(hackernews_api.get_signups())

def earliest_signup(registered_at:
pd.Series) -> int:

"""Earliest signup on HackerNews"""
return registered_at.min()

def latest_signup(registered_at:
pd.Series) -> int:

"""Latest signup on HackerNews"""
return registered_at.min()

)[:25]
}

plt.figure(figsize=(10, 6))
plt.bar(list(top_words.keys()),

list(top_words.values()))
plt.xticks(rotation=45, ha="right")
plt.title("Top 25 Words in Hacker News

Titles")
plt.tight_layout()

buffer = BytesIO()
plt.savefig(buffer, format="png")
image_data =

base64.b64encode(buffer.getvalue())

md_content = f"![img](data:image/
png;base64,{image_data.decode()})"

with open("data/most_frequent_words.json",
"w") as f:

json.dump(top_words, f)

return MaterializeResult(
metadata={"plot":

MetadataValue.md(md_content)}
)

@asset
def signups(hackernews_api:
DataGeneratorResource) -> MaterializeResult:

signups =
pd.DataFrame(hackernews_api.get_signups())

signups.to_csv("data/signups.csv")

return MaterializeResult(
metadata={

"Record Count": len(signups),
"Preview":

MetadataValue.md(signups.head().to_markdown()),
"Earliest Signup":

signups["registered_at"].min(),
"Latest Signup":

signups["registered_at"].max(),
}

)

285 Code Comparisons

Apache Hamilton Dagster

Key points

Trait Apache Hamilton Dagster

Define operations Uses the native Python function

signature. The dataflow is

assembled based on function/

parameter names and type

annotations.

Uses the @asset decorator to

transform function in operations

and specify dependencies by

passing functions.

Data I/O Loading/Saving is decoupled

from the dataflow definition. The

code becomes more portable and

facilitates moving from dev to

prod.

Each asset code operations is

coupled with I/O. Hard-coding

this behavior reduces

maintainability.

Lineage Favors granular operations and

fine-grained lineage. For

example, most_frequent_words()

operates on a single column and

the top_25_words_plot is its own

function.

Favors chunking dataflow into

meaningful assets to reduce the

orchestration and I/O overhead

per operation. Finer lineage is

complex to achieve and requires

286 Code Comparisons

https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/separate-data-io-from-transformation
https://blog.dagworks.io/p/separate-data-io-from-transformation

Trait Apache Hamilton Dagster

using @op , @graph , @job , and

@asset (ref)

Documentation Uses the native Python

docstrings. Further metadata can

be added using the @tag

decorator.

Uses MaterializeResult to store

metadata.

Dataflow execution

HackerNews top stories

Apache Hamilton Dagster

import os

from hamilton import driver
from hamilton.io.materialization import to
from hamilton.plugins import matplotlib_extensions

import dataflow # import module with dataflow
definition
from mock_api import DataGeneratorResource

def main():
dr = (

driver.Builder()
.with_modules(dataflow) # pass the module
.build()

)

load environment variable
num_days =

os.environ.get("HACKERNEWS_NUM_DAYS_WINDOW")
inputs = dict(# mock an API connection

hackernews_api=DataGeneratorResource(num_days=num_days),
)

define I/O operations; decoupled from dataflow def

from dagster import (
AssetSelection,
Definitions,
define_asset_job,
load_assets_from_modules,
EnvVar,

)

from . import assets
from .resources import
DataGeneratorResource

load assets from passed modules
all_assets =
load_assets_from_modules([assets])
select assets to include in the job
hackernews_job =
define_asset_job("hackernews_job",
selection=AssetSelection.all())

load environment variable
num_days =
EnvVar.int("HACKERNEWS_NUM_DAYS_WINDOW")
defs = Definitions(

assets=all_assets,
jobs=[hackernews_job],

287 Code Comparisons

https://docs.dagster.io/guides/dagster/how-assets-relate-to-ops-and-graphs

Apache Hamilton Dagster

materializers = [
to.json(# JSON file type

id="most_frequent_words.json",
dependencies=["most_frequent_words"],
path="data/most_frequent_words.json",

),
to.csv(# CSV file type

id="topstories.csv",
dependencies=["topstories"],
path="data/topstories.csv",

),
to.csv(

id="signups.csv",
dependencies=["signups"],
path="data/signups.csv",

),
to.plt(# Use matplotlib.pyplot to render

id="top_25_words_plot.plt",
dependencies=["top_25_words_plot"],
path="data/top_25_words_plot.png",

),
]

visualize materialization plan without executing
code

dr.visualize_materialization(
*materializers,
inputs=inputs,
output_file_path="dataflow.png"

)
pass I/O operations and inputs to materialize

dataflow
dr.materialize(*materializers, inputs=inputs)

if __name__ == "__main__":
main()

resources={ # register mock API
connection

"hackernews_api":
DataGeneratorResource(num_days=num_days),

},
)

Key points

Trait Apache Hamilton Dagster

Execution

instructions

Define a Driver using the

Builder object. It automatically

assembles the graph from the

Load assets from Python modules

using load_assets_from_modules

then create an asset job by

288 Code Comparisons

Trait Apache Hamilton Dagster

dataflow definition found in

dataflow.py

selecting assets to include.

Finally, create a Definitions

object to register on the

orchestrator.

Execution plane Driver.materialize() executes

the dataflow in a Python process.

Can be called as a script, using

the CLI, or programmatically.

The asset job is executed by the

orchestrator, either through

Dagster UI, by a scheduler/

sensor/trigger, or via the CLI.

Data I/O I/O is decoupled from dataflow

definition. People responsible for

deployment can manage data

sources without refactoring the

dataflow. (Data I/O can be

coupled if wanted.)

Data I/O is coupled with data

assets which simplifies the

execution code at the code of

reusability.

Framework code Leverages a maximum of

standard Python mechanisms

(imports, env variables, etc.).

Most constructs requires Dagster-

specific code to leverage

protobuf serialization.

More information

For a full side-by-side example of Dagster and Apache Hamilton, visit this GitHub repository

For more questions, join our Slack Channel!

LangChain

Here we have some code snippets that help compare a vanilla code implementation with

LangChain and Apache Hamilton.

LangChain’s focus is on hiding details and making code terse.

289 Code Comparisons

https://blog.dagworks.io/p/a-command-line-tool-to-improve-your
https://blog.dagworks.io/p/a-command-line-tool-to-improve-your
https://docs.dagster.io/concepts/assets/asset-jobs
https://docs.dagster.io/concepts/assets/asset-jobs
https://github.com/apache/hamilton/tree/main/examples/dagster
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g

Apache Hamilton’s focus instead is on making code more readable, maintainable, and importantly

customizeable.

So don’t be surprised that Apache Hamilton’s code is “longer” - that’s by design. There is also little

abstraction between you, and the underlying libraries with Apache Hamilton. With LangChain

they’re abstracted away, so you can’t really see easily what’s going on underneath.

Rhetorical question: which code would you rather maintain, change, and update?

A simple joke example

Simple Invocation

Apache Hamilton Vanilla LangChain

hamilton_invoke.py
from typing import List

import openai

def llm_client() -> openai.OpenAI:
return openai.OpenAI()

def joke_prompt(topic: str) -> str:
return f"Tell me a short joke

about {topic}"

def joke_messages(joke_prompt:
str) -> List[dict]:

return [{"role": "user",
"content": joke_prompt}]

def joke_response(llm_client:
openai.OpenAI,

joke_messages:
List[dict]) -> str:

response =
llm_client.chat.completions.create(

model="gpt-3.5-turbo",
messages=joke_messages,

)
return

from typing import List

import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def call_chat_model(messages:
List[dict]) -> str:

response =
client.chat.completions.create(

model="gpt-3.5-turbo",
messages=messages,

)
return

response.choices[0].message.content

def invoke_chain(topic: str) ->
str:

prompt_value =
prompt_template.format(topic=topic)

messages = [{"role": "user",
"content": prompt_value}]

return
call_chat_model(messages)

if __name__ == "__main__":

from
langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts
import ChatPromptTemplate
from langchain_core.runnables
import RunnablePassthrough
from langchain_openai import
ChatOpenAI

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
model =
ChatOpenAI(model="gpt-3.5-turbo")
chain = (

{"topic":
RunnablePassthrough()}

| prompt
| model
| output_parser

)
if __name__ == "__main__":

print(chain.invoke("ice
cream"))

290 Code Comparisons

Apache Hamilton Vanilla LangChain

response.choices[0].message.content

if __name__ == "__main__":
import hamilton_invoke

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_invoke)
.build()

)

dr.display_all_functions("hamilton-
invoke.png")

print(dr.execute(["joke_response"],

inputs={"topic": "ice cream"}))

print(invoke_chain("ice
cream"))

The Hamilton DAG visualized.

A streamed joke example

With Apache Hamilton we can just swap the call function to return a streamed response. Note: you

could use @config.when to include both streamed and non-streamed versions in the same DAG.

Streamed Version

Apache Hamilton Vanilla LangChain

hamilton_streamed.py
from typing import Iterator, List

from typing import List
from typing import Iterator

from langchain_openai import
ChatOpenAI
from langchain_core.prompts

291 Code Comparisons

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-invoke.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-invoke.png

Apache Hamilton Vanilla LangChain

import openai

def llm_client() -> openai.OpenAI:
return openai.OpenAI()

def joke_prompt(topic: str) -> str:
return (

f"Tell me a short joke
about {topic}"

)

def joke_messages(
joke_prompt: str) ->

List[dict]:
return [{"role": "user",

"content":
joke_prompt}]

def joke_response(
llm_client: openai.OpenAI,
joke_messages: List[dict])

-> Iterator[str]:
stream =

llm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,
stream=True

)
for response in stream:

content =
response.choices[0].delta.content

if content is not None:
yield content

if __name__ == "__main__":
import hamilton_streaming
from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_streaming)
.build()

)

import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def stream_chat_model(
messages: List[dict]) ->

Iterator[str]:
stream =

client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
stream=True,

)
for response in stream:

content =
response.choices[0].delta.content

if content is not None:
yield content

def stream_chain(topic: str) ->
Iterator[str]:

prompt_value =
prompt_template.format(topic=topic)

return stream_chat_model(
[{"role": "user",

"content": prompt_value}])

if __name__ == "__main__":
for chunk in stream_chain("ice

cream"):
print(chunk, end="",

flush=True)

import ChatPromptTemplate
from
langchain_core.output_parsers
import StrOutputParser

from langchain_core.runnables
import RunnablePassthrough

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}"
)
output_parser = StrOutputParser()
model =
ChatOpenAI(model="gpt-3.5-turbo")
chain = (

{"topic":
RunnablePassthrough()}

| prompt
| model
| output_parser

)

if __name__ == '__main__':
for chunk in

chain.stream("ice cream"):
print(chunk, end="",

flush=True)

292 Code Comparisons

Apache Hamilton Vanilla LangChain

dr.display_all_functions(
"hamilton-streaming.png"

)
result = dr.execute(

["joke_response"],
inputs={"topic": "ice

cream"}
)
for chunk in

result["joke_response"]:
print(chunk, end="",

flush=True)

The Hamilton DAG visualized.

A “batch” parallel joke example

In this batch example, the joke requests are parallelized. Note: with Apache Hamilton you can

delegate to many different backends for parallelization, e.g. Ray, Dask, etc. We use multi-threading

here.

Batch Parallel Version

Apache Hamilton Vanilla LangChain

hamilton_batch.py
from typing import List

import openai

from hamilton.execution import

from concurrent.futures import
ThreadPoolExecutor
from typing import List

import openai

from
langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts
import ChatPromptTemplate
from langchain_core.runnables

293 Code Comparisons

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-streamed.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-streamed.png

Apache Hamilton Vanilla LangChain

executors
from hamilton.htypes import Collect
from hamilton.htypes import
Parallelizable

def llm_client() -> openai.OpenAI:
return openai.OpenAI()

def topic(
topics: list[str]) ->

Parallelizable[str]:
for _topic in topics:

yield _topic

def joke_prompt(topic: str) -> str:
return f"Tell me a short joke

about {topic}"

def joke_messages(
joke_prompt: str) ->

List[dict]:
return [{"role": "user",

"content":
joke_prompt}]

def joke_response(llm_client:
openai.OpenAI,

joke_messages:
List[dict]) -> str:

response =
llm_client.chat.completions.create(

model="gpt-3.5-turbo",
messages=joke_messages,

)
return

response.choices[0].message.content

def joke_responses(
joke_response:

Collect[str]) -> List[str]:
return list(joke_response)

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def call_chat_model(messages:
List[dict]) -> str:

response =
client.chat.completions.create(

model="gpt-3.5-turbo",
messages=messages,

)
return

response.choices[0].message.content

def invoke_chain(topic: str) ->
str:

prompt_value =
prompt_template.format(topic=topic)

messages = [{"role": "user",
"content":

prompt_value}]
return

call_chat_model(messages)

def batch_chain(topics: list) ->
list:

with
ThreadPoolExecutor(max_workers=5)
as executor:

return list(

executor.map(invoke_chain, topics)
)

if __name__ == "__main__":
print(

batch_chain(
["ice cream",

"spaghetti", "dumplings"]
)

)

import RunnablePassthrough
from langchain_openai import
ChatOpenAI

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
model =
ChatOpenAI(model="gpt-3.5-turbo")
chain = (

{"topic":
RunnablePassthrough()}

| prompt
| model
| output_parser

)
if __name__ == "__main__":

print(
chain.batch(

["ice cream",
"spaghetti",
"dumplings"]

)
)

294 Code Comparisons

Apache Hamilton Vanilla LangChain

if __name__ == "__main__":
import hamilton_batch

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_batch)
.enable_dynamic_execution(

allow_experimental_mode=True
)
.with_remote_executor(

executors.MultiThreadingExecutor(5)
)
.build()

)

dr.display_all_functions("hamilton-
batch.png")

print(
dr.execute(

["joke_responses"],
inputs={

"topics": ["ice
cream",

"spaghetti",

"dumplings"]
}

)
)

can still run single chain
with overrides

and getting just one response
print(

dr.execute(
["joke_response"],
overrides={"topic":

"lettuce"}
)

)

295 Code Comparisons

The Hamilton DAG visualized.

A “async” joke example

Here we show how to make the joke using async constructs. With Apache Hamilton you can mix

and match async and regular functions, the only change is that you need to use the async

Hamilton Driver.

Async Version

Apache Hamilton Vanilla LangChain

hamilton_async.py
from typing import List

import openai

def llm_client() ->
openai.AsyncOpenAI:

return openai.AsyncOpenAI()

def joke_prompt(topic: str) -> str:
return (

f"Tell me a short joke
about {topic}"

)

def joke_messages(
joke_prompt: str) ->

List[dict]:
return [{"role": "user",

"content":
joke_prompt}]

from typing import List

import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

async_client = openai.AsyncOpenAI()

async def acall_chat_model(
messages: List[dict]) -> str:

response = await (

async_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,

)
)
return

response.choices[0].message.content

async def ainvoke_chain(topic: str) -

from
langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts
import ChatPromptTemplate
from langchain_core.runnables
import RunnablePassthrough
from langchain_openai import
ChatOpenAI

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
model =
ChatOpenAI(model="gpt-3.5-turbo")
chain = (

{"topic":
RunnablePassthrough()}

| prompt
| model
| output_parser

)
if __name__ == "__main__":

296 Code Comparisons

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-batch.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-batch.png

Apache Hamilton Vanilla LangChain

async def joke_response(
llm_client:

openai.AsyncOpenAI,
joke_messages: List[dict])

-> str:
response = await (

llm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,

)
)
return

response.choices[0].message.content

if __name__ == "__main__":
import asyncio

import hamilton_async

from hamilton import base
from hamilton import

async_driver

dr = async_driver.AsyncDriver(
{},
hamilton_async,

result_builder=base.DictResult()
)

dr.display_all_functions("hamilton-
async.png")

loop = asyncio.get_event_loop()
result =

loop.run_until_complete(
dr.execute(

["joke_response"],
inputs={"topic": "ice

cream"}
)

)
print(result)

> str:
prompt_value =

prompt_template.format(
topic=topic

)
messages = [{"role": "user",

"content":
prompt_value}]

return await
acall_chat_model(messages)

if __name__ == "__main__":
import asyncio

loop = asyncio.get_event_loop()
result = loop.run_until_complete(

ainvoke_chain("ice cream")
)
print(result)

import asyncio
loop =

asyncio.get_event_loop()
result =

loop.run_until_complete(
chain.ainvoke("ice

cream")
)
print(result)

297 Code Comparisons

The Hamilton DAG visualized.

Switch LLM to completion for joke

Here we show how to make the joke switching to a different openAI model that is for completion.

Note: we use the @config.when construct to augment the original DAG and add a new function

that uses the different OpenAI model.

Completion Version

Apache Hamilton Vanilla LangChain

hamilton_completion.py
from typing import List

import openai

from hamilton.function_modifiers
import config

def llm_client() -> openai.OpenAI:
return openai.OpenAI()

def joke_prompt(topic: str) -> str:
return f"Tell me a short joke

about {topic}"

def joke_messages(
joke_prompt: str) ->

List[dict]:
return [{"role": "user",

"content":
joke_prompt}]

@config.when(type="completion")
def joke_response__completion(

import openai

prompt_template = "Tell me a short
joke about {topic}"
client = openai.OpenAI()

def call_llm(prompt_value: str) ->
str:

response =
client.completions.create(

model="gpt-3.5-turbo-
instruct",

prompt=prompt_value,
)
return response.choices[0].text

def invoke_llm_chain(topic: str) -
> str:

prompt_value =
prompt_template.format(topic=topic)

return call_llm(prompt_value)

if __name__ == "__main__":

from
langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts
import ChatPromptTemplate
from langchain_core.runnables
import RunnablePassthrough
from langchain_openai import
OpenAI

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
llm = OpenAI(model="gpt-3.5-
turbo-instruct")
llm_chain = (

{"topic":
RunnablePassthrough()}

| prompt
| llm
| output_parser

)

if __name__ == "__main__":

298 Code Comparisons

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-async.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-async.png

Apache Hamilton Vanilla LangChain

llm_client: openai.OpenAI,
joke_prompt: str) -> str:

response =
llm_client.completions.create(

model="gpt-3.5-turbo-
instruct",

prompt=joke_prompt,
)
return response.choices[0].text

@config.when(type="chat")
def joke_response__chat(

llm_client: openai.OpenAI,
joke_messages: List[dict])

-> str:
response =

llm_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=joke_messages,

)
return

response.choices[0].message.content

if __name__ == "__main__":
import hamilton_completion

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_completion)
.with_config({"type":

"completion"})
.build()

)
dr.display_all_functions(

"hamilton-completion.png"
)
print(

dr.execute(
["joke_response"],
inputs={"topic": "ice

cream"}
)

)

print(invoke_llm_chain("ice
cream"))

print(llm_chain.invoke("ice
cream"))

299 Code Comparisons

Apache Hamilton Vanilla LangChain

dr = (
driver.Builder()
.with_modules(hamilton_completion)
.with_config({"type":

"chat"})
.build()

)

dr.display_all_functions("hamilton-
chat.png")

print(
dr.execute(

["joke_response"],
inputs={"topic": "ice

cream"}
)

)

The Hamilton DAG visualized with configuration provided for the completion path.

Note the dangling node - that’s normal, it’s not used in the completion path.

Switch to using Anthropic

Here we show how to make the joke switching to use a different model provider, in this case it’s

Anthropic. Note: we use the @config.when construct to augment the original DAG and add a new

functions to use Anthropic.

Anthropic Version

300 Code Comparisons

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-completion.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-completion.png

Apache Hamilton Vanilla LangChain

hamilton_anthropic.py
import anthropic
import openai

from hamilton.function_modifiers import
config

@config.when(provider="openai")
def llm_client__openai() ->
openai.OpenAI:

return openai.OpenAI()

@config.when(provider="anthropic")
def llm_client__anthropic() ->
anthropic.Anthropic:

return anthropic.Anthropic()

def joke_prompt(topic: str) -> str:
return (

"Human:\n\n"
"Tell me a short joke about

{topic}\n\n"
"Assistant:"

).format(topic=topic)

@config.when(provider="openai")
def joke_response__openai(

llm_client: openai.OpenAI,
joke_prompt: str) -> str:

response =
llm_client.completions.create(

model="gpt-3.5-turbo-instruct",
prompt=joke_prompt,

)
return response.choices[0].text

@config.when(provider="anthropic")
def joke_response__anthropic(

llm_client: anthropic.Anthropic,
joke_prompt: str) -> str:

response =

import anthropic

prompt_template = "Tell me a short
joke about {topic}"
anthropic_template = f"Human:
\n\n{prompt_template}\n\nAssistant:"
anthropic_client =
anthropic.Anthropic()

def call_anthropic(prompt_value: str)
-> str:

response =
anthropic_client.completions.create(

model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,

)
return response.completion

def invoke_anthropic_chain(topic:
str) -> str:

prompt_value =
anthropic_template.format(topic=topic)

return
call_anthropic(prompt_value)

if __name__ == "__main__":
print(invoke_anthropic_chain("ice

cream"))

from
langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts
import ChatPromptTemplate
from langchain_core.runnables
import RunnablePassthrough
from
langchain_community.chat_models
import ChatAnthropic

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
anthropic =
ChatAnthropic(model="claude-2")
anthropic_chain = (

{"topic":
RunnablePassthrough()}

| prompt
| anthropic
| output_parser

)

if __name__ == "__main__":

print(anthropic_chain.invoke("ice
cream"))

301 Code Comparisons

Apache Hamilton Vanilla LangChain

llm_client.completions.create(
model="claude-2",
prompt=joke_prompt,
max_tokens_to_sample=256

)
return response.completion

if __name__ == "__main__":
import hamilton_invoke_anthropic

from hamilton import driver

dr = (
driver.Builder()
.with_modules(hamilton_invoke_anthropic)
.with_config({"provider":

"anthropic"})
.build()

)
dr.display_all_functions(

"hamilton-anthropic.png"
)
print(

dr.execute(
["joke_response"],
inputs={"topic": "ice cream"}
)

)

dr = (
driver.Builder()
.with_modules(hamilton_invoke_anthropic)
.with_config({"provider":

"openai"})
.build()

)
print(

dr.execute(
["joke_response"],
inputs={"topic": "ice

cream"}
)

)

302 Code Comparisons

The Hamilton DAG visualized with configuration provided to use Anthropic.

Logging

Here we show how to log more information about the joke request. Apache Hamilton has lots of

customization options, and one out of the box is to log more information via printing.

Logging

Apache Hamilton Vanilla LangChain

run.py
from hamilton import driver, lifecycle
import hamilton_anthropic

dr = (
driver.Builder()
.with_modules(hamilton_anthropic)
.with_config({"provider": "anthropic"})
we just need to add this line to get

things printing
to the console; see DAGWorks for a more

off-the-shelf
solution.
.with_adapters(lifecycle.PrintLn(verbosity=2))
.build()

)
print(

dr.execute(
["joke_response"],
inputs={"topic": "ice cream"}

import anthropic

prompt_template = "Tell me a short joke about
{topic}"
anthropic_template = f"Human:
\n\n{prompt_template}\n\nAssistant:"
anthropic_client = anthropic.Anthropic()

def call_anthropic(prompt_value: str) -> str:
response =

anthropic_client.completions.create(
model="claude-2",
prompt=prompt_value,
max_tokens_to_sample=256,

)
return response.completion

def invoke_anthropic_chain_with_logging(topic:
str) -> str:

print(f"Input: {topic}")

from langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts import
ChatPromptTemplate
from langchain_core.runnables
import RunnablePassthrough
from
langchain_community.chat_models
import ChatAnthropic

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
anthropic =
ChatAnthropic(model="claude-2")
anthropic_chain = (

{"topic":
RunnablePassthrough()}

| prompt
| anthropic

303 Code Comparisons

file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-anthropic.png
file:///home/runner/work/hamilton/hamilton/docs/_build/pdf/_images/hamilton-anthropic.png

Apache Hamilton Vanilla LangChain

)
)

prompt_value =
anthropic_template.format(topic=topic)

print(f"Formatted prompt: {prompt_value}")
output = call_anthropic(prompt_value)
print(f"Output: {output}")
return output

if __name__ == "__main__":

print(invoke_anthropic_chain_with_logging("ice
cream"))

| output_parser
)

if __name__ == "__main__":
import os

os.environ["LANGCHAIN_API_KEY"] =
"..."

os.environ["LANGCHAIN_TRACING_V2"]
= "true"

it's hard to customize the
logging output of langchain

so here's their way to try to
make money from you!

print(anthropic_chain.invoke("ice
cream"))

Fallbacks

Fallbacks are pretty situation and context dependent. It’s not that hard to wrap a function in a try/

except block. The key is to make sure you know what’s going on, and that a fallback was triggered.

So in our opinion it’s better to be explicit about it.

Logging

Apache Hamilton Vanilla LangChain

import hamilton_anthropic
from hamilton import driver

anthropic_driver = (
driver.Builder()
.with_modules(hamilton_anthropic)
.with_config({"provider":

"anthropic"})
.build()

def invoke_chain_with_fallback(topic:
str) -> str:

try:
return invoke_chain(topic) #

noqa: F821
except Exception:

return
invoke_anthropic_chain(topic)
noqa: F821

from langchain_core.output_parsers
import StrOutputParser
from langchain_core.prompts import
ChatPromptTemplate
from langchain_core.runnables import
RunnablePassthrough
from langchain_community.chat_models
import ChatAnthropic
from langchain_community.chat_models
import ChatOpenAI

304 Code Comparisons

Apache Hamilton Vanilla LangChain

)
openai_driver = (

driver.Builder()
.with_modules(hamilton_anthropic)
.with_config({"provider":

"openai"})
.build()

)
try:

print(
anthropic_driver.execute(

["joke_response"],
inputs={"topic":

"ice cream"}
)

)
except Exception:

this is the current way to
do fall backs

print(
openai_driver.execute(

["joke_response"],
inputs={"topic":

"ice cream"}
)

)

if __name__ == '__main__':

print(invoke_chain_with_fallback("ice
cream"))

prompt =
ChatPromptTemplate.from_template(

"Tell me a short joke about
{topic}")
output_parser = StrOutputParser()
anthropic =
ChatAnthropic(model="claude-2")
anthropic_chain = (

{"topic": RunnablePassthrough()}
| prompt
| anthropic
| output_parser

)
model = ChatOpenAI(model="gpt-3.5-
turbo")
chain = (

{"topic": RunnablePassthrough()}
| prompt
| model
| output_parser

)

fallback_chain =
chain.with_fallbacks([anthropic_chain])

if __name__ == "__main__":
print(fallback_chain.invoke("ice

cream"))

Airflow

For more details see this Apache Hamilton + Airflow blog post.

TL;DR:

Apache Hamilton complements Airflow. It’ll help you write better, more modular, and testable

code.

Apache Hamilton does not replace Airflow.

1.

2.

305 Code Comparisons

https://blog.dagworks.io/p/supercharge-your-airflow-dag-with

High-level differences:

Apache Hamilton is a micro-orchestator. Airflow is a macro-orchestrator.

Apache Hamilton is a Python library standardizing how you express python pipelines, while

Airflow is a complete platform and system for scheduling and executing pipelines.

Apache Hamilton focuses on providing a lightweight, low dependency, flexible way to define

data pipelines as Python functions, whereas Airflow is a whole system that comes with a web-

based UI, scheduler, and executor.

Apache Hamilton pipelines are defined using pure Python code, that can be run anywhere that

Python runs. While Airflow uses Python to describe a DAG, this DAG can only be run by the

Airflow system.

Apache Hamilton complements Airflow, and you can use Apache Hamilton within Airflow. But

the reverse is not true.

You can use Apache Hamilton directly in a Jupyter Notebook, or Python web-service. You can’t

do this with Airflow.

Code examples:

Looking at the two examples below, you can see that Apache Hamilton is a more lightweight and

flexible way to define data pipelines. There is no scheduling information, etc required to run the

code because Apache Hamilton runs the pipeline in the same process as the caller. This makes it

easier to test and debug pipelines. Airflow, on the other hand, is a complete system for scheduling

and executing pipelines. It is more complex to set up and run. Note: If you stuck the contents of

run.py in a function within the example_dag.py, the Apache Hamilton pipeline could be used in

the Airflow PythonOperator!

Apache Hamilton:
The below code here shows how you can define a simple data pipeline using Apache Hamilton.

The pipeline consists of three functions that are executed in sequence. The pipeline is defined in

a module called pipeline.py, and then executed in a separate script called run.py, which imports

the pipeline module and executes it.

pipeline.py
def raw_data() -> list[int]:

return [1, 2, 3]

def processed_data(raw_data: list[int]) -> list[int]:
return [x * 2 for x in data]

•

•

•

•

•

•

306 Code Comparisons

def load_data(process_data: list[int], client: SomeClient) -> dict:
metadata = client.send_data(process_data)
return metadata

run.py -- this is the script that executes the pipeline
import pipeline
from hamilton import driver
dr = driver.Builder().with_modules(pipeline).build()
metadata = dr.execute(['load_data'],
inputs=dict(client=SomeClient()))

Airflow:
The below code shows how you can define the same pipeline using Airflow. The pipeline consists

of three tasks that are executed in sequence. The entire pipeline is defined in a module called

example_dag.py, and then executed by the Airflow scheduler.

example_dag.py
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta

default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2023, 1, 1),
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),

}

dag = DAG(
'example_dag',
default_args=default_args,
description='A simple DAG',
schedule_interval=timedelta(days=1),

)

def extract_data():
return [1, 2, 3]

def transform_data(data):
return [x * 2 for x in data]

def load_data(data):
client = SomeClient()
client.send_data(data)

307 Code Comparisons

extract_task = PythonOperator(
task_id='extract_data',
python_callable=extract_data,
dag=dag,

)

transform_task = PythonOperator(
task_id='transform_data',
python_callable=transform_data,
op_args=['{{ ti.xcom_pull(task_ids="extract_data") }}'],
dag=dag,

)

load_task = PythonOperator(
task_id='load_data',
python_callable=load_data,
op_args=['{{ ti.xcom_pull(task_ids="transform_data") }}'],
dag=dag,

)

extract_task >> transform_task >> load_task

308 Code Comparisons

Meet-ups

We have an active global meetup group that meets virtually once a month.

You can sign up for the group here.

Past Meet-ups

The below will be out of date. Please see our youtube for the latest recordings on past meetups.

July 2025

Topic: Apache Transition

December 2024

Topic: Community spotlight by Jernej Frank on decorators framework

October 2024

Topic: “Building a Decisioning Engine for Data Scientists” by Sholto Armstrong

August 2024

Topic: “Finding Optimal DAGs for Machine Learning/AI/RAG projects” by Gilad Rubin

Recording

June 2024

Recording

•

•

•

•

•

•

309 Meet-ups

https://www.meetup.com/global-hamilton-open-source-user-group-meetup/
https://www.youtube.com/@dagworks-inc
https://youtu.be/3LREcaewZbo?feature=shared
https://youtu.be/SsrIIM1ed4w?feature=shared

April 2024

Recording

March 2024

Recording

February 2024

Recording

Slides

Community Spotlight: Arthur Andres and slides

•

•

•

•

•

310 Meet-ups

https://youtu.be/_-yXfnBtrlg?feature=shared
https://youtu.be/IJByeN41xHs?feature=shared
https://www.youtube.com/watch?v=ks672Lm0CJo
https://github.com/skrawcz/talks/files/14351139/Hamilton.February.2024.Meetup.pdf
https://www.linkedin.com/in/0x26res/
https://dagworks-inc.github.io/meetups/hamilton-02202024/arthur_tradewell.html#/

Ecosystem

Welcome to the Apache Hamilton Ecosystem page! This page showcases the integrations, plugins,

and external resources available for Apache Hamilton users.

🚀 Interactive Tutorials

tryhamilton.dev

Learn Apache Hamilton concepts through interactive, browser-based tutorials.

Built-in Integrations

Apache Hamilton provides first-class support for many popular data science and engineering tools

through built-in plugins and adapters. These integrations are maintained by the Apache Hamilton

community and included in the core project.

Data Frameworks

Apache Hamilton integrates seamlessly with popular data manipulation libraries:

Integration Description Documentation

pandas DataFrame operations and transformations Examples | ResultBuilder

Polars High-performance DataFrame library Examples | ResultBuilder

PySpark Distributed data processing with Spark Examples | GraphAdapter

Dask Parallel computing and distributed arrays Examples | GraphAdapter

311 Ecosystem

https://www.tryhamilton.dev/
https://github.com/apache/hamilton/tree/main/examples/pandas
https://github.com/apache/hamilton/tree/main/examples/polars
https://github.com/apache/hamilton/tree/main/examples/spark
https://github.com/apache/hamilton/tree/main/examples/dask

Integration Description Documentation

Ray Distributed computing framework Examples | GraphAdapter

Ibis Portable DataFrame API across backends Integration Guide

Vaex Out-of-core DataFrame library Examples

Narwhals DataFrame-agnostic interface Examples | Lifecycle Hook

NumPy Numerical computing arrays ResultBuilder

PyArrow Columnar in-memory data ResultBuilder

Machine Learning & Data Science

Build and deploy ML workflows with Apache Hamilton:

Integration Description Documentation

MLflow Experiment tracking and model registry Examples | Lifecycle Hook

scikit-learn Machine learning algorithms Examples

XGBoost Gradient boosting framework IO Adapters

LightGBM Gradient boosting framework IO Adapters

Hugging Face Transformers and NLP models IO Adapters

Pandera DataFrame validation Examples

312 Ecosystem

https://github.com/apache/hamilton/tree/main/examples/ray
https://github.com/apache/hamilton/tree/main/examples/vaex
https://github.com/apache/hamilton/tree/main/examples/narwhals
https://github.com/apache/hamilton/tree/main/examples/mlflow
https://github.com/apache/hamilton/tree/main/examples/scikit-learn
https://github.com/apache/hamilton/tree/main/examples/data_quality/pandera

Integration Description Documentation

Pydantic Data validation and settings Decorator

Orchestration & Workflow Systems

Use Apache Hamilton within your existing orchestration infrastructure:

Integration Description Documentation

Airflow Workflow orchestration platform Examples

Dagster Data orchestrator Examples

Prefect Workflow orchestration Examples

Kedro Data science pipelines Examples

Metaflow ML infrastructure Integration

dbt Data transformation tool Integration Guide

Data Engineering & ETL

Tools for building robust data pipelines:

Integration Description Documentation

dlt Data loading and transformation Integration Guide

313 Ecosystem

https://github.com/apache/hamilton/tree/main/examples/airflow
https://github.com/apache/hamilton/tree/main/examples/dagster
https://github.com/apache/hamilton/tree/main/examples/prefect
https://github.com/apache/hamilton/tree/main/examples/kedro
https://github.com/outerbounds/hamilton-metaflow

Integration Description Documentation

Feast Feature store Examples

FastAPI Web service framework Integration Guide

Streamlit Interactive web applications Integration Guide

Observability & Monitoring

Track and monitor your Apache Hamilton dataflows:

Integration Description Documentation

Datadog Monitoring and analytics Lifecycle Hook

OpenTelemetry Observability framework Examples

OpenLineage Data lineage tracking Examples | Lifecycle Hook

Hamilton UI Built-in execution tracking UI Guide

Experiment Manager Lightweight experiment tracking Examples

Visualization

Create visualizations from your dataflows:

314 Ecosystem

https://github.com/apache/hamilton/tree/main/examples/feast
https://github.com/apache/hamilton/tree/main/examples/opentelemetry
https://github.com/apache/hamilton/tree/main/examples/openlineage
https://github.com/apache/hamilton/tree/main/examples/experiment_management

Integration Description Documentation

Plotly Interactive plotting Examples

Matplotlib Static plotting IO Adapters

Rich Terminal formatting and progress Lifecycle Hook

Developer Tools

Improve your development workflow:

Integration Description Documentation

Jupyter Notebook magic commands Examples

VS Code Language server and extension VS Code Guide

tqdm Progress bars Lifecycle Hook

Cloud Providers & Infrastructure

Deploy Apache Hamilton to the cloud:

Integration Description Documentation

AWS Amazon Web Services Examples

Google Cloud Google Cloud Platform Scale-up Guide

315 Ecosystem

https://github.com/apache/hamilton/tree/main/examples/plotly
https://github.com/apache/hamilton/tree/main/examples/jupyter_notebook_magic
https://github.com/apache/hamilton/tree/main/examples/aws

Integration Description Documentation

Modal Serverless cloud functions Scale-up Guide

Storage & Caching

Persist and cache your data:

Integration Description Documentation

DiskCache Disk-based caching Examples

File-based caching Local file caching Caching Guide

Other Utilities

Integration Description Documentation

Slack Notifications and integrations Examples | Lifecycle Hook

GeoPandas Geospatial data analysis Type extension for GeoDataFrame support

YAML Configuration management IO Adapters

External Resources

The following resources and services are provided by third parties and the broader Apache

Hamilton community.

⚠️ Important Notice:

316 Ecosystem

https://github.com/apache/hamilton/tree/main/examples/caching_nodes/diskcache_adapter
https://github.com/apache/hamilton/tree/main/examples/slack
https://github.com/apache/hamilton/blob/main/hamilton/plugins/geopandas_extensions.py

These resources and services are not maintained, nor endorsed by the Apache Hamilton

Community and Apache Hamilton project (maintained by the Committers and the Apache

Hamilton PMC). Use them at your sole discretion. The community does not verify the licenses nor

validity of these tools, so it’s your responsibility to verify them.

Community Resources

📚 Dataflow Hub
hub.dagworks.io

A repository of reusable Apache Hamilton dataflows contributed by the community. Browse and

download pre-built dataflows for common use cases.

Note: It’s WIP to move the domain to be under Apache. DAGWorks Inc., which donated Hamilton, is

not an operating entity anymore.

📝 Blog & Tutorials
blog.dagworks.io

Articles covering Apache Hamilton use cases, design patterns, reference architectures, and best

practices.

Note: It’s WIP to move the contents to be under Apache. DAGWorks Inc., which donated Hamilton,

is not an operating entity anymore.

🎥 Video Content
YouTube @DAGWorks-Inc

Video tutorials, talks, and meetup recordings about Apache Hamilton.

Note: It’s WIP to move the contents to be under Apache. DAGWorks Inc., which donated Hamilton,

is not an operating entity anymore.

Contributing to the Ecosystem

Adding a New Integration

If you’ve created a plugin or integration for Apache Hamilton, we’d love to include it in our

ecosystem!

317 Ecosystem

https://hub.dagworks.io/docs/
https://blog.dagworks.io/
https://www.youtube.com/@DAGWorks-Inc

For Built-in Integrations (maintained by the Apache Hamilton project):

Create a plugin in the hamilton/plugins/ directory

Add documentation and examples

Submit a pull request to the Apache Hamilton repository

Follow the contribution guidelines

For External Resources (maintained by third parties):

Submit a pull request to add your resource to this page under “External Resources”

Include a clear description and link

Ensure your resource is relevant to Apache Hamilton users

Your resource must be properly licensed and actively maintained

Support & Questions

💬 Slack Community - Real-time chat and community support

🐛 GitHub Issues - Bug reports and feature requests

📖 Documentation - Comprehensive guides and API reference

📧 Mailing List - Join the Apache Hamilton users mailing list for discussions and

announcements

How to Subscribe: Send an empty email to users-subscribe@hamilton.apache.org. Use a

subject line like “subscribe” to avoid spam filters. Await a confirmation message and follow

the instructions to complete the process.

How to Unsubscribe: Send an empty message to users-unsubscribe@hamilton.apache.org

from the same email address used to subscribe.

How to Post: Once subscribed, post messages to users@hamilton.apache.org

Archives: View past discussions

Stay Updated

⭐ Star us on GitHub

1.

2.

3.

4.

1.

2.

3.

4.

•

•

•

•

◦

◦

◦

◦

•

318 Ecosystem

https://github.com/apache/hamilton
https://github.com/apache/hamilton/blob/main/CONTRIBUTING.md
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g
https://github.com/apache/hamilton/issues
https://hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
https://lists.apache.org/list.html?users@hamilton.apache.org
https://github.com/apache/hamilton

🐦 Follow @hamilton_os on Twitter/X

📧 Join the mailing lists for announcements

•

•

319 Ecosystem

https://twitter.com/hamilton_os

Decorators

Apache Hamilton implements several decorators to promote business-logic deduplication,

configuratibility, and add a layer of capabilities. These decorators can be found in the

hamilton.function_modifiers submodule GitHub.

Custom Decorators

If you have a use case for a custom decorator, tell us on Slack or via a GitHub issues. Knowing

about your use case and talking through help ensures we aren’t duplicating effort, and that it’ll be

using part of the API we don’t intend to change.

Reference

check_output*

The @check_output decorator enables you to add simple data quality checks to your code.

For example:

import pandas as pd
import numpy as np
from hamilton.function_modifiers import check_output

@check_output(
data_type=np.int64,
range=(0,100),

)
def some_int_data_between_0_and_100() -> pd.Series:

pass

The check_output validator takes in arguments that each correspond to one of the default

validators. These arguments tell it to add the default validator to the list. The above thus creates

two validators, one that checks the datatype of the series, and one that checks whether the data

is in a certain range.

Note that you can also specify custom decorators using the @check_output_custom decorator.

320 Decorators

https://github.com/apache/hamilton/blob/main/hamilton/function_modifiers
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://github.com/apache/hamilton/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=

See data_quality for more information on available validators and how to build custom ones.

Note we also have a plugins that allow for validation with the pandera and pydantic libraries.

There are two ways to access these:

@check_output(schema=pandera_schema) or @check_output(model=pydantic_model)

@h_pandera.check_output() or @h_pydantic.check_output() on the function that declares

either a typed dataframe or a pydantic model.

Reference Documentation

class hamilton.function_modifiers.check_output(importance: str = 'warn',

default_validator_candidates: List[Type[BaseDefaultValidator]] = None, target_: str |

Collection[str] | None | EllipsisType = None, **default_validator_kwargs: Any)

The @check_output decorator enables you to add simple data quality checks to your code.

For example:

import pandas as pd
import numpy as np
from hamilton.function_modifiers import check_output

@check_output(
data_type=np.int64,
data_in_range=(0,100),
importance="warn",

)
def some_int_data_between_0_and_100() -> pd.Series:

...

The check_output decorator takes in arguments that each correspond to one of the default

validators. These arguments tell it to add the default validator to the list. The above thus

creates two validators, one that checks the datatype of the series, and one that checks

whether the data is in a certain range.

Pandera example that shows how to use the check_output decorator with a Pandera

schema:

import pandas as pd
import pandera as pa
from hamilton.function_modifiers import check_output
from hamilton.function_modifiers import extract_columns

schema = pa.DataFrameSchema(...)

@extract_columns('col1', 'col2')

1.

2.

321 Decorators

https://github.com/apache/hamilton/blob/main/data_quality.md

@check_output(schema=schema, target_="builds_dataframe",
importance="fail")
def builds_dataframe(...) -> pd.DataFrame:

...

__init__(importance: str = 'warn', default_validator_candidates:

List[Type[BaseDefaultValidator]] = None, target_: str | Collection[str] | None | EllipsisType =

None, **default_validator_kwargs: Any)

Creates the check_output validator.

This constructs the default validator class.

Note: that this creates a whole set of default validators. TODO – enable construction

of custom validators using check_output.custom(*validators).

Parameters:

importance – For the default validator, how important

is it that this passes.

default_validator_candidates – List of validators to be

considerred for this check.

default_validator_kwargs – keyword arguments to be

passed to the validator.

target_ – a target specifying which nodes to decorate.

See the docs in check_output_custom for a quick

overview and the docs in

function_modifiers.base.NodeTransformer for more

detail.

class hamilton.function_modifiers.check_output_custom(*validators: DataValidator, target_: str |

Collection[str] | None | EllipsisType = None)

Class to use if you want to implement your own custom validators.

Come chat to us in slack if you’re interested in this!

__init__(*validators: DataValidator,

target_: str | Collection[str] | None | EllipsisType = None)

Creates a check_output_custom decorator. This allows passing of custom validators

that implement the DataValidator interface.

Parameters:

validators – Validator to use.

•

•

•

•

•

322 Decorators

target_ –

The nodes to check the output of. For more detail read

the docs in function_modifiers.base.NodeTransformer,

but your options are:

None: This will check just the “final node” (the

node that is returned by the decorated function).

… (Ellipsis): This will check all nodes in the subDAG

created by this.

string: This will check the node with the given

name.

Collection[str]: This will check all nodes specified

in the list.

In all likelihood, you don’t want ... , but the others

are useful.

Note: you cannot stack @check_output_custom

decorators. If you want to use multiple custom

validators, you should pass them all in as arguments

to a single @check_output_custom decorator.

class hamilton.plugins.h_pandera.check_output(importance: str = 'warn', target: str |

Collection[str] | None | EllipsisType = None)

__init__(importance: str = 'warn', target: str | Collection[str] | None | EllipsisType = None)

Specific output-checker for pandera schemas. This decorator utilizes the output type

of the function, which has to be of type pandera.typing.pandas.DataFrame or

pandera.typing.pandas.Series, with an annotation argument.

Parameters:

schema – The schema to use for validation. If this is

not provided, then the output type of the function is

used.

importance – Importance level (either “warn” or “fail”)

– see documentation for check_output for more

details.

target – The target of the decorator – see

documentation for check_output for more details.

•

1.

2.

3.

4.

•

•

•

323 Decorators

Let’s look at equivalent examples to demonstrate:

import pandera as pa
import pandas as pd
from hamilton.plugins import h_pandera
from pandera.typing.pandas import DataFrame

class MySchema(pa.DataFrameModel):
a: int
b: float
c: str = pa.Field(nullable=True) # For example, allow

None values
d: float # US dollars

@h_pandera.check_output()
def foo() -> DataFrame[MySchema]:

return pd.DataFrame() # will fail

from hamilton import function_modifiers

schema = pa.DataFrameSchema({
"a": pa.Column(pa.Int),
"b": pa.Column(pa.Float),
"c": pa.Column(pa.String, nullable=True),
"d": pa.Column(pa.Float),

})

@function_modifiers.check_output(schema=schema)
def foo() -> pd.DataFrame:

return pd.DataFrame() # will fail

These two are functionally equivalent. Note that we do not (yet) support modification

of the output.

class hamilton.plugins.h_pydantic.check_output(importance: str = 'warn', target: str |

Collection[str] | None | EllipsisType = None)

__init__(importance: str = 'warn', target: str | Collection[str] | None | EllipsisType = None)

Specific output-checker for pydantic models (requires pydantic>=2.0). This decorator

utilizes the output type of the function, which can be any subclass of

pydantic.BaseModel. The function output must be declared with a type hint.

324 Decorators

Parameters:

model – The pydantic model to use for validation. If

this is not provided, then the output type of the

function is used.

importance – Importance level (either “warn” or “fail”)

– see documentation for check_output for more

details.

target – The target of the decorator – see

documentation for check_output for more details.

Here is an example of how to use this decorator with a function that returns a

pydantic model:

from hamilton.plugins import h_pydantic
from pydantic import BaseModel

class MyModel(BaseModel):
a: int
b: float
c: str

@h_pydantic.check_output()
def foo() -> MyModel:

return MyModel(a=1, b=2.0, c="hello")

Alternatively, you can return a dictionary from the function (type checkers will

probably complain about this):

from hamilton.plugins import h_pydantic
from pydantic import BaseModel

class MyModel(BaseModel):
a: int
b: float
c: str

@h_pydantic.check_output()
def foo() -> MyModel:

return {"a": 1, "b": 2.0, "c": "hello"}

You can also use pydantic validation through function_modifiers.check_output by

providing the model as an argument:

•

•

•

325 Decorators

from typing import Any

from hamilton import function_modifiers
from pydantic import BaseModel

class MyModel(BaseModel):
a: int
b: float
c: str

@function_modifiers.check_output(model=MyModel)
def foo() -> dict[str, Any]:

return {"a": 1, "b": 2.0, "c": "hello"}

Note, that because we do not (yet) support modification of the output, the validation

is performed in strict mode, meaning that no data coercion is performed. For

example, the following function will fail validation:

from hamilton.plugins import h_pydantic
from pydantic import BaseModel

class MyModel(BaseModel):
a: int # Defined as an int

@h_pydantic.check_output() # This will fail validation!
def foo() -> MyModel:

return MyModel(a="1") # Assigned as a string

For more information about strict mode see the pydantic docs: https://

docs.pydantic.dev/latest/concepts/strict_mode/

config.when*

@config.when allows you to specify different implementations depending on configuration

parameters.

Note the following:

The function cannot have the same name in the same file (or python gets unhappy), so we

name it with a __ (dunderscore) as a suffix. The dunderscore is removed before it goes into the

DAG.

There is currently no @config.otherwise(...) decorator, so make sure to have config.when

specify set of configuration possibilities. Any missing cases will not have that output column

•

•

326 Decorators

https://docs.pydantic.dev/latest/concepts/strict_mode/
https://docs.pydantic.dev/latest/concepts/strict_mode/

(and subsequent downstream nodes may error out if they ask for it). To make this easier, we

have a few more @config decorators:

@config.when_not(param=value) Will be included if the parameter is _not_ equal to the

value specified.

@config.when_in(param=[value1, value2, ...]) Will be included if the parameter is equal

to one of the specified values.

@config.when_not_in(param=[value1, value2, ...]) Will be included if the parameter is

not equal to any of the specified values.

@config If you’re feeling adventurous, you can pass in a lambda function that takes in the

entire configuration and resolves to True or False . You probably don’t want to do this.

To always exclude a function (such as helper functions) from the DAG the most straightforward

and preferred pattern is to prefix it with “_”, but you can also use @hamilton_exclude .

Reference Documentation

class hamilton.function_modifiers.config(resolves: Callable[[Dict[str, Any]], bool], target_name: str

= None, config_used: List[str] = None)

Decorator class that determines whether a function should be in the DAG based on some

configuration variable.

Notes:

Currently, functions that exist in all configurations have to be disjoint.

There is currently no @config.otherwise(...) decorator, so make sure to have

config.when specify set of configuration possibilities. Any missing cases will not have

that output (and subsequent downstream functions may error out if they ask for it).

To make this easier, we have a few more @config decorators:

@config.when_not(param=value) Will be included if the parameter is _not_

equal to the value specified.

@config.when_in(param=[value1, value2, ...]) Will be included if the

parameter is equal to one of the specified values.

@config.when_not_in(param=[value1, value2, ...]) Will be included if the

parameter is not equal to any of the specified values.

@config If you’re feeling adventurous, you can pass in a lambda function that

takes in the entire configuration and resolves to True or False . You probably

don’t want to do this.

Example:

◦

◦

◦

◦

•

1.

2.

3.

◦

◦

◦

◦

327 Decorators

@config.when_in(business_line=["mens","kids"], region=["uk"])
def LEAD_LOG_BASS_MODEL_TIMES_TREND(

TREND_BSTS_WOMENS_ACQUISITIONS: pd.Series,
LEAD_LOG_BASS_MODEL_SIGNUPS_NON_REFERRAL: pd.Series) ->

pd.Series:
logic
...

Example - use of __suffix to differentiate between functions with the same name. This is

required if you want to use the same function name in multiple configurations. Hamilton

will automatically drop the suffix for you. The following will ensure only one function is

registered with the name my_transform:

@config.when(region="us")
def my_transform__us(some_input: pd.Series, some_input_b:
pd.Series) -> pd.Series:

logic
...

@config.when(region="uk")
def my_transform__uk(some_input: pd.Series, some_input_c:
pd.Series) -> pd.Series:

logic
...

@config If you’re feeling adventurous, you can pass in a lambda function that takes in the

entire configuration and resolves to True or False . You probably don’t want to do this.

__init__(resolves: Callable[[Dict[str, Any]], bool], target_name: str = None, config_used:

List[str] = None)

Decorator that resolves a function based on the configuration…

Parameters:

resolves – the python function to use to resolve

whether the wrapped function should exist in the

graph or not.

target_name – Optional. The name of the

“function”/”node” that we want to attach @config to.

config_used – Optional. The list of config names that

this function uses.

class hamilton.function_modifiers.configuration.hamilton_exclude

•

•

•

328 Decorators

Decorator class that excludes a function from the DAG.

The preferred way to hide functions from the Hamilton DAG is to prefix them with “_”.

However, for the exceptional case, it can be useful for decorating helper functions without

the need to prefix them with “_” and use them either inside other nodes or in conjunction

with step or apply_to .

@hamilton_exclude
def helper(...) -> ...:

'''This will not be part of the DAG'''
...

You may also want to use this decorator for excluding functions in legacy code that would

raise and error in Hamilton (for example missing type hints).

dataloader

Reference Documentation

class hamilton.function_modifiers.dataloader

Decorator for specifying a data loading function within the Hamilton framework. This

decorator is used to annotate functions that load data, allowing them to be treated

specially in the Hamilton DAG (Directed Acyclic Graph). The decorated function should

return a tuple containing the loaded data and a dictionary of metadata about the loading

process.

The dataloader decorator captures loading data metadata and ensures the function’s return

type is correctly annotated to be a tuple, where the first element is the loaded data and the

second element is a dictionary containing metadata about the data loading process.

Downstream functions need only to depend on the type of data loaded.

Example Usage:
Assuming you have a function that loads data from a JSON file and you want to expose the

metadata in your Hamilton DAG to be captured in the Hamilton UI / adapters:

import pandas as pd
from hamilton.function_modifiers import dataloader

@dataloader() # you need ()
def load_json_data(json_path: str = "data/my_data.json") ->
tuple[pd.DataFrame, dict]:

329 Decorators

'''Loads a dataframe from a JSON file.

 :return: A tuple containing two dictionaries:
 - The first dictionary contains the loaded JSON data as a
dataframe
 - The second dictionary contains metadata about the
loading process.
 '''

Load the data
data = pd.read_json(json_path)

Metadata about the loading process
metadata = {"source": json_path, "format": "json"}

return data, metadata

generate_nodes(fn: Callable, config) → List[Node]

Generates two nodes. We have to add tags appropriately.

The first one is just the fn - with a slightly different name. The second one uses the

proper function name, but only returns the first part of the tuple that the first returns.

Parameters:

fn

config

Returns:

validate(fn: Callable)

Validates that the output type is correctly annotated.

datasaver

Reference Documentation

class hamilton.function_modifiers.datasaver

Decorator for specifying a data saving function within the Hamilton framework. This

decorator is used to annotate functions that save data, allowing them to be treated

specially in the Hamilton DAG (Directed Acyclic Graph). The decorated function should

return a dictionary containing metadata about the saving process.

•

•

330 Decorators

The datasaver decorator captures saving data metadata and ensures the function’s return

type is correctly annotated to be a dictionary, where the dictionary contains metadata about

the data saving process, that then is exposed / captures for the Hamilton UI / adapters.

Example Usage:
Assuming you have a function that saves data to a JSON file and you want to expose the

metadata in your Hamilton DAG to be captured in the Hamilton UI / adapters:

import pandas as pd
from hamilton.function_modifiers import datasaver

@datasaver() # you need ()
def save_json_data(data: pd.DataFrame, json_path: str = "data/
my_saved_data.json") -> dict:

'''Saves data to a JSON file and returns metadata about the
saving process.

 :param data: The data to save.
 :param json_path: The path to save the data to.
 :return: metadata about what was saved.
 '''

Save the data
with open(json_path, "w") as file:

data.to_json(json_path)

Metadata about the saving process
metadata = {"destination": json_path, "format": "json"}

return metadata

This function can now be used within the Hamilton framework as a node that saves data to

a JSON file. The metadata returned alongside the data can be used for logging, debugging,

or any other purpose that requires information about the data saving process as it can be

pulled out by the Hamilton Tracker for the Hamilton UI or other adapters.

generate_nodes(fn: Callable, config) → List[Node]

Generates same node but all this does is add tags to it. :param fn: :param

config: :return:

validate(fn: Callable)

Validates that the function output is a dict type.

331 Decorators

does

@does is a decorator that essentially allows you to run a function over all the input parameters.

So you can’t pass any old function to @does , instead the function passed has to take any amount

of inputs and process them all in the same way.

import pandas as pd
from hamilton.function_modifiers import does
import internal_package_with_logic

def sum_series(**series: pd.Series) -> pd.Series:
"""This function takes any number of inputs and sums them all

together."""
...

@does(sum_series)
def D_XMAS_GC_WEIGHTED_BY_DAY(D_XMAS_GC_WEIGHTED_BY_DAY_1: pd.Series,

D_XMAS_GC_WEIGHTED_BY_DAY_2:
pd.Series) -> pd.Series:

"""Adds D_XMAS_GC_WEIGHTED_BY_DAY_1 and
D_XMAS_GC_WEIGHTED_BY_DAY_2"""

pass

@does(internal_package_with_logic.identity_function)
def copy_of_x(x: pd.Series) -> pd.Series:

"""Just returns x"""
pass

The example here is a function, that all that it does, is sum all the parameters together. So we can

annotate it with the @does decorator and pass it the sum_series function. The @does decorator

is currently limited to just allow functions that consist only of one argument, a generic **kwargs.

Reference Documentation

class hamilton.function_modifiers.does(replacing_function: Callable, **argument_mapping: str |

List[str])

@does is a decorator that essentially allows you to run a function over all the input

parameters. So you can’t pass any old function to @does , instead the function passed has

to take any amount of inputs and process them all in the same way.

import pandas as pd
from hamilton.function_modifiers import does
import internal_package_with_logic

def sum_series(**series: pd.Series) -> pd.Series:

332 Decorators

'''This function takes any number of inputs and sums them all
together.'''

...

@does(sum_series)
def D_XMAS_GC_WEIGHTED_BY_DAY(D_XMAS_GC_WEIGHTED_BY_DAY_1:
pd.Series,

D_XMAS_GC_WEIGHTED_BY_DAY_2:
pd.Series) -> pd.Series:

'''Adds D_XMAS_GC_WEIGHTED_BY_DAY_1 and
D_XMAS_GC_WEIGHTED_BY_DAY_2'''

pass

@does(internal_package_with_logic.identity_function)
def copy_of_x(x: pd.Series) -> pd.Series:

'''Just returns x'''
pass

The example here is a function, that all that it does, is sum all the parameters together. So

we can annotate it with the @does decorator and pass it the sum_series function. The

@does decorator is currently limited to just allow functions that consist only of one

argument, a generic **kwargs.

__init__(replacing_function: Callable, **argument_mapping: str | List[str])

Constructor for a modifier that replaces the annotated functions functionality with

something else. Right now this has a very strict validation requirements to make

compliance with the framework easy.

Parameters:

replacing_function – The function to replace the

original function with.

argument_mapping – A mapping of argument name in

the replacing function to argument name in the

decorating function.

unpack_fields

This decorator works on a function that outputs a tuple and unpacks its elements to make them

individually available for consumption. Essentially, it expands the original function into n separate

functions, each of which takes the original output tuple and, in return, outputs a specific field

based on the index supplied to the unpack_fields decorator.

•

•

333 Decorators

import pandas as pd
from hamilton.function_modifiers import unpack_fields

@unpack_fields('X_train', 'X_test', 'y_train', 'y_test')
def train_test_split_func(

feature_matrix: np.ndarray,
target: np.ndarray,
test_size_fraction: float,
shuffle_train_test_split: bool,

) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
... # Calculate the train-test split
return X_train, X_test, y_train, y_test

The arguments to the decorator not only represent the names of the resulting fields but also

determine their position in the output tuple. This means you can choose to unpack a subset of

the fields or declare an indeterminate number of fields — as long as the number of requested

fields does not exceed the number of elements in the output tuple.

import pandas as pd
from hamilton.function_modifiers import unpack_fields

@unpack_fields('X_train', 'X_test', 'y_train', 'y_test')
def train_test_split_func(

feature_matrix: np.ndarray,
target: np.ndarray,
test_size_fraction: float,
shuffle_train_test_split: bool,

) -> Tuple[np.ndarray, ...]: # indeterminate number of fields
... # Calculate the train-test split
return X_train, X_test, y_train, y_test

Reference Documentation

class hamilton.function_modifiers.unpack_fields(*fields: str)

Unpacks fields from a tuple output.

Expands a single function into the following nodes:

1 function that outputs the original tuple

n functions, each of which take in the original tuple and output a specific field

The decorated function must have an return type of either tuple (python 3.9+) or

typing.Tuple, and must specify either: - An explicit length tuple (e.g.`tuple[int, str]`,

typing.Tuple[int, str]) - An indeterminate length tuple (e.g. tuple[int, …], typing.Tuple[int, …])

•

•

334 Decorators

Parameters:

fields – Fields to unpack from the return value of the

decorated function.

__init__(*fields: str)

Initializes the node transformer to only allow a single node to be transformed. Note

this passes target=None to the superclass, which means that it will only apply to the

‘sink’ nodes produced.

extract_columns

This works on a function that outputs a dataframe, that we want to extract the columns from and

make them individually available for consumption. So it expands a single function into n

functions, each of which take in the output dataframe and output a specific column as named in

the extract_columns decorator.

import pandas as pd
from hamilton.function_modifiers import extract_columns

@extract_columns('fiscal_date', 'fiscal_week_name', 'fiscal_month',
'fiscal_quarter', 'fiscal_year')
def fiscal_columns(date_index: pd.Series, fiscal_dates:
pd.DataFrame) -> pd.DataFrame:

"""Extracts the fiscal column data.
 We want to ensure that it has the same spine as date_index.
 :param fiscal_dates: the input dataframe to extract.
 :return:
 """

df = pd.DataFrame({'date_index': date_index},
index=date_index.index)

merged = df.join(fiscal_dates, how='inner')
return merged

Note: if you have a list of columns to extract, then when you call @extract_columns you should

call it with an asterisk like this:

import pandas as pd
from hamilton.function_modifiers import extract_columns

@extract_columns(*my_list_of_column_names)
def my_func(...) -> pd.DataFrame:

"""..."""

335 Decorators

Reference Documentation

class hamilton.function_modifiers.extract_columns(*columns: Tuple[str, str] | str, fill_with: Any =

None)

__init__(*columns: Tuple[str, str] | str, fill_with: Any = None)

Constructor for a modifier that expands a single function into the following nodes:

n functions, each of which take in the original dataframe and output a specific

column

1 function that outputs the original dataframe

Parameters:

columns – Columns to extract, that can be a list of

tuples of (name, documentation) or just names.

fill_with – If you want to extract a column that doesn’t

exist, do you want to fill it with a default value? Or do

you want to error out? Leave empty/None to error out,

set fill_value to dynamically create a column.

extract_fields

This works on a function that outputs a dictionary, that we want to extract the fields from and

make them individually available for consumption. So it expands a single function into n

functions, each of which take in the output dictionary and output a specific field as named in the

extract_fields decorator.

import pandas as pd
from hamilton.function_modifiers import extract_columns

@function_modifiers.extract_fields(
{'X_train': np.ndarray, 'X_test': np.ndarray, 'y_train':

np.ndarray, 'y_test': np.ndarray})
def train_test_split_func(feature_matrix: np.ndarray,

target: np.ndarray,
test_size_fraction: float,
shuffle_train_test_split: bool) ->

Dict[str, np.ndarray]:
...
return {'X_train': ... }

•

•

•

•

336 Decorators

The input to the decorator is a dictionary of field_name to field_type – this information is used

for static compilation to ensure downstream uses are expecting the right type.

Reference Documentation

class hamilton.function_modifiers.extract_fields(fields: Dict[str, Any] | List[str] | Any | None =

None, *others, fill_with: Any = None)

Extracts fields from a dictionary of output.

__init__(fields: Dict[str, Any] | List[str] | Any | None = None, *others, fill_with: Any = None)

Constructor for a modifier that expands a single function into the following nodes:

n functions, each of which take in the original dict and output a specific field

1 function that outputs the original dict

Parameters:

fields – Fields to extract. Can be a dict of field names

to types, a list of field names, or a single field name.

others – Additional fields names to extract - argument

unpacking. Ignored if fields is a dict.

fill_with – If you want to extract a field that doesn’t

exist, do you want to fill it with a default value? Or do

you want to error out? Leave empty/None to error out,

set fill_value to dynamically create a field value.

inject

Reference Documentation

class hamilton.function_modifiers.inject(**key_mapping: ParametrizedDependency)

@inject allows you to replace parameters with values passed in. You can think of it as a

@parameterize call that has only one parameterization, the result of which is the name of

the function. See the following examples:

import pandas as pd
from function_modifiers import inject, source, value, group

@inject(nums=group(source('a'), value(10), source('b'),
value(2)))
def a_plus_10_plus_b_plus_2(nums: List[int]) -> int:

•

•

•

•

•

337 Decorators

return sum(nums)

This would be equivalent to:

@parameterize(
a_plus_10_plus_b_plus_2={

'nums': group(source('a'), value(10), source('b'),
value(2))

})
def sum_numbers(nums: List[int]) -> int:

return sum(nums)

Something to note – we currently do not support the case in which the same parameter is

utilized multiple times as an injection. E.G. two lists, a list and a dict, two sources, etc…

This is considered undefined behavior, and should be avoided.

__init__(**key_mapping: ParametrizedDependency)

Instantiates an @inject decorator with the given key_mapping.

Parameters:

key_mapping – A dictionary of string to dependency

spec. This is the same as the input mapping in

@parameterize.

load_from

Reference Documentation

class hamilton.function_modifiers.load_from

Decorator to inject externally loaded data into a function. Ideally, anything that is not a pure

transform should either call this, or accept inputs from an external location.

This decorator functions by “injecting” a parameter into the function. For example, the

following code will load the json file, and inject it into the function as the parameter

input_data. Note that the path for the JSON file comes from another node called

raw_data_path (which could also be passed in as an external input).

@load_from.json(path=source("raw_data_path"))
def raw_data(input_data: dict) -> dict:

return input_data

338 Decorators

The decorator can also be used with value to inject a constant value into the loader. In the

following case, we use the literal value “some/path.json” as the path to the JSON file.

@load_from.json(path=value("some/path.json"))
def raw_data(input_data: dict) -> dict:

return input_data

Note that, if neither source nor value is specified, the value will be passed in as a literal

value.

@load_from.json(path="some/path.json")
def raw_data(input_data: dict) -> dict:

return input_data

You can also utilize the inject_ parameter in the loader if you want to inject the data into a

specific param. For example, the following code will load the json file, and inject it into the

function as the parameter data.

@load_from.json(path=source("raw_data_path"), inject_="data")
def raw_data(data: dict, valid_keys: List[str]) -> dict:

return [item for item in data if item in valid_keys]

You can also utilize multiple data loaders with separate inject_ parameters to load from

multiple files. data loaders to a single function:

@load_from.json(path=source("raw_data_path"), inject_="data")
@load_from.json(path=source("raw_data_path2"), inject_="data2")
def raw_data(data: dict, data2: dict) -> dict:

return [item for item in data if item in data2]

This is a highly pluggable functionality – here’s the basics of how it works:

1. Every “key” (json above, but others include csv, literal, file, pickle, etc…) corresponds to a

set of loader classes. For example, the json key corresponds to the JSONLoader class in

default_data_loaders. They implement the classmethod name. Once they are registered with

the central registry they pick

2. Every data loader class (which are all dataclasses) implements the load_targets method,

which returns a list of types it can load to. For example, the JSONLoader class can load data

of type dict. Note that the set of potential loading candidate classes are evaluated in

reverse order, so the most recently registered loader class is the one that is used. That way,

you can register custom ones.

339 Decorators

3. The loader class is instantiated with the kwargs passed to the decorator. For example, the

JSONLoader class takes a path kwarg, which is the path to the JSON file.

4. The decorator then creates a node that loads the data, and modifies the node that runs

the function to accept that. It also returns metadata (customizable at the loader-class-level)

to enable debugging after the fact. This is unstructured, but can be used down the line to

describe any metadata to help debug.

The “core” hamilton library contains a few basic data loaders that can be implemented

within the confines of python’s standard library. pandas_extensions contains a few more

that require pandas to be installed.

Note that these can have default arguments, specified by defaults in the dataclass fields.

For the full set of “keys” and “types” (e.g. load_from.json, etc…), look for all classes that

inherit from DataLoader in the hamilton library. We plan to improve documentation shortly

to make this discoverable.

__init__()

parameterize

Expands a single function into n, each of which correspond to a function in which the parameter

value is replaced either by:

A specified value value()

The value from a specified upstream node source() .

Note if you’re confused by the other @paramterize_* decorators, don’t worry, they all delegate to

this base decorator.

import pandas as pd
from hamilton.function_modifiers import parameterize
from hamilton.function_modifiers import value, source

@parameterize(

D_ELECTION_2016_shifted=dict(n_off_date=source('D_ELECTION_2016'),
shift_by=value(3)),

SOME_OUTPUT_NAME=dict(n_off_date=source('SOME_INPUT_NAME'),
shift_by=value(1)),
)
def date_shifter(n_off_date: pd.Series, shift_by: int = 1) ->
pd.Series:

1.

2.

340 Decorators

"""{one_off_date} shifted by shift_by to create {output_name}"""
return n_off_date.shift(shift_by)

By choosing value() or source() , you can determine the source of your dependency. Note that

you can also pass documentation. If you don’t, it will use the parameterized docstring.

@parameterize(

D_ELECTION_2016_shifted=(dict(n_off_date=source('D_ELECTION_2016'),
shift_by=value(3)), "D_ELECTION_2016 shifted by 3"),

SOME_OUTPUT_NAME=(dict(n_off_date=source('SOME_INPUT_NAME'),
shift_by=value(1)),"SOME_INPUT_NAME shifted by 1")
)
def date_shifter(n_off_date: pd.Series, shift_by: int=1) ->
pd.Series:

"""{one_off_date} shifted by shift_by to create {output_name}"""
return n_off_date.shift(shift_by)

Reference Documentation

Classes to help with @parameterize (also can be used with @inject):

class hamilton.function_modifiers.ParameterizedExtract(outputs: Tuple[str, ...], input_mapping:

Dict[str, ParametrizedDependency])

Dataclass to hold inputs for @parameterize and @parameterize_extract_columns.

Parameters:

outputs – A tuple of strings, each of which is the name of

an output.

input_mapping – A dictionary of string to

ParametrizedDependency. The string is the name of the

python parameter of the decorated function, and the

value is a “source”/”value” which will be passed as input

for that parameter to the function.

class hamilton.function_modifiers.source(dependency_on: Any)

Specifies that a parameterized dependency comes from an upstream source.

This means that it comes from a node somewhere else. E.G. source(“foo”) means that it

should be assigned the value that “foo” outputs.

Parameters:

•

•

341 Decorators

dependency_on – Upstream function (i.e. node) to come

from.

Returns:

An UpstreamDependency object – a signifier to the internal

framework of the dependency type.

class hamilton.function_modifiers.value(literal_value: Any)

Specifies that a parameterized dependency comes from a “literal” source.

E.G. value(“foo”) means that the value is actually the string value “foo”.

Parameters:

literal_value – Python literal value to use.

Returns:

A LiteralDependency object – a signifier to the internal

framework of the dependency type.

class hamilton.function_modifiers.group(*dependency_args: ParametrizedDependency,

**dependency_kwargs: ParametrizedDependency)

Specifies that a parameterized dependency comes from a “grouped” source.

This means that it gets injected into a list of dependencies that are grouped together. E.G.

dep=group(source(“foo”), source(“bar”)) for the function:

@inject(dep=group(source("foo"), source("bar")))
def f(dep: List[pd.Series]) -> pd.Series:

return ...

Would result in dep getting foo and bar dependencies injected.

Parameters:

dependency_args – Dependencies, list of dependencies

(e.g. source(“foo”), source(“bar”))

dependency_kwargs – Dependencies, kwarg

dependencies (e.g. foo=source(“foo”))

•

•

342 Decorators

Returns:

Parameterize documentation:

class hamilton.function_modifiers.parameterize(**parametrization: Dict[str,

ParametrizedDependency] | Tuple[Dict[str, ParametrizedDependency], str])

Decorator to use to create many functions.

Expands a single function into n, each of which correspond to a function in which the

parameter value is replaced either by:

A specified literal value, denoted value(‘literal_value’).

The output from a specified upstream function (i.e. node), denoted

source(‘upstream_function_name’).

Note that parameterize can take the place of @parameterize_sources or

@parameterize_values decorators below. In fact, they delegate to this!

Examples expressing different syntax:

@parameterize(
tuple of assignments (consisting of literals/upstream

specifications), and docstring.
replace_no_parameters=({}, 'fn with no parameters replaced'),

)
def no_param_function() -> Any:

...

@parameterize(
tuple of assignments (consisting of literals/upstream

specifications), and docstring.
replace_just_upstream_parameter=(

{'upstream_source': source('foo_source')},
'fn with upstream_parameter set to node foo'

),
)
def param_is_upstream_function(upstream_source: Any) -> Any:

'''Doc string that can also be parameterized:
{upstream_source}.'''

...

@parameterize(
replace_just_literal_parameter={'literal_parameter':

value('bar')},
)
def param_is_literal_value(literal_parameter: Any) -> Any:

'''Doc string that can also be parameterized:

1.

2.

343 Decorators

{literal_parameter}.'''
...

@parameterize(
replace_both_parameters={

'upstream_parameter': source('foo_source'),
'literal_parameter': value('bar')

}
)
def concat(upstream_parameter: Any, literal_parameter: str) ->
Any:

'''Adding {literal_parameter} to {upstream_parameter} to
create {output_name}.'''

return upstream_parameter + literal_parameter

You also have the capability to “group” parameters, which will combine them into a list.

@parameterize(
a_plus_b_plus_c={

'to_concat' : group(source('a'), value('b'), source('c'))
}

)
def concat(to_concat: List[str]) -> Any:

'''Adding {literal_parameter} to {upstream_parameter} to
create {output_name}.'''

return sum(to_concat, '')

__init__(**parametrization: Dict[str, ParametrizedDependency] | Tuple[Dict[str,

ParametrizedDependency], str])

Decorator to use to create many functions.

Parameters:

parametrization –

**kwargs with one of two things:

a tuple of assignments (consisting of literals/

upstream specifications), and docstring.

just assignments, in which case it parametrizes the

existing docstring.

•

•

344 Decorators

parameterize_extract_columns

Reference Documentation

class hamilton.function_modifiers.parameterize_extract_columns(*extract_config:

ParameterizedExtract, reassign_columns: bool = True)

@parameterize_extract_columns gives you the power of both @extract_columns and

@parameterize in one decorator.

It takes in a list of Parameterized_Extract objects, each of which is composed of: 1. A list of

columns to extract, and 2. A parameterization that gets used

In the following case, we produce four columns, two for each parameterization:

import pandas as pd
from function_modifiers import parameterize_extract_columns,
ParameterizedExtract, source, value
@parameterize_extract_columns(

ParameterizedExtract(
("outseries1a", "outseries2a"),
{"input1": source("inseries1a"), "input2":

source("inseries1b"), "input3": value(10)},
),
ParameterizedExtract(

("outseries1b", "outseries2b"),
{"input1": source("inseries2a"), "input2":

source("inseries2b"), "input3": value(100)},
),

)
def fn(input1: pd.Series, input2: pd.Series, input3: float) ->
pd.DataFrame:

return pd.concat([input1 * input2 * input3, input1 + input2
+ input3], axis=1)

__init__(*extract_config: ParameterizedExtract, reassign_columns: bool = True)

Initializes a parameterized_extract decorator. Note this currently works for series, but

the plan is to extend it to fields as well…

Parameters:

extract_config – A configuration consisting of a list

ParameterizedExtract classes These contain the

information of a @parameterized and @extract…

together.

•

345 Decorators

reassign_columns – Whether we want to reassign the

columns as part of the function.

parameterize_frame

Reference Documentation

class

hamilton.experimental.decorators.parameterize_frame.parameterize_frame(parameterization:

DataFrame)

EXPERIMENTAL! Instantiates a parameterize_extract decorator using a dataframe to specify a

set of extracts + parameterizations.

This is an experimental decorator and the API may change in the future; please provide

feedback whether this API does or does not work for you.

Parameters:

parameterization – Parameterization dataframe. See below.

This is of a specific shape:

Index - Level 0: list of parameter names

Index - Level 1: types of things to inject, either:

“out” (meaning this is an output),

“value” (meaning this is a literal value)

“source” (meaning this node comes from an upstream value)

Contents:

Each row corresponds to the index. Each of these corresponds to

an output node from this.

Note your function has to take in the column-names and output a dataframe with those

names – we will likely change it so that’s not the case, and it can just use the position of the

columns.

Example usage:

•

1.

2.

◦

◦

◦

3.

•

346 Decorators

from hamilton.experimental.decorators.parameterize_frame import
parameterize_frame
df = pd.DataFrame(
[

["outseries1a", "outseries2a", "inseries1a", "inseries2a",
5.0],

["outseries1b", "outseries2b", "inseries1b", "inseries2b",
0.2],
],
specify column names corresponding to function arguments and
if outputting multiple columns, output dataframe columns.
columns=[

["output1", "output2", "input1", "input2", "input3"],
["out", "out", "source", "source", "value"],

])

@parameterize_frame(df)
def my_func(

input1: pd.Series, input2: pd.Series, input3: float
) -> pd.DataFrame:

...

__init__(parameterization: DataFrame)

Initializes a parameterized_extract decorator. Note this currently works for series, but

the plan is to extend it to fields as well…

Parameters:

extract_config – A configuration consisting of a list

ParameterizedExtract classes These contain the

information of a @parameterized and @extract…

together.

reassign_columns – Whether we want to reassign the

columns as part of the function.

parameterize_sources

Expands a single function into n, each of which corresponds to a function in which the parameters

specified are mapped to the specified inputs. Note this decorator and @parameterize_values are

quite similar, except that the input here is another DAG node(s), i.e. column/input, rather than a

specific scalar/static value.

•

•

347 Decorators

import pandas as pd
from hamilton.function_modifiers import parameterize_sources

@parameterize_sources(
D_ELECTION_2016_shifted=dict(one_off_date='D_ELECTION_2016'),
SOME_OUTPUT_NAME=dict(one_off_date='SOME_INPUT_NAME')

)
def date_shifter(one_off_date: pd.Series) -> pd.Series:

"""{one_off_date} shifted by 1 to create {output_name}"""
return one_off_date.shift(1)

We see here that parameterize_sources allows you to keep your code DRY by reusing the same

function to create multiple distinct outputs. The key word arguments passed have to have the

following structure:

OUTPUT_NAME = Mapping of function argument to input that should go
into it.

So in the example, D_ELECTION_2016_shifted is an _output_ that will correspond to replacing

one_off_date with D_ELECTION_2016 . Then similarly SOME_OUTPUT_NAME is an _output_ that will

correspond to replacing one_off_date with SOME_INPUT_NAME . The documentation for both uses

the same function doc and will replace values that are templatized with the input parameter

names, and the reserved value output_name .

To help visualize what the above is doing, it is equivalent to writing the following two function

definitions:

def D_ELECTION_2016_shifted(D_ELECTION_2016: pd.Series) -> pd.Series:
"""D_ELECTION_2016 shifted by 1 to create

D_ELECTION_2016_shifted"""
return D_ELECTION_2016.shift(1)

def SOME_OUTPUT_NAME(SOME_INPUT_NAME: pd.Series) -> pd.Series:
"""SOME_INPUT_NAME shifted by 1 to create SOME_OUTPUT_NAME"""
return SOME_INPUT_NAME.shift(1)

Note: that the different input variables must all have compatible types with the original decorated

input variable.

Reference Documentation

class hamilton.function_modifiers.parameterize_sources(**parameterization: Dict[str, str])

Expands a single function into n, each of which corresponds to a function in which the

parameters specified are mapped to the specified inputs. Note this decorator and

348 Decorators

@parameterize_values are quite similar, except that the input here is another DAG node(s),

i.e. column/input, rather than a specific scalar/static value.

import pandas as pd
from hamilton.function_modifiers import parameterize_sources

@parameterize_sources(
D_ELECTION_2016_shifted=dict(one_off_date='D_ELECTION_2016'),
SOME_OUTPUT_NAME=dict(one_off_date='SOME_INPUT_NAME')

)
def date_shifter(one_off_date: pd.Series) -> pd.Series:

'''{one_off_date} shifted by 1 to create {output_name}'''
return one_off_date.shift(1)

__init__(**parameterization: Dict[str, str])

Constructor for a modifier that expands a single function into n, each of which

corresponds to replacing some subset of the specified parameters with specific

upstream nodes.

Note this decorator and @parametrized_input are similar, except this one allows

multiple parameters to be mapped to multiple function arguments (and it fixes the

spelling mistake).

parameterized_sources allows you keep your code DRY by reusing the same function

but replace the inputs to create multiple corresponding distinct outputs. We see

here that parameterized_inputs allows you to keep your code DRY by reusing the

same function to create multiple distinct outputs. The key word arguments passed

have to have the following structure:

> OUTPUT_NAME = Mapping of function argument to input that should go into it.

The documentation for the output is taken from the function. The documentation

string can be templatized with the parameter names of the function and the reserved

value output_name - those will be replaced with the corresponding values from the

parameterization.

Parameters:

**parameterization – kwargs of output name to dict of

parameter mappings.

Note: this was previously called @parameterized_inputs.

349 Decorators

parameterized_subdag

Reference Documentation

class hamilton.function_modifiers.parameterized_subdag(*load_from: ModuleType | Callable,

inputs: Dict[str, ParametrizedDependency | LiteralDependency] = None, config: Dict[str, Any] =

None, external_inputs: List[str] = None, **parameterization: SubdagParams)

parameterized subdag is when you want to create multiple subdags at one time. Why might

you want to do this?

You have multiple data sets you want to run the same feature engineering pipeline on.

You want to run some sort of optimization routine with a variety of results

You want to run some sort of pipeline over slightly different configuration (E.G. region/

business line)

Note that this really is just syntactic sugar for creating multiple subdags, just as

@parameterize is syntactic sugar for creating multiple nodes from a function. That said, it is

common that you won’t know what you want until compile time (E.G. when you have the

config available), so this decorator along with the `@resolve decorator is a good way to

make that feasible. Note that we are getting into advanced Hamilton here – we don’t

recommend starting with this. In fact, we generally recommend repeating subdags multiple

times if you don’t have too many. That said, that can get cumbersome if you have a lot, so

this decorator is a good way to help with that.

Let’s take a look at an example:

@parameterized_subdag(
feature_modules,
from_datasource_1={"inputs" : {"data" :

value("datasource_1.csv")}},
from_datasource_2={"inputs" : {"data" :

value("datasource_2.csv")}},
from_datasource_3={

"inputs" : {"data" : value("datasource_3.csv")},
"config" : {"filter" : "only_even_client_ids"}

}
)
def feature_engineering(feature_df: pd.DataFrame) ->
pd.DataFrame:

return feature_df

This is (obviously) contrived, but what it does is create three subdags, each with a different

data source. The third one also applies a configuration to that subdags. Note that we can

also pass in inputs/config to the decorator itself, which will be applied to all subdags.

1.

2.

3.

350 Decorators

This is effectively the same as the example above.

@parameterized_subdag(
feature_modules,
inputs={"data" : value("datasource_1.csv")},
from_datasource_1={},
from_datasource_2={

"inputs" : {"data" : value("datasource_2.csv")}
},
from_datasource_3={

"inputs" : {"data" : value("datasource_3.csv")},
"config" : {"filter" : "only_even_client_ids"},

}
)

Again, think about whether this feature is really the one you want – often times, verbose,

static DAGs are far more readable than very concise, highly parameterized DAGs.

__init__(*load_from: ModuleType | Callable, inputs: Dict[str, ParametrizedDependency |

LiteralDependency] = None, config: Dict[str, Any] = None, external_inputs: List[str] = None,

**parameterization: SubdagParams)

Initializes a parameterized_subdag decorator.

Parameters:

load_from – Modules to load from

inputs – Inputs for each subdag generated by the

decorated function

config – Config for each subdag generated by the

decorated function

external_inputs – External inputs to all parameterized

subdags. Note that if you pass in any external inputs

from local subdags, it overrides this (does not merge).

parameterization –

Parameterizations for each subdag generated. Note

that this overrides any inputs/config passed to the

decorator itself.

Furthermore, note the following:

1. The parameterizations passed to the constructor are

**kwargs, so you are not allowed to name these

•

•

•

•

•

351 Decorators

load_from, inputs, or config. That’s a good thing, as

these are not good names for variables anyway.

2. Any empty items (not included) will default to an

empty dict (or an empty list in the case of

parameterization)

parameterize_values

Expands a single function into n, each of which corresponds to a function in which the parameter

value is replaced by that specific value.

import pandas as pd
from hamilton.function_modifiers import parameterize_values
import internal_package_with_logic

ONE_OFF_DATES = {
#output name # doc string # input value to

function
('D_ELECTION_2016', 'US Election 2016 Dummy'): '2016-11-12',
('SOME_OUTPUT_NAME', 'Doc string for this thing'):

'value to pass to function',
}

parameter matches the name of the argument in the
function below
@parameterize_values(parameter='one_off_date',
assigned_output=ONE_OFF_DATES)
def create_one_off_dates(date_index: pd.Series, one_off_date: str) -
> pd.Series:

"""Given a date index, produces a series where a 1 is placed at
the date index that would contain that event."""

one_off_dates =
internal_package_with_logic.get_business_week(one_off_date)

return
internal_package_with_logic.bool_to_int(date_index.isin([one_off_dates]))

We see here that parameterize allows you keep your code DRY by reusing the same function to

create multiple distinct outputs. The parameter key word argument has to match one of the

arguments in the function. The rest of the arguments are pulled from outside the DAG. The

_assigned_output_ key word argument takes in a dictionary of tuple(Output Name, Documentation

string) -> value.

Reference Documentation

352 Decorators

class hamilton.function_modifiers.parameterize_values(parameter: str, assigned_output:

Dict[Tuple[str, str], Any])

Expands a single function into n, each of which corresponds to a function in which the

parameter value is replaced by that specific value.

import pandas as pd
from hamilton.function_modifiers import parameterize_values
import internal_package_with_logic

ONE_OFF_DATES = {

#output name # doc string # input value to
function

('D_ELECTION_2016', 'US Election 2016 Dummy'): '2016-11-12',
('SOME_OUTPUT_NAME', 'Doc string for this thing'): 'value to

pass to function',
}

parameter matches the name of the argument in the
function below
@parameterize_values(parameter='one_off_date',
assigned_output=ONE_OFF_DATES)
def create_one_off_dates(date_index: pd.Series, one_off_date:
str) -> pd.Series:

'''Given a date index, produces a series where a 1 is placed
at the date index that would contain that event.'''

one_off_dates =
internal_package_with_logic.get_business_week(one_off_date)

return
internal_package_with_logic.bool_to_int(date_index.isin([one_off_dates]))

__init__(parameter: str, assigned_output: Dict[Tuple[str, str], Any])

Constructor for a modifier that expands a single function into n, each of which

corresponds to a function in which the parameter value is replaced by that specific

value.

Parameters:

parameter – Parameter to expand on.

assigned_output – A map of tuple of [parameter

names, documentation] to values

Note: this was previously called @parametrized.

•

•

353 Decorators

pipe family

We have a family of decorators that represent a chained set of transformations. This specifically

solves the “node redefinition” problem, and is meant to represent a pipeline of chaining/

redefinitions. This is similar (and can happily be used in conjunction with) pipe in pandas. In

Pyspark this is akin to the common operation of redefining a dataframe with new columns.

For some examples have a look at: https://github.com/apache/hamilton/tree/main/examples/

scikit-learn/species_distribution_modeling

While it is generally reasonable to contain constructs within a node’s function, you should

consider the pipe family for any of the following reasons:

1. You want the transformations to display as nodes in the DAG, with the possibility of storing or

visualizing the result.

You want to pull in functions from an external repository, and build the DAG a little more

procedurally.

3. You want to use the same function multiple times, but with different parameters – while

@does / @parameterize can do this, this presents an easier way to do this, especially in a chain.

Reference Documentation

pipe
DeprecationWarning from 2.0.0: use pipe_input instead

class hamilton.function_modifiers.macros.pipe(*transforms: Applicable, namespace: str |

EllipsisType | None = Ellipsis, on_input: str | Collection[str] | None | EllipsisType = None,

collapse=False, _chain=False)

__init__(*transforms: Applicable, namespace: str | EllipsisType | None = Ellipsis, on_input:

str | Collection[str] | None | EllipsisType = None, collapse=False, _chain=False)

Instantiates a @pipe_input decorator.

Parameters:

transforms – step transformations to be applied, in

order

namespace – namespace to apply to all nodes in the

pipe. This can be “…” (the default), which resolves to

the name of the decorated function, None (which

means no namespace), or a string (which means that

all nodes will be namespaced with that string). Note

1.

•

•

354 Decorators

https://github.com/apache/hamilton/tree/main/examples/scikit-learn/species_distribution_modeling
https://github.com/apache/hamilton/tree/main/examples/scikit-learn/species_distribution_modeling

that you can either use this or namespaces inside

pipe_input() …

on_input – setting the target parameter for all steps

in the pipe. Leave empty to select only the first

argument.

collapse – Whether to collapse this into a single node.

This is not currently supported.

_chain – Whether to chain the first parameter. This is

the only mode that is supported. Furthermore, this is

not externally exposed. @flow will make use of this.

pipe_input

class hamilton.function_modifiers.macros.pipe_input(*transforms: Applicable, namespace: str |

EllipsisType | None = Ellipsis, on_input: str | Collection[str] | None | EllipsisType = None,

collapse=False, _chain=False)

Running a series of transformations on the input of the function.

To demonstrate the rules for chaining nodes, we’ll be using the following example. This is

using primitives to demonstrate, but as hamilton is just functions of any python objects, this

works perfectly with dataframes, series, etc…

from hamilton.function_modifiers import step, pipe_input, value,
source

def _add_one(x: int) -> int:
return x + 1

def _sum(x: int, y: int) -> int:
return x + y

def _multiply(x: int, y: int, z: int = 10) -> int:
return x * y * z

@pipe_input(
step(_add_one),
step(_multiply, y=2),
step(_sum, y=value(3)),
step(_multiply, y=source("upstream_node_to_multiply")),

•

•

•

355 Decorators

)
def final_result(upstream_int: int) -> int:

return upstream_int

upstream_int = ... # result from upstream
upstream_node_to_multiply = ... # result from upstream

output = final_result(
_multiply(

_sum(
_multiply(

_add_one(upstream_int),
y=2

),
y=3

),
y=upstream_node_to_multiply

)
)

upstream_int = ... # result from upstream
upstream_node_to_multiply = ... # result from upstream

one_added = _add_one(upstream_int)
multiplied = _multiply(one_added, y=2)
summed = _sum(multiplied, y=3)
multiplied_again = _multiply(summed, y=upstream_node_to_multiply)
output = final_result(multiplied_again)

Note that functions must have no position-only arguments (this is rare in python, but

hamilton does not handle these). This basically means that the functions must be defined

similarly to def fn(x, y, z=10) and not def fn(x, y, /, z=10) . In fact, all arguments

must be named and “kwarg-friendly”, meaning that the function can happily be called with

**kwargs , where kwargs are some set of resolved upstream values. So, no *args are

allowed, and **kwargs (variable keyword-only) are not permitted. Note that this is not a

design limitation, rather an implementation detail – if you feel like you need this, please

reach out.

Furthermore, the function should be typed, as a Hamilton function would be.

One has three ways to tune the shape/implementation of the subsequent nodes:

when / when_not / when_in / when_not_in – these are used to filter the application of the

function.

1.

356 Decorators

This is valuable to reflect if/else conditions in the structure of the DAG, pulling it

out of functions, rather than buried within the logic itself. It is functionally

equivalent to @config.when .

For instance, if you want to include a function in the chain only when a config

parameter is set to a certain value, you can do:

@pipe_input(
step(_add_one).when(foo="bar"),
step(_add_two,

y=source("other_node_to_add").when(foo="baz"),
)
def final_result(upstream_int: int) -> int:

return upstream_int

This will only apply the first function when the config parameter foo is set to bar ,

and the second when it is set to baz .

named – this is used to name the node. This is useful if you want to refer to intermediate

results.

If this is left out, hamilton will automatically name the functions in a globally

unique manner. The names of these functions will not necessarily be stable/

guaranteed by the API, so if you want to refer to them, you should use named . The

default namespace will always be the name of the decorated function (which will

be the last node in the chain).

named takes in two parameters – required is the name – this will assign the nodes

with a single name and no global namespace. For instance:

@pipe_input(
step(_add_one).named("a"),
step(_add_two, y=source("upstream_node")).named("b"),

)
def final_result(upstream_int: int) -> int:

return upstream_int

The above will create two nodes, a and b . a will be the result of _add_one , and

b will be the result of _add_two . final_result will then be called with the output

of b . Note that, if these are part of a namespaced operation (a subdag, in

particular), they will get the same namespace as the subdag.

The second parameter is namespace . This is used to specify a namespace for the

node. This is useful if you want to either (a) ensure that the nodes are namespaced

but share a common one to avoid name clashes (usual case), or (b) if you want a

2.

357 Decorators

custom namespace (unusual case). To indicate a custom namespace, one need

simply pass in a string.

To indicate that a node should share a namespace with the rest of the step(…)

operations in a pipe, one can pass in ... (the ellipsis).

@pipe_input(
step(_add_one).named("a", namespace="foo"), # foo.a
step(_add_two, y=source("upstream_node")).named("b",

namespace=...), # final_result.b
)
def final_result(upstream_int: int) -> int:

return upstream_int

Note that if you pass a namespace argument to the pipe_input function, it will set

the namespace on each step operation. This is useful if you want to ensure that all

the nodes in a pipe have a common namespace, but you want to rename them.

@pipe_input(
step(_add_one).named("a"), # a
step(_add_two, y=source("upstream_node")).named("b"),

foo.b
namespace=..., # default -- final_result.a and

final_result.b, OR
namespace=None, # no namespace -- a and b are exposed

as that, OR
namespace="foo", # foo.a and foo.b

)
def final_result(upstream_int: int) -> int:

return upstream_int

In all likelihood, you should not be using this, and this is only here in case you

want to expose a node for consumption/output later. Setting the namespace in

individual nodes as well as in pipe_input is not yet supported.

on_input – this selects which input we will run the pipeline on.

In case on_input is set to None (default), we apply pipe_input on the first

parameter. Let us know if you wish to expand to other use-cases. You can track the

progress on this topic via: https://github.com/apache/hamilton/issues/1177

The following would apply function _add_one and _add_two to p2 :

@pipe_input(
step(_add_one)
step(_add_two, y=source("upstream_node")),
on_input = "p2"

3.

358 Decorators

https://github.com/apache/hamilton/issues/1177

)
def final_result(p1: int, p2: int, p3: int) -> int:

return upstream_int

__init__(*transforms: Applicable, namespace: str | EllipsisType | None = Ellipsis, on_input:

str | Collection[str] | None | EllipsisType = None, collapse=False, _chain=False)

Instantiates a @pipe_input decorator.

Parameters:

transforms – step transformations to be applied, in

order

namespace – namespace to apply to all nodes in the

pipe. This can be “…” (the default), which resolves to

the name of the decorated function, None (which

means no namespace), or a string (which means that

all nodes will be namespaced with that string). Note

that you can either use this or namespaces inside

pipe_input() …

on_input – setting the target parameter for all steps

in the pipe. Leave empty to select only the first

argument.

collapse – Whether to collapse this into a single node.

This is not currently supported.

_chain – Whether to chain the first parameter. This is

the only mode that is supported. Furthermore, this is

not externally exposed. @flow will make use of this.

pipe_output

class hamilton.function_modifiers.macros.pipe_output(*transforms: Applicable, namespace: str |

EllipsisType | None = Ellipsis, on_output: str | Collection[str] | None | EllipsisType = None,

collapse=False, _chain=False)

Running a series of transformation on the output of the function.

The decorated function declares the dependency, the body of the function gets executed,

and then we run a series of transformations on the result of the function specified by

pipe_output .

If we have nodes A –> B –> C in the DAG and decorate B with pipe_output like

•

•

•

•

•

359 Decorators

@pipe_output(
step(B1),
step(B2)

)
def B(...):

return ...

we obtain the new DAG A –> B.raw –> B1 –> B2 –> B –> C, where we can think of the B.raw –>

B1 –> B2 –> B as a “pipe” that takes the raw output of B, applies to it B1, takes the output of

B1 applies to it B2 and then gets renamed to B to re-connect to the rest of the DAG.

The rules for chaining nodes are the same as for pipe_input .

For extra control in case of multiple output nodes, for example after extract_field /

extract_columns we can also specify the output node that we wish to mutate. The

following apply A to all fields while B only to field_1

@extract_columns("col_1", "col_2")
def A(...):

return ...

def B(...):
return ...

@pipe_output(
step(A),
step(B).on_output("field_1"),

)
@extract_fields(

{"field_1":int, "field_2":int, "field_3":int}
)
def foo(a:int)->Dict[str,int]:

return {"field_1":1, "field_2":2, "field_3":3}

We can also do this on the global level (but cannot do on both levels at the same time). The

following would apply function A and function B to only field_1 and field_2

@pipe_output(
step(A),
step(B),
on_output = ["field_1","field_2]

)
@extract_fields(

{"field_1":int, "field_2":int, "field_3":int}
)

360 Decorators

def foo(a:int)->Dict[str,int]:
return {"field_1":1, "field_2":2, "field_3":3}

__init__(*transforms: Applicable, namespace: str | EllipsisType | None = Ellipsis, on_output:

str | Collection[str] | None | EllipsisType = None, collapse=False, _chain=False)

Instantiates a @pipe_output decorator.

Warning: if there is a global pipe_output target, the individual step(...).target

would only choose from the subset pre-selected from the global pipe_output target.

We have disabled this for now to avoid confusion. Leave global pipe_output target

empty if you want to choose between all the nodes on the individual step level.

Parameters:

transforms – step transformations to be applied, in

order

namespace – namespace to apply to all nodes in the

pipe. This can be “…” (the default), which resolves to

the name of the decorated function, None (which

means no namespace), or a string (which means that

all nodes will be namespaced with that string). Note

that you can either use this or namespaces inside

pipe_output() …

on_output – setting the target node for all steps in

the pipe. Leave empty to select all the output nodes.

collapse – Whether to collapse this into a single node.

This is not currently supported.

_chain – Whether to chain the first parameter. This is

the only mode that is supported. Furthermore, this is

not externally exposed. @flow will make use of this.

mutate

class hamilton.function_modifiers.macros.mutate(*target_functions: Applicable | Callable,

collapse: bool = False, _chain: bool = False,

**mutating_function_kwargs: SingleDependency | Any)

Running a transformation on the outputs of a series of functions.

This is closely related to pipe_output as it effectively allows you to run transformations on

the output of a node without touching that node. We choose which target functions we wish

•

•

•

•

•

361 Decorators

to mutate by the transformation we are decorating. For now, the target functions, that will

be mutated, have to be in the same module (come speak to us if you need this capability

over multiple modules).

We suggest you define them with an prefixed underscore to only have them displayed in the

transform pipeline of the target node.

If we wish to apply _transform1 to the output of A and B and _transform2 only to the

output of node B, we can do this like

def A(...):
return ...

def B(...):
return ...

@mutate(A, B)
def _transform1(...):

return ...

@mutate(B)
def _transform2(...):

return ...

we obtain the new pipe-like subDAGs A.raw –> _transform1 –> A and B.raw –> _transform1 –

> _transform2 –> B, where the behavior is the same as pipe_output .

While it is generally reasonable to use pipe_output , you should consider mutate in the

following scenarios:

Loading data and applying pre-cleaning step.

Feature engineering via joining, filtering, sorting, etc.

Experimenting with different transformations across nodes by selectively turning

transformations on / off.

We assume the first argument of the decorated function to be the output of the function we

are targeting. For transformations with multiple arguments you can use key word arguments

coupled with step or value the same as with other pipe -family decorators

@mutate(A, B, arg2=step('upstream_node'),
arg3=value(some_literal), ...)
def _transform1(output_from_target:correct_type, arg2:arg2_type,
arg3:arg3_type,...):

return ...

1.

2.

3.

362 Decorators

You can also select individual args that will be applied to each target node by adding

apply_to(...)

@mutate(
apply_to(A, arg2=step('upstream_node_1'),

arg3=value(some_literal_1)),
apply_to(B, arg2=step('upstream_node_2'),

arg3=value(some_literal_2)),
)

def _transform1(output_from_target:correct_type, arg2:arg2_type,
arg3:arg3_type, ...):

return ...

In case of multiple output nodes, for example after extract_field / extract_columns we

can also specify the output node that we wish to mutate. The following would mutate all

columns of A individually while in the case of function B only field_1

@extract_columns("col_1", "col_2")
def A(...):

return ...

@extract_fields(
{"field_1":int, "field_2":int, "field_3":int}

)
def B(...):

return ...

@mutate(
apply_to(A),
apply_to(B).on_output("field_1"),
)

def foo(a:int)->Dict[str,int]:
return {"field_1":1, "field_2":2, "field_3":3}

__init__(*target_functions: Applicable | Callable, collapse: bool = False, _chain: bool = False,

**mutating_function_kwargs: SingleDependency | Any)

Instantiates a mutate decorator.

We assume the first argument of the decorated function to be the output of the

function we are targeting.

Parameters:

target_functions – functions we wish to mutate the

output of

•

363 Decorators

collapse – Whether to collapse this into a single node.

This is not currently supported.

_chain – Whether to chain the first parameter. This is

the only mode that is supported. Furthermore, this is

not externally exposed. @flow will make use of this.

**mutating_function_kwargs – other kwargs that the

decorated function has. Must be validly called as

f(**kwargs) , and have a 1-to-1 mapping of kwargs to

parameters. This will be applied for all

target_functions , unless apply_to already has the

mutator function kwargs, in which case it takes those.

resolve

Reference Documentation

class hamilton.function_modifiers.resolve(*, when: ResolveAt, decorate_with: Callable[[...],

NodeTransformLifecycle])

Decorator class to delay evaluation of decorators until after the configuration is available.

Note: this is a power-user feature, and you have to enable power-user mode! To do so, you

have to add the configuration hamilton.enable_power_user_mode=True to the config you

pass into the driver.

If not, this will break when it tries to instantiate a DAG.

This is particularly useful when you don’t know how you want your functions to resolve until

configuration time. Say, for example, we want to add two series, and we need to pass the set

of series to add as a configuration parameter, as we’ll be changing it regularly. Without this,

you would have to have them as part of the same dataframe. E.G.

@parameterize_values(
series_sum_1={"s1": "series_1", "s2": "series_2"},
series_sum_2={"s1": "series_3", "s2": "series_4"},

)
def summation(df: pd.DataFrame, s1: str, s2: str) -> pd.Series:

return df[s1] + df[s2]

Note that there are a lot of benefits to this code, but it is a workaround for the fact that we

cannot configure the dependencies. With the @resolve decorator, we can actually

dynamically set the shape of the DAG based on config:

•

•

•

364 Decorators

from hamilton.function_modifiers import resolve, ResolveAt

@resolve(
when=ResolveAt.CONFIG_AVAILABLE,
decorate_with=lambda first_series_sum, second_series_sum:

parameterize_sources(
series_sum_1={"s1": first_series_sum[0], "s2":

second_series_sum[1]},
series_sum_2={"s1": second_series_sum[1], "s2":

second_series_sum[2]},
),

)
def summation(s1: pd.Series, s2: pd.Series) -> pd.Series:

return s1 + s2

Note how this works:

1. The decorate_with argument is a function that gives you the decorator you want to apply.

Currently its “hamilton-esque” – while we do not require it to be typed, you can use a

separate configuration-reoslver function (and include type information). This lambda

function must return a decorator.

2. The when argument is the point at which you want to resolve the decorator. Currently, we

only support ResolveAt.CONFIG_AVAILABLE, which means that the decorator will be resolved

at compile time, E.G. when the driver is instantiated.

This is then run and dynamically resolved.

This is powerful, but the code is uglier. It’s meant to be used in some very specific cases, E.G.

When you want time-series data on a per-column basis (E.G. once per month), and don’t

want that hardcoded. While it is possible to store this up in a JSON file and run

parameterization on the loaded result as a global variable, it is much cleaner to pass it

through the DAG, which is why we support it. However, since the code goes against one of

Hamilton’s primary tenets (that all code is highly readable), we require that you enable

power_user_mode.

We highly recommend that you put all functions decorated with this in their own module,

keeping it separate from the rest of your functions. This way, you can import/build DAGs

from the rest of your functions without turning on power-user mode.

__init__(*, when: ResolveAt, decorate_with: Callable[[...], NodeTransformLifecycle])

Initializes a delayed decorator that gets called at some specific resolution time.

1.

365 Decorators

Parameters:

decorate_with – Function that takes required and

optional parameters/returns a decorator.

when – When to resolve the decorator. Currently only

supports ResolveAt.CONFIG_AVAILABLE.

class hamilton.function_modifiers.resolve_from_config(*, decorate_with: Callable[[...],

NodeTransformLifecycle])

Decorator class to delay evaluation of decorators until after the configuration is available.

Note: this is a power-user feature, and you have to enable power-user mode! To do so, you

have to add the configuration hamilton.enable_power_user_mode=True to the config you

pass into the driver.

This is a convenience decorator that is a subclass of resolve and passes

ResolveAt.CONFIG_AVAILABLE to the when argument such that the decorator is resoled at

compile time, E.G. when the driver is instantiated.

from hamilton.function_modifiers import resolve, ResolveAt

@resolve_from_config(
decorate_with=lambda first_series_sum, second_series_sum:

parameterize_sources(
series_sum_1={"s1": first_series_sum[0], "s2":

second_series_sum[1]},
series_sum_2={"s1": second_series_sum[1], "s2":

second_series_sum[2]},
)

)
def summation(s1: pd.Series, s2: pd.Series) -> pd.Series:

return s1 + s2

__init__(*, decorate_with: Callable[[...], NodeTransformLifecycle])

Initializes a delayed decorator that gets called at some specific resolution time.

Parameters:

decorate_with – Function that takes required and

optional parameters/returns a decorator.

when – When to resolve the decorator. Currently only

supports ResolveAt.CONFIG_AVAILABLE.

•

•

•

•

366 Decorators

save_to

Reference Documentation

class hamilton.function_modifiers.save_to

Decorator that outputs data to some external source. You can think about this as the

inverse of load_from.

This decorates a function, takes the final node produced by that function and then appends

an additional node that saves the output of that function.

As the load_from decorator does, this decorator can be referred to in a dynamic way. For

instance, @save_to.json will save the output of the function to a json file. Note that this

means that the output of the function must be a dictionary (or subclass thereof), otherwise

the decorator will fail.

Looking at the json example:

@save_to.json(path=source("raw_data_path"),
output_name_="data_save_output")
def final_output(data: dict, valid_keys: List[str]) -> dict:

return [item for item in data if item in valid_keys]

This adds a final node to the DAG with the name “data_save_output” that accepts the

output of the function “final_output” and saves it to a json. In this case, the JSONSaver

accepts a path parameter, which is provided by the upstream node (or input) named

“raw_data_path”. The output_name_ parameter then says how to refer to the output of this

node in the DAG.

If you called this with the driver:

dr = driver.Driver(my_module)
output = dr.execute(["final_output"], {"raw_data_path": "/path/
my_data.json"})

You would just get the final result, and nothing would be saved.

If you called this with the driver:

dr = driver.Driver(my_module)
output = dr.execute(["data_save_output"], {"raw_data_path": "/
path/my_data.json"})

367 Decorators

You would get a dictionary of metadata (about the saving output), and the final result would

be saved to a path.

Note that you can also hardcode the path, rather than using a dependency:

@save_to.json(path=value("/path/my_data.json"),
output_name_="data_save_output")
def final_output(data: dict, valid_keys: List[str]) -> dict:

return [item for item in data if item in valid_keys]

Note that, like the loader function, you can use literal values as kwargs and they’ll get

interpreted as values. If you needs savers, you should also look into .materialize on the

driver – it’s a clean way to do this in a more ad-hoc/decoupled manner.

If you want to layer savers, you’ll have to use the target_ parameter, which tells the saver

which node to use.

@save_to.json(path=source("raw_data_path"),
output_name_="data_save_output", target_="data")
@save_to.json(path=source("raw_data_path2"),
output_name_="data_save_output2", target_="data")
def final_output(data: dict, valid_keys: List[str]) -> dict:

return [item for item in data if item in valid_keys]

__init__()

subdag

Reference Documentation

class hamilton.function_modifiers.subdag(*load_from: ModuleType | Callable, inputs: Dict[str,

ParametrizedDependency] = None, config: Dict[str, Any] = None, namespace: str = None,

final_node_name: str = None, external_inputs: List[str] = None)

The @subdag decorator enables you to rerun components of your DAG with varying

parameters. That is, it enables you to “chain” what you could express with a driver into a

single DAG.

That is, instead of using Hamilton within itself:

def feature_engineering(source_path: str) -> pd.DataFrame:
'''You could recursively use Hamilton within itself.'''
dr = driver.Driver({}, feature_modules)

368 Decorators

df = dr.execute(["feature_df"], inputs={"path": source_path})
return df

You instead can use the @subdag decorator to do the same thing, with the added benefit

of visibility into the whole DAG:

@subdag(
feature_modules,
inputs={"path": source("source_path")},
config={}

)
def feature_engineering(feature_df: pd.DataFrame) ->
pd.DataFrame:

return feature_df

Note that this is immensely powerful – if we draw analogies from Hamilton to standard

procedural programming paradigms, we might have the following correspondence:

config.when + friends – if/else statements

parameterize/extract_columns – for loop

does – effectively macros

And so on. @subdag takes this one step further:

@subdag – subroutine definition

E.G. take a certain set of nodes, and run them with specified parameters.

@subdag declares parameters that are outputs of its subdags. Note that, if you want to use

outputs of other components of the DAG, you can use the external_inputs parameter to

declare the parameters that do not come from the subDAG.

Why might you want to use this? Let’s take a look at some examples:

You have a feature engineering pipeline that you want to run on multiple datasets. If its

exactly the same, this is perfect. If not, this works perfectly as well, you just have to utilize

different functions in each or the config.when + config parameter to rerun it.

You want to train multiple models in the same DAG that share some logic (in features or

training) – this allows you to reuse and continually add more.

You want to combine multiple similar DAGs (e.g. one for each business line) into one so

you can build a cross-business line model.

This basically bridges the gap between the flexibility of non-declarative pipelining

frameworks with the readability/maintainability of declarative ones.

•

•

•

•

1.

2.

3.

369 Decorators

__init__(*load_from: ModuleType | Callable, inputs: Dict[str, ParametrizedDependency] =

None, config: Dict[str, Any] = None, namespace: str = None, final_node_name: str = None,

external_inputs: List[str] = None)

Adds a subDAG to the main DAG.

Parameters:

load_from – The functions that will be used to

generate this subDAG.

inputs – Parameterized dependencies to inject into all

sources of this subDAG. This should not be an

intermediate node in the subDAG.

config – A configuration dictionary for just this

subDAG. Note that this passed in value takes

precedence over the DAG’s config.

namespace – Namespace with which to prefix nodes.

This is optional – if not included, this will default to

the function name.

final_node_name – Name of the final node in the

subDAG. This is optional – if not included, this will

default to the function name.

external_inputs – Parameters in the function that are

not produced by the functions passed to the subdag.

This is useful if you want to perform some logic with

other inputs in the subdag’s processing function. Note

that this is currently required to differentiate and

clarify the inputs to the subdag.

schema

@schema is a function modifier that allows you to specify a schema for the function’s inputs/

outputs. This can be used to validate data at runtime, visualize, etc…

Reference Documentation

class hamilton.function_modifiers.schema

Container class for schema stuff. This is purely so we can have a nice API for it – E.G.

Schema.output

•

•

•

•

•

•

370 Decorators

static output(*fields: Tuple[str, str], target_: str | None = None) → SchemaOutput

Initializes a @schema.output decorator. This takes in a list of fields, which are tuples

of the form (field_name, field_type). The field type must be one of the

function_modifiers.SchemaTypes types.

Parameters:

target – Target node to decorate – if None it’ll

decorate all final nodes (E.G. sinks in the subdag),

otherwise it will decorate the specified node.

fields – List of fields to add to the schema. Each field

is a tuple of the form (field_name, field_type)

This is implemented using tags, but that might change. Thus you should not rely on

the tags created by this decorator (which is why they are prefixed with internal).

To use this, you should decorate a node with @schema.output

Example usage:

@schema.output(
("a", "int"),
("b", "float"),
("c", "str")

)
def example_schema() -> pd.DataFrame:

return pd.DataFrame.from_records({"a": [1], "b": [2.0],
"c": ["3"]})

Then, when drawing the DAG, the schema will be displayed as sub-elements in the

node for the DAG (if display_schema is selected).

tag*

Allows you to attach metadata to a node (any node decorated with the function). A common use

of this is to enable marking nodes as part of some data product, or for GDPR/privacy purposes.

For instance:

import pandas as pd
from hamilton.function_modifiers import tag

def intermediate_column() -> pd.Series:

•

•

371 Decorators

pass

@tag(data_product='final', pii='true')
def final_column(intermediate_column: pd.Series) -> pd.Series:

pass

How do I query by tags?

Right now, we don’t have a specific interface to query by tags, however we do expose them via the

driver. Using the list_available_variables() capability exposes tags along with their names &

types, enabling querying of the available outputs for specific tag matches. E.g.

from hamilton import driver
dr = driver.Driver(...) # create driver as required
all_possible_outputs = dr.list_available_variables()
desired_outputs = [o.name for o in all_possible_outputs

if 'my_tag_value' == o.tags.get('my_tag_key')]
output = dr.execute(desired_outputs)

Using display_name for visualization

You can use the special display_name tag to provide a human-readable name for nodes in

graphviz visualizations. This allows you to show user-friendly names in DAG diagrams while

keeping valid Python identifiers as function names.

import pandas as pd
from hamilton.function_modifiers import tag

@tag(display_name="Customer Lifetime Value")
def customer_ltv(purchases: pd.DataFrame, tenure: pd.Series) ->
pd.Series:

"""Calculate customer lifetime value."""
return purchases.sum() * tenure

When you visualize the DAG using dr.display_all_functions() , the node will display “Customer

Lifetime Value” instead of “customer_ltv”. This is useful for:

Creating presentation-ready diagrams for stakeholders

Adding business-friendly names for technical functions

Making visualizations more readable for non-technical audiences

Note that display_name only affects visualization - the actual node name used in code remains

the function name.

•

•

•

372 Decorators

Reference Documentation

class hamilton.function_modifiers.tag(*, target_: str | Collection[str] | None | EllipsisType = None,

bypass_reserved_namespaces_: bool = False, **tags: str | List[str])

Decorator class that adds a tag to a node. Tags take the form of key/value pairings. Tags can

have dots to specify namespaces (keys with dots), but this is usually reserved for special

cases (E.G. subdecorators) that utilize them. Usually one will pass in tags as kwargs, so we

expect tags to be un-namespaced in most uses.

That is using:

@tag(my_tag='tag_value')
def my_function(...) -> ...:

is un-namespaced because you cannot put a . in the keyword part (the part before the ‘=’).

But using:

@tag(**{'my.tag': 'tag_value'})
def my_function(...) -> ...:

allows you to add dots that allow you to namespace your tags.

Currently, tag values are restricted to allowing strings only, although we may consider

changing the in the future (E.G. thinking of lists).

Hamilton also reserves the right to change the following: * adding purely positional

arguments * not allowing users to use a certain set of top-level prefixes (E.G. any tag where

the top level is one of the values in RESERVED_TAG_PREFIX).

Example usage:

@tag(foo='bar', a_tag_key='a_tag_value', **{'namespace.tag_key':
'tag_value'})
def my_function(...) -> ...:

...

__init__(*, target_: str | Collection[str] | None | EllipsisType = None,

bypass_reserved_namespaces_: bool = False, **tags: str | List[str])

Constructor for adding tag annotations to a function.

Parameters:

bypass_reserved_namespaces_ – Whether to bypass

Reserved Namespace checking.

•

373 Decorators

target_ –

Target nodes to decorate. This can be one of the

following:

None: tag all nodes outputted by this that are

“final” (E.g. do not have a node outputted by this

that depend on them)

Ellipsis (…): tag all nodes outputted by this

Collection[str]: tag only the nodes with the

specified names

str: tag only the node with the specified name

tags – the keys are always going to be strings, so the

type annotation here means the values are strings or

lists of values. Implicitly this is Dict[str, Union[str,

List[str]]] but the PEP guideline is to only annotate it

with the value Union[str, List[str]].

class hamilton.function_modifiers.tag_outputs(**tag_mapping: Dict[str, str | List[str]])

__init__(**tag_mapping: Dict[str, str | List[str]])

Creates a tag_outputs decorator.

Note that this currently does not validate whether the nodes are spelled correctly as

it takes in a superset of nodes.

Parameters:

tag_mapping – Mapping of output name to tags – this is

akin to applying @tag to individual outputs produced by

the function.

Example usage:

@tag_output(**{'a': {'a_tag': 'a_tag_value'}, 'b':
{'b_tag': 'b_tag_value'}})
@extract_columns("a", "b")
def example_tag_outputs() -> pd.DataFrame:

return pd.DataFrame.from_records({"a": [1], "b": [2]})

•

◦

◦

◦

◦

•

374 Decorators

with_columns

We support the with_columns operation that appends the results as new columns to the original

dataframe for several libraries:

Pandas
Reference Documentation

class hamilton.plugins.h_pandas.with_columns(*load_from: Callable | ModuleType,

columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:

List[str] = None, namespace: str = None, config_required: List[str] = None)

Initializes a with_columns decorator for pandas. This allows you to efficiently run groups of

map operations on a dataframe.

Here’s an example of calling it – if you’ve seen @subdag , you should be familiar with the

concepts:

my_module.py
def a(a_from_df: pd.Series) -> pd.Series:

return _process(a)

def b(b_from_df: pd.Series) -> pd.Series:
return _process(b)

def a_b_average(a_from_df: pd.Series, b_from_df: pd.Series) ->
pd.Series:

return (a_from_df + b_from_df) / 2

with_columns_module.py
def a_plus_b(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b

the with_columns call
@with_columns(

*[my_module], # Load from any module
*[a_plus_b], # or list operations directly
columns_to_pass=["a_from_df", "b_from_df"], # The columns to

pass from the dataframe to
the subdag
select=["a", "b", "a_plus_b", "a_b_average"], # The columns

to select from the dataframe
)
def final_df(initial_df: pd.DataFrame) -> pd.DataFrame:

375 Decorators

process, or just return unprocessed
...

In this instance the initial_df would get two columns added: a_plus_b and

a_b_average .

The operations are applied in topological order. This allows you to express the operations

individually, making it easy to unit-test and reuse.

Note that the operation is “append”, meaning that the columns that are selected are

appended onto the dataframe.

If the function takes multiple dataframes, the dataframe input to process will always be the

first argument. This will be passed to the subdag, transformed, and passed back to the

function. This follows the hamilton rule of reference by parameter name. To demonstarte

this, in the code above, the dataframe that is passed to the subdag is initial_df. That is

transformed by the subdag, and then returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df, running the

transformations from my_module. It starts with the columns a_from_df and b_from_df, and

then adds the columns a, b, and a_plus_b to the dataframe. It then returns the dataframe,

and does some processing on it.”

In case you need more flexibility you can alternatively use on_input , for example,

with_columns_module.py
def a_from_df(initial_df: pd.Series) -> pd.Series:

return initial_df["a_from_df"] / 100

def b_from_df(initial_df: pd.Series) -> pd.Series:
return initial_df["b_from_df"] / 100

the with_columns call
@with_columns(

*[my_module],
*[a_from_df],
on_input="initial_df",
select=["a_from_df", "b_from_df", "a", "b", "a_plus_b",

"a_b_average"],
)
def final_df(initial_df: pd.DataFrame, ...) -> pd.DataFrame:

process, or just return unprocessed
...

376 Decorators

the above would output a dataframe where the two columns a_from_df and b_from_df get

overwritten.

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,

pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str

= None, config_required: List[str] = None)

Instantiates a @with_columns decorator.

Parameters:

load_from – The functions or modules that will be

used to generate the group of map operations.

columns_to_pass – The initial schema of the

dataframe. This is used to determine which upstream

inputs should be taken from the dataframe, and which

shouldn’t. Note that, if this is left empty (and

external_inputs is as well), we will assume that all

dependencies come from the dataframe. This cannot

be used in conjunction with on_input.

on_input – The name of the dataframe that we’re

modifying, as known to the subdag. If you pass this in,

you are responsible for extracting columns out. If not

provided, you have to pass columns_to_pass in, and

we will extract the columns out on the first parameter

for you.

select – The end nodes that represent columns to be

appended to the original dataframe via with_columns.

Existing columns will be overridden. The selected

nodes need to have the corresponding column type,

in this case pd.Series, to be appended to the original

dataframe.

namespace – The namespace of the nodes, so they

don’t clash with the global namespace and so this can

be reused. If its left out, there will be no namespace

(in which case you’ll want to be careful about

repeating it/reusing the nodes in other parts of the

DAG.)

config_required – the list of config keys that are

required to resolve any functions. Pass in None if you

•

•

•

•

•

•

377 Decorators

want the functions/modules to have access to all

possible config.

Polar (Eager)
Reference Documentation

class hamilton.plugins.h_polars.with_columns(*load_from: Callable | ModuleType,

columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:

List[str] = None, namespace: str = None, config_required: List[str] = None)

Initializes a with_columns decorator for polars.

This allows you to efficiently run groups of map operations on a dataframe. We support

both eager and lazy mode in polars. In case of using eager mode the type should be

pl.DataFrame and the subsequent operations run on columns with type pl.Series.

Here’s an example of calling in eager mode – if you’ve seen @subdag , you should be

familiar with the concepts:

my_module.py
def a_b_average(a: pl.Series, b: pl.Series) -> pl.Series:

return (a + b) / 2

with_columns_module.py
def a_plus_b(a: pl.Series, b: pl.Series) -> pl.Series:

return a + b

the with_columns call
@with_columns(

*[my_module], # Load from any module
*[a_plus_b], # or list operations directly
columns_to_pass=["a", "b"], # The columns to pass from the

dataframe to
the subdag
select=["a_plus_b", "a_b_average"], # The columns to append

to the dataframe
)
def final_df(initial_df: pl.DataFrame) -> pl.DataFrame:

process, or just return unprocessed
...

In this instance the initial_df would get two columns added: a_plus_b and

a_b_average .

378 Decorators

Note that the operation is “append”, meaning that the columns that are selected are

appended onto the dataframe.

If the function takes multiple dataframes, the dataframe input to process will always be the

first argument. This will be passed to the subdag, transformed, and passed back to the

function. This follows the hamilton rule of reference by parameter name. To demonstarte

this, in the code above, the dataframe that is passed to the subdag is initial_df. That is

transformed by the subdag, and then returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df, running the

transformations from my_module. It starts with the columns a_from_df and b_from_df, and

then adds the columns a, b, and a_plus_b to the dataframe. It then returns the dataframe,

and does some processing on it.”

In case you need more flexibility you can alternatively use on_input , for example,

with_columns_module.py
def a_from_df() -> pl.Expr:

return pl.col(a).alias("a") / 100

def b_from_df() -> pl.Expr:
return pl.col(b).alias("b") / 100

the with_columns call
@with_columns(

*[my_module],
on_input="initial_df",
select=["a_from_df", "b_from_df", "a_plus_b", "a_b_average"],

)
def final_df(initial_df: pl.DataFrame) -> pl.DataFrame:

process, or just return unprocessed
...

the above would output a dataframe where the two columns a and b get overwritten.

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,

pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str

= None, config_required: List[str] = None)

Instantiates a @with_columns decorator.

Parameters:

load_from – The functions or modules that will be

used to generate the group of map operations.

•

379 Decorators

columns_to_pass – The initial schema of the

dataframe. This is used to determine which upstream

inputs should be taken from the dataframe, and which

shouldn’t. Note that, if this is left empty (and

external_inputs is as well), we will assume that all

dependencies come from the dataframe. This cannot

be used in conjunction with on_input.

on_input – The name of the dataframe that we’re

modifying, as known to the subdag. If you pass this in,

you are responsible for extracting columns out. If not

provided, you have to pass columns_to_pass in, and

we will extract the columns out on the first parameter

for you.

select – The end nodes that represent columns to be

appended to the original dataframe via with_columns.

Existing columns will be overridden. The selected

nodes need to have the corresponding column type,

in this case pl.Series, to be appended to the original

dataframe.

namespace – The namespace of the nodes, so they

don’t clash with the global namespace and so this can

be reused. If its left out, there will be no namespace

(in which case you’ll want to be careful about

repeating it/reusing the nodes in other parts of the

DAG.)

config_required – the list of config keys that are

required to resolve any functions. Pass in None if you

want the functions/modules to have access to all

possible config.

Polars (Lazy)
Reference Documentation

class hamilton.plugins.h_polars_lazyframe.with_columns(*load_from: Callable | ModuleType,

columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:

List[str] = None, namespace: str = None, config_required: List[str] = None)

Initializes a with_columns decorator for polars.

•

•

•

•

•

380 Decorators

This allows you to efficiently run groups of map operations on a dataframe. We support

both eager and lazy mode in polars. For lazy execution, use pl.LazyFrame and the

subsequent operations should be typed as pl.Expr. See examples/polars/with_columns for a

practical implementation in both variations.

The lazy execution would be:

my_module.py
def a_b_average(a: pl.Expr, b: pl.Expr) -> pl.Expr:

return (a + b) / 2

with_columns_module.py
def a_plus_b(a: pl.Expr, b: pl.Expr) -> pl.Expr:

return a + b

the with_columns call
@with_columns(

*[my_module], # Load from any module
*[a_plus_b], # or list operations directly
columns_to_pass=["a_from_df", "b_from_df"], # The columns to

pass from the dataframe to
the subdag
select=["a_plus_b", "a_b_average"], # The columns to append

to the dataframe
)
def final_df(initial_df: pl.LazyFrame) -> pl.LazyFrame:

process, or just return unprocessed
...

Note that the operation is “append”, meaning that the columns that are selected are

appended onto the dataframe.

If the function takes multiple dataframes, the dataframe input to process will always be the

first argument. This will be passed to the subdag, transformed, and passed back to the

function. This follows the hamilton rule of reference by parameter name. To demonstarte

this, in the code above, the dataframe that is passed to the subdag is initial_df. That is

transformed by the subdag, and then returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df, running the

transformations from my_module. It starts with the columns a_from_df and b_from_df, and

then adds the columns a, b, and a_plus_b to the dataframe. It then returns the dataframe,

and does some processing on it.”

In case you need more flexibility you can alternatively use on_input , for example,

381 Decorators

with_columns_module.py
def a_from_df() -> pl.Expr:

return pl.col(a).alias("a") / 100

def b_from_df() -> pd.Expr:
return pl.col(a).alias("b") / 100

the with_columns call
@with_columns(

*[my_module],
on_input="initial_df",
select=["a_from_df", "b_from_df", "a_plus_b", "a_b_average"],

)
def final_df(initial_df: pl.LazyFrame) -> pl.LazyFrame:

process, or just return unprocessed
...

the above would output a dataframe where the two columns a and b get overwritten.

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,

pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str

= None, config_required: List[str] = None)

Instantiates a @with_columns decorator.

Parameters:

load_from – The functions or modules that will be

used to generate the group of map operations.

columns_to_pass – The initial schema of the

dataframe. This is used to determine which upstream

inputs should be taken from the dataframe, and which

shouldn’t. Note that, if this is left empty (and

external_inputs is as well), we will assume that all

dependencies come from the dataframe. This cannot

be used in conjunction with on_input.

on_input – The name of the dataframe that we’re

modifying, as known to the subdag. If you pass this in,

you are responsible for extracting columns out. If not

provided, you have to pass columns_to_pass in, and

we will extract the columns out on the first parameter

for you.

select – The end nodes that represent columns to be

appended to the original dataframe via with_columns.

•

•

•

•

382 Decorators

Existing columns will be overridden. The selected

nodes need to have the corresponding column type,

in this case pl.Expr, to be appended to the original

dataframe.

namespace – The namespace of the nodes, so they

don’t clash with the global namespace and so this can

be reused. If its left out, there will be no namespace

(in which case you’ll want to be careful about

repeating it/reusing the nodes in other parts of the

DAG.)

config_required – the list of config keys that are

required to resolve any functions. Pass in None if you

want the functions/modules to have access to all

possible config.

PySpark
This is part of the hamilton pyspark integration. To install, run:

pip install sf-hamilton[pyspark]

Reference Documentation

class hamilton.plugins.h_spark.with_columns(*load_from: Callable | ModuleType,

columns_to_pass: List[str] = None, pass_dataframe_as: str = None, on_input: str = None, select:

List[str] = None, namespace: str = None, mode: str = 'append', config_required: List[str] = None)

__init__(*load_from: Callable | ModuleType, columns_to_pass: List[str] = None,

pass_dataframe_as: str = None, on_input: str = None, select: List[str] = None, namespace: str

= None, mode: str = 'append', config_required: List[str] = None)

Initializes a with_columns decorator for spark. This allows you to efficiently run

groups of map operations on a dataframe, represented as pandas/primitives

UDFs. This effectively “linearizes” compute – meaning that a DAG of map

operations can be run as a set of .withColumn operations on a single dataframe

– ensuring that you don’t have to do a complex extract then join process on

spark, which can be inefficient.

Here’s an example of calling it – if you’ve seen @subdag, you should be

familiar with the concepts:

my_module.py
def a(a_from_df: pd.Series) -> pd.Series:

return _process(a)

•

•

383 Decorators

def b(b_from_df: pd.Series) -> pd.Series:
return _process(b)

def a_plus_b(a_from_df: pd.Series, b_from_df:
pd.Series) -> pd.Series:

return a + b

the with_columns call
@with_columns(

load_from=[my_module], # Load from any module
columns_to_pass=["a_from_df", "b_from_df"], # The

columns to pass from the dataframe to
the subdag
select=["a", "b", "a_plus_b"], # The columns to

select from the dataframe
)
def final_df(initial_df: ps.DataFrame) -> ps.DataFrame:

process, or just return unprocessed
...

You can think of the above as a series of withColumn calls on the dataframe,

where the operations are applied in topological order. This is significantly more

efficient than extracting out the columns, applying the maps, then joining, but

also allows you to express the operations individually, making it easy to unit-

test and reuse.

Note that the operation is “append”, meaning that the columns that are

selected are appended onto the dataframe. We will likely add an option to have

this be either “select” or “append” mode.

If the function takes multiple dataframes, the dataframe input to process will

always be the first one. This will be passed to the subdag, transformed, and

passed back to the functions. This follows the hamilton rule of reference by

parameter name. To demonstarte this, in the code above, the dataframe that is

passed to the subdag is initial_df. That is transformed by the subdag, and then

returned as the final dataframe.

You can read it as:

“final_df is a function that transforms the upstream dataframe initial_df,

running the transformations from my_module. It starts with the columns

a_from_df and b_from_df, and then adds the columns a, b, and a_plus_b to the

dataframe. It then returns the dataframe, and does some processing on it.”

384 Decorators

Parameters:

385 Decorators

load_from – The functions that will be used to

generate the group of map operations.

columns_to_pass – The initial schema of the

dataframe. This is used to determine which upstream

inputs should be taken from the dataframe, and which

shouldn’t. Note that, if this is left empty (and

external_inputs is as well), we will assume that all

dependencies come from the dataframe. This cannot

be used in conjunction with pass_dataframe_as.

pass_dataframe_as – The name of the dataframe that

we’re modifying, as known to the subdag. If you pass

this in, you are responsible for extracting columns out.

If not provided, you have to pass columns_to_pass in,

and we will extract the columns out for you.

select – Outputs to select from the subdag, i.e.

functions/module passed int. If this is left blank it will

add all possible columns from the subdag to the

dataframe.

namespace – The namespace of the nodes, so they

don’t clash with the global namespace and so this can

be reused. If its left out, there will be no namespace

(in which case you’ll want to be careful about

repeating it/reusing the nodes in other parts of the

DAG.)

mode – The mode of the operation. This can be either

“append” or “select”. If it is “append”, it will keep all

original columns in the dataframe, and append what’s

in select. If it is “select”, it will do a global select of

columns in the dataframe from the select parameter.

Note that, if the select parameter is left blank, it will

add all columns in the dataframe that are in the

subdag. This defaults to append. If you’re using select,

use the @select decorator instead.

config_required – the list of config keys that are

required to resolve any functions. Pass in None if you

want the functions/modules to have access to all

possible config.

•

•

•

•

•

•

•

386 Decorators

Drivers

Currently, we have one main driver. It’s highly parameterizable, allowing you to customize:

The way the DAG is executed (how each node is executed), i.e. either locally, in parallel, or on a

cluster!

How the results are materialized back to you – e.g. a DataFrame, a dictionary, your custom

object!

To tune the above, pass in a Graph Adapter, a Result Builder, and/or anotehr lifecycle method –

see ResultBuilders, GraphAdapters.

Let’s walk through how you might use the Hamilton Driver.

Instantiation

Determine the configuration required to setup the DAG.

Provide the python modules that should be crawled to create the DAG.

Optional. Determine the return type of the object you want execute() to return. Default is to

create a Pandas DataFrame.

from hamilton import driver
from hamilton import base

1. Setup config. See the Parameterizing the DAG section for usage
config = {}

2. we need to tell hamilton where to load function definitions from
module_name = 'my_functions'
module = importlib.import_module(module_name) # or simply "import
my_functions"

3. Determine the return type -- default is a pandas.DataFrame.
adapter = base.SimplePythonDataFrameGraphAdapter()
See GraphAdapter docs for more details.

These all feed into creating the driver & thus DAG.
dr = driver.Driver(config, module, adapter=adapter)

•

•

1.

2.

3.

387 Drivers

https://github.com/apache/hamilton/blob/main/hamilton/driver.py

Execution

Using a DAG once

This approach assumes that all inputs were passed in with the config dictionary above.

output = ['output1', 'output2', ...]
df = dr.execute(output)

Using a DAG multiple times

This approach assumes that at least one input is not provided in the config dictionary provided

to the constructor, and instead you provide that input to each execute invocation.

output = ['output1', 'output2', ...]
for data in dataset: # if data is a dict of values.

df = dr.execute(output, inputs=data)

Short circuiting some DAG computation

This will force Apache Hamilton to short circuit a particular computation path, and use the passed

in override as a result of that particular node.

output = ['output1', 'output2', ...]
df = dr.execute(output, overrides={'intermediate_node':
intermediate_value})

Reference

Builder
Use this to instantiate a driver.

class hamilton.driver.Builder

__init__()

Constructs a driver builder. No parameters as you call methods to set fields.

388 Drivers

allow_module_overrides() → Builder

Same named functions in different modules get overwritten. If multiple modules have

same named functions, the later module overrides the previous one(s). The order of

listing the modules is important, since later ones will overwrite the previous ones.

This is a global call affecting all imported modules. See https://github.com/apache/

hamilton/tree/main/examples/module_overrides for more info.

Returns:

self

build() → Driver

Builds the driver – note that this can return a different class, so you’ll likely want to

have a sense of what it returns.

Note: this defaults to a dictionary adapter if no adapter is set.

Returns:

The driver you specified.

property cache: HamiltonCacheAdapter | None

Attribute to check if a cache was set, either via .with_cache() or

.with_adapters(SmartCacheAdapter())

Required for the check ._require_field_unset()

copy() → Builder

Creates a copy of the current state of this Builder.

NOTE. The copied Builder currently holds reference of Builder attributes

enable_dynamic_execution(*, allow_experimental_mode: bool = False) → Builder

Enables the Parallelizable[] type, which in turn enables: 1. Grouped execution into

tasks 2. Parallel execution :return: self

with_adapter(adapter: HamiltonGraphAdapter) → Builder

Sets the adapter to use.

Parameters:

adapter – Adapter to use.

Returns:

389 Drivers

https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides

self

with_adapters(*adapters: BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch |

BaseDoValidateInput | BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn

| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult) → Builder

Sets the adapter to use.

Parameters:

adapter – Adapter to use.

Returns:

self

with_cache(path: str | Path = '.hamilton_cache', metadata_store: MetadataStore | None =

None, result_store: ResultStore | None = None, default: Literal[True] | Sequence[str] | None =

None, recompute: Literal[True] | Sequence[str] | None = None, ignore: Literal[True] |

Sequence[str] | None = None, disable: Literal[True] | Sequence[str] | None = None,

default_behavior: Literal['default', 'recompute', 'disable', 'ignore'] = 'default',

default_loader_behavior: Literal['default', 'recompute', 'disable', 'ignore'] = 'default',

default_saver_behavior: Literal['default', 'recompute', 'disable', 'ignore'] = 'default',

log_to_file: bool = False) → Builder

Add the caching adapter to the Driver

Parameters:

path – path where the cache metadata and results

will be stored

metadata_store – BaseStore handling metadata for

the cache adapter

result_store – BaseStore caching dataflow execution

results

default – Set caching behavior to DEFAULT for

specified node names. If True, apply to all nodes.

•

•

•

•

390 Drivers

recompute – Set caching behavior to RECOMPUTE for

specified node names. If True, apply to all nodes.

ignore – Set caching behavior to IGNORE for specified

node names. If True, apply to all nodes.

disable – Set caching behavior to DISABLE for

specified node names. If True, apply to all nodes.

default_behavior – Set the default caching behavior.

default_loader_behavior – Set the default caching

behavior DataLoader nodes.

default_saver_behavior – Set the default caching

behavior DataSaver nodes.

Log_to_file:

If True, the cache adapter logs will be stored in JSONL

format under the metadata_store directory

Returns:

self

Learn more on the Caching Concepts page.

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_module(my_dataflow)
.with_cache()
.build()

)

execute twice
dr.execute([...])
dr.execute([...])

view cache logs
dr.cache.logs()

with_config(config: Dict[str, Any]) → Builder

•

•

•

•

•

•

391 Drivers

Adds the specified configuration to the config. This can be called multilple times –

later calls will take precedence.

Parameters:

config – Config to use.

Returns:

self

with_execution_manager(execution_manager: ExecutionManager) → Builder

Sets the execution manager to use. Note that this cannot be used if local_executor or

remote_executor are also set

Parameters:

execution_manager

Returns:

self

with_grouping_strategy(grouping_strategy: GroupingStrategy) → Builder

Sets a node grouper, which tells the driver how to group nodes into tasks for

execution.

Parameters:

node_grouper – Node grouper to use.

Returns:

self

with_local_executor(local_executor: TaskExecutor) → Builder

Sets the execution manager to use. Note that this cannot be used if local_executor or

remote_executor are also set

Parameters:

local_executor – Local executor to use

392 Drivers

Returns:

self

with_materializers(*materializers: ExtractorFactory | MaterializerFactory) → Builder

Add materializer nodes to the Driver The generated nodes can be referenced by name

in .execute()

Parameters:

materializers – materializers to add to the dataflow

Returns:

self

with_modules(*modules: ModuleType) → Builder

Adds the specified modules to the modules list. This can be called multiple times.

Parameters:

modules – Modules to use.

Returns:

self

with_remote_executor(remote_executor: TaskExecutor) → Builder

Sets the execution manager to use. Note that this cannot be used if local_executor or

remote_executor are also set

Parameters:

remote_executor – Remote executor to use

Returns:

self

Driver
Use this driver in a general python context. E.g. batch, jupyter notebook, etc.

393 Drivers

class hamilton.driver.Driver(config: Dict[str, Any], *modules: ModuleType, adapter:

BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidateInput |

BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn |

BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult | List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch |

BaseDoValidateInput | BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn |

BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult] | None = None, allow_module_overrides: bool = False, _materializers:

Sequence[ExtractorFactory | MaterializerFactory] = None, _graph_executor: GraphExecutor = None,

_use_legacy_adapter: bool = True)

This class orchestrates creating and executing the DAG to create a dataframe.

from hamilton import driver
from hamilton import base

1. Setup config or invariant input.
config = {}

2. we need to tell hamilton where to load function definitions
from
import my_functions

or programmatically (e.g. you can script module loading)
module_name = "my_functions"
my_functions = importlib.import_module(module_name)

3. Determine the return type -- default is a pandas.DataFrame.
adapter = base.SimplePythonDataFrameGraphAdapter() # See
GraphAdapter docs for more details.

These all feed into creating the driver & thus DAG.
dr = driver.Driver(config, module, adapter=adapter)

__init__(config: Dict[str, Any], *modules: ModuleType, adapter: BasePreDoAnythingHook |

BaseDoCheckEdgeTypesMatch | BaseDoValidateInput | BaseValidateNode |

BaseValidateGraph | BasePostGraphConstruct | BasePostGraphConstructAsync |

394 Drivers

BasePreGraphExecute | BasePreGraphExecuteAsync | BasePostTaskGroup |

BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn | BasePreTaskExecute

| BasePreTaskExecuteAsync | BasePreNodeExecute | BasePreNodeExecuteAsync |

BaseDoNodeExecute | BaseDoNodeExecuteAsync | BasePostNodeExecute |

BasePostNodeExecuteAsync | BasePostTaskExecute | BasePostTaskExecuteAsync |

BasePostGraphExecute | BasePostGraphExecuteAsync | BaseDoBuildResult |

List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidateInput |

BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn

| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult] | None = None, allow_module_overrides: bool = False, _materializers:

Sequence[ExtractorFactory | MaterializerFactory] = None, _graph_executor: GraphExecutor =

None, _use_legacy_adapter: bool = True)

Constructor: creates a DAG given the configuration & modules to crawl.

Parameters:

config – This is a dictionary of initial data &

configuration. The contents are used to help create

the DAG.

modules – Python module objects you want to inspect

for Hamilton Functions.

adapter – Optional. A way to wire in another way of

“executing” a hamilton graph. Defaults to using

original Hamilton adapter which is single threaded in

memory python.

allow_module_overrides – Optional. Same named

functions get overridden by later modules. The order

of listing the modules is important, since later ones

will overwrite the previous ones. This is a global call

affecting all imported modules. See https://

github.com/apache/hamilton/tree/main/examples/

module_overrides for more info.

_materializers – Not public facing, do not use this

parameter. This is injected by the builder.

•

•

•

•

•

395 Drivers

https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides

_graph_executor – Not public facing, do not use this

parameter. This is injected by the builder. If you need

to tune execution, use the builder to do so.

_use_legacy_adapter – Not public facing, do not use

this parameter. This represents whether or not to use

the legacy adapter. Defaults to True, as this should be

backwards compatible. In Hamilton 2.0.0, this will be

removed.

property cache: HamiltonCacheAdapter

Directly access the cache adapter

capture_constructor_telemetry(error: str | None, modules: Tuple[ModuleType], config:

Dict[str, Any], adapter: LifecycleAdapterSet)

Captures constructor telemetry. Notes: (1) we want to do this in a way that does not

break. (2) we need to account for all possible states, e.g. someone passing in None, or

assuming that the entire constructor code ran without issue, e.g. adapter was

assigned to self.

Parameters:

error – the sanitized error string to send.

modules – the list of modules, could be None.

config – the config dict passed, could be None.

adapter – the adapter passed in, might not be

attached to self yet.

capture_execute_telemetry(error: str | None, final_vars: List[str], inputs: Dict[str, Any],

overrides: Dict[str, Any], run_successful: bool, duration: float)

Captures telemetry after execute has run.

Notes: (1) we want to be quite defensive in not breaking anyone’s code with things we

do here. (2) thus we want to double-check that values exist before doing something

with them.

Parameters:

error – the sanitized error string to capture, if any.

final_vars – the list of final variables to get.

inputs – the inputs to the execute function.

•

•

•

•

•

•

•

•

•

396 Drivers

overrides – any overrides to the execute function.

run_successful – whether this run was successful.

duration – time it took to run execute.

display_all_functions(output_file_path: str = None, render_kwargs: dict = None,

graphviz_kwargs: dict = None, show_legend: bool = True, orient: str = 'LR', hide_inputs: bool

= False, deduplicate_inputs: bool = False, show_schema: bool = True, custom_style_function:

Callable = None, keep_dot: bool = False) → graphviz.Digraph | None

Displays the graph of all functions loaded!

Parameters:

output_file_path – the full URI of path + file name to

save the dot file to. E.g. ‘some/path/graph-all.dot’.

Optional. No need to pass it in if you’re in a Jupyter

Notebook.

render_kwargs – a dictionary of values we’ll pass to

graphviz render function. Defaults to viewing. If you do

not want to view the file, pass in {‘view’:False}. See

https://graphviz.readthedocs.io/en/stable/

api.html#graphviz.Graph.render for other options.

graphviz_kwargs – Optional. Kwargs to be passed to

the graphviz graph object to configure it. E.g.

dict(graph_attr={‘ratio’: ‘1’}) will set the aspect ratio to

be equal of the produced image. See https://

graphviz.org/doc/info/attrs.html for options.

show_legend – If True, add a legend to the

visualization based on the DAG’s nodes.

orient – LR stands for “left to right”. Accepted values

are TB, LR, BT, RL. orient will be overwridden by the

value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see

(https://graphviz.org/docs/attr-types/rankdir/)

hide_inputs – If True, no input nodes are displayed.

deduplicate_inputs – If True, remove duplicate input

nodes. Can improve readability depending on the

specifics of the DAG.

•

•

•

•

•

•

•

•

•

•

397 Drivers

https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/docs/attr-types/rankdir/

show_schema – If True, display the schema of the DAG

if the nodes have schema data provided

custom_style_function – Optional. Custom style

function. See example in repository for example use.

keep_dot – If true, produce a DOT file (ref: https://

graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If

returned as the result in a Jupyter Notebook cell, it will

render.

display_downstream_of(*node_names: str, output_file_path: str = None, render_kwargs:

dict = None, graphviz_kwargs: dict = None, show_legend: bool = True, orient: str = 'LR',

hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,

custom_style_function: Callable = None, keep_dot: bool = False) → graphviz.Digraph | None

Creates a visualization of the DAG starting from the passed in function name(s).

Note: for any “node” visualized, we will also add its parents to the visualization as

well, so there could be more nodes visualized than strictly what is downstream of the

passed in function name(s).

Parameters:

node_names – names of function(s) that are starting

points for traversing the graph.

output_file_path – the full URI of path + file name to

save the dot file to. E.g. ‘some/path/graph.dot’.

Optional. No need to pass it in if you’re in a Jupyter

Notebook.

render_kwargs – a dictionary of values we’ll pass to

graphviz render function. Defaults to viewing. If you do

not want to view the file, pass in {‘view’:False}.

graphviz_kwargs – Kwargs to be passed to the

graphviz graph object to configure it. E.g.

dict(graph_attr={‘ratio’: ‘1’}) will set the aspect ratio to

be equal of the produced image.

show_legend – If True, add a legend to the

visualization based on the DAG’s nodes.

•

•

•

•

•

•

•

•

398 Drivers

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

orient – LR stands for “left to right”. Accepted values

are TB, LR, BT, RL. orient will be overwridden by the

value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see

(https://graphviz.org/docs/attr-types/rankdir/)

hide_inputs – If True, no input nodes are displayed.

deduplicate_inputs – If True, remove duplicate input

nodes. Can improve readability depending on the

specifics of the DAG.

show_schema – If True, display the schema of the DAG

if nodes have schema data provided

custom_style_function – Optional. Custom style

function.

keep_dot – If true, produce a DOT file (ref: https://

graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If

returned as the result in a Jupyter Notebook cell, it will

render.

display_upstream_of(*node_names: str, output_file_path: str = None, render_kwargs: dict =

None, graphviz_kwargs: dict = None, show_legend: bool = True, orient: str = 'LR',

hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,

custom_style_function: Callable = None, keep_dot: bool = False) → graphviz.Digraph | None

Creates a visualization of the DAG going backwards from the passed in function

name(s).

Note: for any “node” visualized, we will also add its parents to the visualization as

well, so there could be more nodes visualized than strictly what is upstream of the

passed in function name(s).

Parameters:

node_names – names of function(s) that are starting

points for traversing the graph.

output_file_path – the full URI of path + file name to

save the dot file to. E.g. ‘some/path/graph.dot’.

Optional. No need to pass it in if you’re in a Jupyter

Notebook.

•

•

•

•

•

•

•

•

399 Drivers

https://graphviz.org/docs/attr-types/rankdir/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

render_kwargs – a dictionary of values we’ll pass to

graphviz render function. Defaults to viewing. If you do

not want to view the file, pass in {‘view’:False}.

Optional.

graphviz_kwargs – Kwargs to be passed to the

graphviz graph object to configure it. E.g.

dict(graph_attr={‘ratio’: ‘1’}) will set the aspect ratio to

be equal of the produced image. Optional.

show_legend – If True, add a legend to the

visualization based on the DAG’s nodes.

orient – LR stands for “left to right”. Accepted values

are TB, LR, BT, RL. orient will be overwridden by the

value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see

(https://graphviz.org/docs/attr-types/rankdir/)

hide_inputs – If True, no input nodes are displayed.

deduplicate_inputs – If True, remove duplicate input

nodes. Can improve readability depending on the

specifics of the DAG.

show_schema – If True, display the schema of the DAG

if nodes have schema data provided

custom_style_function – Optional. Custom style

function.

keep_dot – If true, produce a DOT file (ref: https://

graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If

returned as the result in a Jupyter Notebook cell, it will

render.

execute(final_vars: List[str | Callable | HamiltonNode], overrides: Dict[str, Any] = None,

display_graph: bool = False, inputs: Dict[str, Any] = None) → Any

Executes computation.

•

•

•

•

•

•

•

•

•

400 Drivers

https://graphviz.org/docs/attr-types/rankdir/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

Parameters:

final_vars – the final list of outputs we want to

compute.

overrides – values that will override “nodes” in the

DAG.

display_graph – DEPRECATED. Whether we want to

display the graph being computed.

inputs – Runtime inputs to the DAG.

Returns:

an object consisting of the variables requested,

matching the type returned by the GraphAdapter. See

constructor for how the GraphAdapter is initialized. The

default one right now returns a pandas dataframe.

export_execution(final_vars: List[str], inputs: Dict[str, Any] = None, overrides: Dict[str, Any] =

None) → str

Method to create JSON representation of the Graph.

Parameters:

final_vars – The final variables to compute.

inputs – Optional. The inputs to the DAG.

overrides – Optional. Overrides to the DAG.

Returns:

JSON string representation of the graph.

has_cycles(final_vars: List[str | Callable | HamiltonNode],

_fn_graph: FunctionGraph = None) → bool

Checks that the created graph does not have cycles.

•

•

•

•

•

•

•

401 Drivers

Parameters:

final_vars – the outputs we want to compute.

_fn_graph – the function graph to check for cycles,

used internally

Returns:

boolean True for cycles, False for no cycles.

list_available_variables(*, tag_filter: Dict[str, str | None | List[str]] = None) →

List[HamiltonNode]

Returns available variables, i.e. outputs.

These variables correspond 1:1 with nodes in the DAG, and contain the following

information:

name: the name of the node

tags: the tags associated with this node

type: The type of data this node returns

is_external_input: Whether this node represents an external input

(required from outside), or not (has a function specifying its behavior).

gets all
dr.list_available_variables()
gets exact matching tag name and tag value
dr.list_available_variables({"TAG_NAME": "TAG_VALUE"})
gets all matching tag name and at least one of the values
in the list
dr.list_available_variables({"TAG_NAME": ["TAG_VALUE1",
"TAG_VALUE2"]})
gets all with matching tag name, irrespective of value
dr.list_available_variables({"TAG_NAME": None})
AND query between the two tags (i.e. both need to match)
dr.list_available_variables({"TAG_NAME": "TAG_VALUE",
"TAG_NAME2": "TAG_VALUE2"}

Parameters:

tag_filter – A dictionary of tags to filter by. Only nodes

matching the tags and their values will be returned. If

the value for a tag is None, then we will return all nodes

•

•

1.

2.

3.

4.

402 Drivers

with that tag. If the value is non-empty we will return all

nodes with that tag and that value.

Returns:

list of available variables (i.e. outputs).

materialize(*materializers: MaterializerFactory | ExtractorFactory, additional_vars: List[str |

Callable | HamiltonNode] = None, overrides: Dict[str, Any] = None, inputs: Dict[str, Any] =

None) → Tuple[Any, Dict[str, Any]]

Executes and materializes with ad-hoc materializers (to) and extractors (from_).This

does the following:

Creates a new graph, appending the desired materialization nodes and prepending

the desired extraction nodes

Runs the portion of the DAG upstream of the materialization nodes outputted, as

well as any additional nodes requested (which can be empty)

Returns a Tuple[Materialization metadata, additional vars result]

For instance, say you want to load data, process it, then materialize the output of a

node to CSV:

from hamilton import driver, base
from hamilton.io.materialization import to
dr = driver.Driver(my_module, {})
foo, bar are pd.Series
metadata, result = dr.materialize(

from_.csv(
target="input_data",
path="./input.csv"

),
to.csv(

path="./output.csv"
id="foo_bar_csv",
dependencies=["foo", "bar"],
combine=base.PandasDataFrameResult()

),
additional_vars=["foo", "bar"]

)

The code above will do the following:

Load the CSV at “./input.csv” and inject it into he DAG as input_data

Run the nodes in the DAG on which “foo” and “bar” depend

1.

2.

3.

1.

2.

403 Drivers

Materialize the dataframe with “foo” and “bar” as columns, saving it as a CSV file at

“./output.csv”. The metadata will contain any additional relevant information, and

result will be a dictionary with the keys “foo” and “bar” containing the original data.

Note that we pass in a ResultBuilder as the combine argument to to, as we may be

materializing several nodes. This is not relevant in from_ as we are only loading one

dataset.

additional_vars is used for debugging – E.G. if you want to both realize side-effects

and return an output for inspection. If left out, it will return an empty dictionary.

You can bypass the combine keyword for to if only one output is required. In this

circumstance “combining/joining” isn’t required, e.g. you do that yourself in a function

and/or the output of the function can be directly used. In the case below the output

can be turned in to a CSV.

from hamilton import driver, base
from hamilton.io.materialization import to
dr = driver.Driver(my_module, {})
foo, bar are pd.Series
metadata, _ = dr.materialize(

from_.csv(
target="input_data",
path="./input.csv"

),
to.csv(

path="./output.csv"
id="foo_bar_csv",
dependencies=["foo_bar_already_joined],

),
)

This will just save it to a csv.

Note that materializers can be any valid DataSaver – these have an isomorphic

relationship with the @save_to decorator, which means that any key utilizable in

save_to can be used in a materializer. The constructor arguments for a materializer

are the same as the arguments for @save_to, with an additional trick – instead of

requiring everything to be a source or value, you can pass in a literal, and it will be

interpreted as a value.

That said, if you want to parameterize your materializer based on input or some node

in the DAG, you can easily do that as well:

from hamilton import driver, base
from hamilton.function_modifiers import source
from hamilton.io.materialization import to

3.

404 Drivers

dr = driver.Driver(my_module, {})
foo, bar are pd.Series
metadata, result = dr.Materialize(

from_.csv(
target="input_data",
path=source("load_path")

),
to.csv(

path=source("save_path"),
id="foo_bar_csv",
dependencies=["foo", "bar"],
combine=base.PandasDataFrameResult(),

),
additional_vars=["foo", "bar"],
inputs={"save_path": "./output.csv"},

)

While this is a contrived example, you could imagine something more powerful. Say,

for instance, say you have created and registered a custom model_registry

materializer that applies to an argument of your model class, and requires

training_data to infer the signature. You could call it like this:

from hamilton import driver, base
from hamilton.function_modifiers import source
from hamilton.io.materialization import to
dr = driver.Driver(my_module, {})
metadata, _ = dr.Materialize(

to.model_registry(
training_data=source("training_data"),
id="foo_model_registry",
tags={"run_id" : ..., "training_date" : ..., ...},
dependencies=["foo_model"]

),
)

In this case, we bypass a result builder (as there’s only one model), the single node

we depend on gets saved, and we pass in the training data as an input so the

materializer can infer the signature.

You could also imagine a driver that loads up a model, runs inference, then saves the

result:

from hamilton import driver, base
from hamilton.function_modifiers import source
from hamilton.io.materialization import to

dr = driver.Driver(my_module, {})

405 Drivers

metadata, _ = dr.Materialize(
from_.model_registry(

target="input_model",
query_tags={

"training_date": ...,
model_version: ...,

}, # query based on run_id, model_version
),
to.csv(

path=source("save_path"),
id="save_inference_data",
dependencies=["inference_data"],

),
)

Note that the “from” extractor has an interesting property – it effectively functions as

overrides. This means that it can replace nodes within a DAG, short-circuiting their

behavior. Similar to passing overrides, but they are dynamically computed with the

DAG, rather than statically included from the beginning.

This is customizable through a few APIs:

Custom data savers (Function modifiers)

Custom result builders

Custom data loaders (Function modifiers)

If you find yourself writing these, please consider contributing back! We would love to

round out the set of available materialization tools.

Parameters:

materializers – Materializer/extractors to use, created

with to.xyz or from.xyz

additional_vars – Additional variables to return from

the graph

overrides – Overrides to pass to execution

inputs – Inputs to pass to execution

Returns:

Tuple[Materialization metadata|data, additional_vars

result]

1.

2.

3.

•

•

•

•

406 Drivers

static normalize_adapter_input(adapter: BasePreDoAnythingHook |

BaseDoCheckEdgeTypesMatch | BaseDoValidateInput | BaseValidateNode |

BaseValidateGraph | BasePostGraphConstruct | BasePostGraphConstructAsync |

BasePreGraphExecute | BasePreGraphExecuteAsync | BasePostTaskGroup |

BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn | BasePreTaskExecute

| BasePreTaskExecuteAsync | BasePreNodeExecute | BasePreNodeExecuteAsync |

BaseDoNodeExecute | BaseDoNodeExecuteAsync | BasePostNodeExecute |

BasePostNodeExecuteAsync | BasePostTaskExecute | BasePostTaskExecuteAsync |

BasePostGraphExecute | BasePostGraphExecuteAsync | BaseDoBuildResult |

List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidateInput |

BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn

| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult] | LifecycleAdapterSet | None, use_legacy_adapter: bool = True) →

LifecycleAdapterSet

Normalizes the adapter argument in the driver to a list of adapters. Adds back the

legacy adapter if needed.

Note that, in the past, hamilton required a graph adapter. Now it is only required to be

included in the legacy case default behavior has been modified to handle anything a

result builder did.

Parameters:

adapter – Adapter to include

use_legacy_adapter – Whether to use the legacy

adapter. Defaults to True.

Returns:

A lifecycle adapter set.

raw_execute(final_vars: List[str], overrides: Dict[str, Any] = None,

display_graph: bool = False, inputs: Dict[str, Any] = None, _fn_graph: FunctionGraph = None)

→ Dict[str, Any]

Raw execute function that does the meat of execute.

Don’t use this entry point for execution directly. Always go through .execute() or

.materialize(). In case you are using .raw_execute() directly, please switch to .execute()

•

•

407 Drivers

using a base.DictResult(). Note: base.DictResult() is the default return of execute if you

are using the driver.Builder() class to create a Driver() object.

Parameters:

final_vars – Final variables to compute

overrides – Overrides to run.

display_graph – DEPRECATED. DO NOT USE. Whether

or not to display the graph when running it

inputs – Runtime inputs to the DAG

Returns:

validate_execution(final_vars: List[str | Callable | HamiltonNode], overrides: Dict[str, Any] =

None, inputs: Dict[str, Any] = None)

Validates execution of the graph. One can call this to validate execution,

independently of actually executing. Note this has no return – it will raise a ValueError

if there is an issue.

Parameters:

final_vars – Final variables to compute

overrides – Overrides to pass to execution.

inputs – Inputs to pass to execution.

Raises:

ValueError – if any issues with executino can be

detected.

static validate_inputs(fn_graph: FunctionGraph, adapter: BasePreDoAnythingHook |

BaseDoCheckEdgeTypesMatch | BaseDoValidateInput | BaseValidateNode |

BaseValidateGraph | BasePostGraphConstruct | BasePostGraphConstructAsync |

BasePreGraphExecute | BasePreGraphExecuteAsync | BasePostTaskGroup |

BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn | BasePreTaskExecute

| BasePreTaskExecuteAsync | BasePreNodeExecute | BasePreNodeExecuteAsync |

BaseDoNodeExecute | BaseDoNodeExecuteAsync | BasePostNodeExecute |

BasePostNodeExecuteAsync | BasePostTaskExecute | BasePostTaskExecuteAsync |

BasePostGraphExecute | BasePostGraphExecuteAsync | BaseDoBuildResult |

•

•

•

•

•

•

•

408 Drivers

List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidateInput |

BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn

| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult] | LifecycleAdapterSet, user_nodes: Collection[Node], inputs: Dict[str,

Any] | None = None, nodes_set: Collection[Node] = None)

Validates that inputs meet our expectations. This means that: 1. The runtime inputs

don’t clash with the graph’s config 2. All expected graph inputs are provided, either in

config or at runtime

Parameters:

fn_graph – The function graph to validate.

adapter – The adapter to use for validation.

user_nodes – The required nodes we need for

computation.

inputs – the user inputs provided.

nodes_set – the set of nodes to use for validation;

Optional.

validate_materialization(*materializers: MaterializerFactory, additional_vars: List[str |

Callable | HamiltonNode] = None, overrides: Dict[str, Any] = None, inputs: Dict[str, Any] =

None)

Validates materialization of the graph. Effectively .materialize() with a dry-run. Note

this has no return – it will raise a ValueError if there is an issue.

Parameters:

materializers – Materializers to use, see the

materialize() function

additional_vars – Additional variables to compute (in

addition to materializers)

overrides – Overrides to pass to execution. Optional.

inputs – Inputs to pass to execution. Optional.

•

•

•

•

•

•

•

•

•

409 Drivers

Raises:

ValueError – if any issues with materialization can be

detected.

visualize_execution(final_vars: List[str | Callable | HamiltonNode], output_file_path: str =

None, render_kwargs: dict = None, inputs: Dict[str, Any] = None, graphviz_kwargs: dict =

None, overrides: Dict[str, Any] = None, show_legend: bool = True, orient: str = 'LR',

hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,

custom_style_function: Callable = None, bypass_validation: bool = False, keep_dot: bool =

False) → graphviz.Digraph | None

Visualizes Execution.

Note: overrides are not handled at this time.

Shapes:

ovals are nodes/functions

rectangles are nodes/functions that are requested as output

shapes with dotted lines are inputs required to run the DAG.

Parameters:

final_vars – the outputs we want to compute. They

will become rectangles in the graph.

output_file_path – the full URI of path + file name to

save the dot file to. E.g. ‘some/path/graph.dot’.

Optional. No need to pass it in if you’re in a Jupyter

Notebook.

render_kwargs – a dictionary of values we’ll pass to

graphviz render function. Defaults to viewing. If you do

not want to view the file, pass in {‘view’:False}. See

https://graphviz.readthedocs.io/en/stable/

api.html#graphviz.Graph.render for other options.

inputs – Optional. Runtime inputs to the DAG.

graphviz_kwargs – Optional. Kwargs to be passed to

the graphviz graph object to configure it. E.g.

dict(graph_attr={‘ratio’: ‘1’}) will set the aspect ratio to

be equal of the produced image. See https://

graphviz.org/doc/info/attrs.html for options.

•

•

•

•

•

•

•

•

410 Drivers

https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.readthedocs.io/en/stable/api.html#graphviz.Graph.render
https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/attrs.html

overrides – Optional. Overrides to the DAG.

show_legend – If True, add a legend to the

visualization based on the DAG’s nodes.

orient – LR stands for “left to right”. Accepted values

are TB, LR, BT, RL. orient will be overwridden by the

value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see

(https://graphviz.org/docs/attr-types/rankdir/)

hide_inputs – If True, no input nodes are displayed.

deduplicate_inputs – If True, remove duplicate input

nodes. Can improve readability depending on the

specifics of the DAG.

show_schema – If True, display the schema of the DAG

if nodes have schema data provided

custom_style_function – Optional. Custom style

function.

keep_dot – If true, produce a DOT file (ref: https://

graphviz.org/doc/info/lang.html)

Returns:

the graphviz object if you want to do more with it. If

returned as the result in a Jupyter Notebook cell, it will

render.

visualize_materialization(*materializers: MaterializerFactory | ExtractorFactory,

output_file_path: str = None, render_kwargs: dict = None, additional_vars: List[str | Callable

| HamiltonNode] = None, inputs: Dict[str, Any] = None, graphviz_kwargs: dict = None,

overrides: Dict[str, Any] = None, show_legend: bool = True, orient: str = 'LR', hide_inputs:

bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,

custom_style_function: Callable = None, bypass_validation: bool = False, keep_dot: bool =

False) → graphviz.Digraph | None

Visualizes materialization. This helps give you a sense of how materialization will

impact the DAG.

Parameters:

materializers – Materializers/Extractors to use, see

the materialize() function

•

•

•

•

•

•

•

•

•

411 Drivers

https://graphviz.org/docs/attr-types/rankdir/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

additional_vars – Additional variables to compute (in

addition to materializers)

output_file_path – Path to output file. Optional. Skip if

in a Jupyter Notebook.

render_kwargs – Arguments to pass to render.

Optional.

inputs – Inputs to pass to execution. Optional.

graphviz_kwargs – Arguments to pass to graphviz.

Optional.

overrides – Overrides to pass to execution. Optional.

show_legend – If True, add a legend to the

visualization based on the DAG’s nodes.

orient – LR stands for “left to right”. Accepted values

are TB, LR, BT, RL. orient will be overwridden by the

value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see

(https://graphviz.org/docs/attr-types/rankdir/)

hide_inputs – If True, no input nodes are displayed.

deduplicate_inputs – If True, remove duplicate input

nodes. Can improve readability depending on the

specifics of the DAG.

show_schema – If True, show the schema of the

materialized nodes if nodes have schema metadata

attached.

custom_style_function – Optional. Custom style

function.

bypass_validation – If True, bypass validation.

Optional.

Returns:

The graphviz graph, if you want to do something with it

visualize_path_between(upstream_node_name: str, downstream_node_name: str,

output_file_path: str | None = None, render_kwargs: dict = None, graphviz_kwargs: dict =

None, strict_path_visualization: bool = False, show_legend: bool = True, orient: str = 'LR',

•

•

•

•

•

•

•

•

•

•

•

•

•

412 Drivers

https://graphviz.org/docs/attr-types/rankdir/

hide_inputs: bool = False, deduplicate_inputs: bool = False, show_schema: bool = True,

custom_style_function: Callable = None, keep_dot: bool = False) → graphviz.Digraph | None

Visualizes the path between two nodes.

This is useful for debugging and understanding the path between two nodes.

Parameters:

upstream_node_name – the name of the node that

we want to start from.

downstream_node_name – the name of the node

that we want to end at.

output_file_path – the full URI of path + file name to

save the dot file to. E.g. ‘some/path/graph.dot’. Pass in

None to skip saving any file.

render_kwargs – a dictionary of values we’ll pass to

graphviz render function. Defaults to viewing. If you do

not want to view the file, pass in {‘view’:False}.

graphviz_kwargs – Kwargs to be passed to the

graphviz graph object to configure it. E.g.

dict(graph_attr={‘ratio’: ‘1’}) will set the aspect ratio to

be equal of the produced image.

strict_path_visualization – If True, only the nodes in

the path will be visualized. If False, the nodes in the

path and their dependencies, i.e. parents, will be

visualized.

show_legend – If True, add a legend to the

visualization based on the DAG’s nodes.

orient – LR stands for “left to right”. Accepted values

are TB, LR, BT, RL. orient will be overwridden by the

value of graphviz_kwargs[‘graph_attr’][‘rankdir’] see

(https://graphviz.org/docs/attr-types/rankdir/)

hide_inputs – If True, no input nodes are displayed.

deduplicate_inputs – If True, remove duplicate input

nodes. Can improve readability depending on the

specifics of the DAG.

•

•

•

•

•

•

•

•

•

•

413 Drivers

https://graphviz.org/docs/attr-types/rankdir/

show_schema – If True, display the schema of the DAG

if nodes have schema data provided

custom_style_function – Optional. Custom style

function.

keep_dot – If true, produce a DOT file (ref: https://

graphviz.org/doc/info/lang.html)

Returns:

graphviz object.

Raises:

ValueError – if the upstream or downstream node

names are not found in the graph, or there is no path

between them.

what_is_downstream_of(*node_names: str) → List[HamiltonNode]

Tells you what is downstream of this function(s), i.e. node(s).

Parameters:

node_names – names of function(s) that are starting

points for traversing the graph.

Returns:

list of “variables” (i.e. nodes), inclusive of the function

names, that are downstream of the passed in function

names.

what_is_the_path_between(upstream_node_name: str, downstream_node_name: str) →

List[HamiltonNode]

Tells you what nodes are on the path between two nodes.

Note: this is inclusive of the two nodes, and returns an unsorted list of nodes.

Parameters:

upstream_node_name – the name of the node that

we want to start from.

•

•

•

•

414 Drivers

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

downstream_node_name – the name of the node

that we want to end at.

Returns:

Nodes representing the path between the two nodes,

inclusive of the two nodes, unsorted. Returns empty list

if no path exists.

Raises:

ValueError – if the upstream or downstream node name

is not in the graph.

what_is_upstream_of(*node_names: str) → List[HamiltonNode]

Tells you what is upstream of this function(s), i.e. node(s).

Parameters:

node_names – names of function(s) that are starting

points for traversing the graph backwards.

Returns:

list of “variables” (i.e. nodes), inclusive of the function

names, that are upstream of the passed in function

names.

DefaultGraphExecutor
This is the default graph executor. It can handle limited parallelism through graph adapters, and

conducts execution using a simple recursive depth first traversal. Note this cannot handle

parallelism with Parallelizable[]/Collect[]. Note that this is only exposed through the Builder (and

it comes default on Driver instantiation) – it is here purely for documentation, and you should

never need to instantiate it directly.

class hamilton.driver.DefaultGraphExecutor(adapter: LifecycleAdapterSet | None = None)

__init__(adapter: LifecycleAdapterSet | None = None)

Constructor for the default graph executor.

Parameters:

•

415 Drivers

adapter – Adapter to use for execution (optional).

execute(fg: FunctionGraph, final_vars: List[str], overrides: Dict[str, Any],

inputs: Dict[str, Any], run_id: str) → Dict[str, Any]

Basic executor for a function graph. Does no task-based execution, just does a DFS

and executes the graph in order, in memory.

validate(nodes_to_execute: List[Node])

The default graph executor cannot handle parallelizable[]/collect[] nodes.

Parameters:

nodes_to_execute

Raises:

InvalidExecutorException – if the graph contains

parallelizable[]/collect[] nodes.

TaskBasedGraphExecutor
This is a task based graph executor. It can handle parallelism with the Parallelizable/Collect

constructs, allowing it to spawn dynamic tasks and execute them as a group. Note that this is only

exposed through the Builder when called with

enable_dynamic_execution(allow_experimental_mode: bool) – it is here purely for documentation,

and you should never need to instantiate it directly.

class hamilton.driver.TaskBasedGraphExecutor(execution_manager: ExecutionManager,

grouping_strategy: GroupingStrategy, adapter: LifecycleAdapterSet)

__init__(execution_manager: ExecutionManager, grouping_strategy: GroupingStrategy,

adapter: LifecycleAdapterSet)

Executor for task-based execution. This enables grouping of nodes into tasks, as well

as parallel execution/dynamic spawning of nodes.

Parameters:

execution_manager – Utility to assign task executors

to node groups

grouping_strategy – Utility to group nodes into tasks

result_builder – Utility to build the final result

•

•

•

416 Drivers

execute(fg: FunctionGraph, final_vars: List[str], overrides: Dict[str, Any],

inputs: Dict[str, Any], run_id: str) → Dict[str, Any]

Executes a graph, task by task. This blocks until completion.

This does the following: 1. Groups the nodes into tasks 2. Creates an execution state

and a results cache 3. Runs it to completion, populating the results cache 4. Returning

the results from the results cache

validate(nodes_to_execute: List[Node])

Currently this can run every valid graph

AsyncDriver
Use this driver in an async context. E.g. for use with FastAPI.

class hamilton.async_driver.AsyncDriver(config, *modules, result_builder: ResultMixin | None =

None, adapters: List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch |

BaseDoValidateInput | BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn |

BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult] = None, allow_module_overrides: bool = False)

Async driver. This is a driver that uses the AsyncGraphAdapter to execute the graph.

dr = async_driver.AsyncDriver({}, async_module,
result_builder=base.DictResult())
df = await dr.execute([...], inputs=...)

__init__(config, *modules, result_builder: ResultMixin | None = None, adapters:

List[BasePreDoAnythingHook | BaseDoCheckEdgeTypesMatch | BaseDoValidateInput |

BaseValidateNode | BaseValidateGraph | BasePostGraphConstruct |

BasePostGraphConstructAsync | BasePreGraphExecute | BasePreGraphExecuteAsync |

BasePostTaskGroup | BasePostTaskExpand | BasePreTaskSubmission | BasePostTaskReturn

| BasePreTaskExecute | BasePreTaskExecuteAsync | BasePreNodeExecute |

BasePreNodeExecuteAsync | BaseDoNodeExecute | BaseDoNodeExecuteAsync |

BasePostNodeExecute | BasePostNodeExecuteAsync | BasePostTaskExecute |

BasePostTaskExecuteAsync | BasePostGraphExecute | BasePostGraphExecuteAsync |

BaseDoBuildResult] = None, allow_module_overrides: bool = False)

Instantiates an asynchronous driver.

You will also need to call ainit to initialize the driver if you have any hooks/adapters.

417 Drivers

Note that this is not the desired API – you should be using the

hamilton.async_driver.Builder class to create the driver.

This will only (currently) work properly with asynchronous lifecycle hooks, and does

not support methods or validators. You can still pass in synchronous lifecycle hooks,

but they may behave strangely.

Parameters:

config – Config to build the graph

modules – Modules to crawl for fns/graph nodes

result_builder – Results mixin to compile the graph’s

final results. TBD whether this should be included in

the long run.

adapters – Adapters to use for lifecycle methods.

allow_module_overrides – Optional. Same named

functions get overridden by later modules. The order

of listing the modules is important, since later ones

will overwrite the previous ones. This is a global call

affecting all imported modules. See https://

github.com/apache/hamilton/tree/main/examples/

module_overrides for more info.

async ainit() → AsyncDriver

Initializes the driver when using async. This only exists for backwards compatibility. In

Hamilton 2.0, we will be using an asynchronous constructor. See https://dev.to/

akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-

asyncmixin-18j5.

capture_constructor_telemetry(error: str | None, modules: Tuple[ModuleType], config:

Dict[str, Any], adapter: HamiltonGraphAdapter)

Ensures we capture constructor telemetry the right way in an async context.

This is a simpler wrapper around what’s in the driver class.

Parameters:

error – sanitized error string, if any.

modules – tuple of modules to build DAG from.

config – config to create the driver.

•

•

•

•

•

•

•

•

418 Drivers

https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://github.com/apache/hamilton/tree/main/examples/module_overrides
https://dev.to/akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-asyncmixin-18j5
https://dev.to/akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-asyncmixin-18j5
https://dev.to/akarshan/asynchronous-python-magic-how-to-create-awaitable-constructors-with-asyncmixin-18j5

adapter – adapter class object.

async execute(final_vars: List[str], overrides: Dict[str, Any] = None, display_graph: bool =

False, inputs: Dict[str, Any] = None) → Any

Executes computation.

Parameters:

final_vars – the final list of variables we want to

compute.

overrides – values that will override “nodes” in the

DAG.

display_graph – DEPRECATED. Whether we want to

display the graph being computed.

inputs – Runtime inputs to the DAG.

Returns:

an object consisting of the variables requested,

matching the type returned by the GraphAdapter. See

constructor for how the GraphAdapter is initialized. The

default one right now returns a pandas dataframe.

async raw_execute(final_vars: List[str], overrides: Dict[str, Any] = None, display_graph: bool

= False, inputs: Dict[str, Any] = None, _fn_graph: FunctionGraph = None) → Dict[str, Any]

Executes the graph, returning a dictionary of strings (node keys) to final results.

Parameters:

final_vars – Variables to execute (+ upstream)

overrides – Overrides for nodes

display_graph – whether or not to display graph – this

is not supported.

inputs – Inputs for DAG runtime calculation

_fn_graph – Function graph for compatibility with

superclass – unused

Returns:

•

•

•

•

•

•

•

•

•

•

419 Drivers

A dict of key -> result

Async Builder
Builds a driver in an async context – use await builder....build() .

class hamilton.async_driver.Builder

Builder for the async driver. This is equivalent to the standard builder, but has a more

limited API. Note this does not support dynamic execution or materializers (for now).

Here is an example of how you might use it to get the tracker working:

from hamilton_sdk import tracker

tracker_async = adapters.AsyncHamiltonTracker(
project_id=1,
username="elijah",
dag_name="async_tracker",

)
dr = (

await async_driver.Builder()
.with_modules(async_module)
.with_adapters(tracking_async)
.build()

)

__init__()

Constructs a driver builder. No parameters as you call methods to set fields.

async build()

Builds the async driver. This also initializes it, hence the async definition. If you don’t

want to use async, you can use build_without_init and call ainit later, but we

recommend using this in an asynchronous lifespan management function (E.G. in

fastAPI), or something similar.

Returns:

The fully

build_without_init() → AsyncDriver

Allows you to build the async driver without initialization. Use this at your own risk –

we highly recommend calling .ainit on the final result.

Returns:

420 Drivers

enable_dynamic_execution(*, allow_experimental_mode: bool = False) → Builder

Enables the Parallelizable[] type, which in turn enables: 1. Grouped execution into

tasks 2. Parallel execution :return: self

with_adapter(adapter: HamiltonGraphAdapter) → Builder

Sets the adapter to use.

Parameters:

adapter – Adapter to use.

Returns:

self

with_materializers(*materializers: ExtractorFactory | MaterializerFactory) → Builder

Add materializer nodes to the Driver The generated nodes can be referenced by name

in .execute()

Parameters:

materializers – materializers to add to the dataflow

Returns:

self

Custom Driver
If you have a use case for a custom Driver, tell us on Slack or via a GitHub issues. Knowing about

your use case and talking through help ensures we aren’t duplicating effort, and that it’ll be using

part of the API we don’t intend to change.

421 Drivers

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://github.com/apache/hamilton/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=

Caching

Reference

Caching logic

Caching Behavior

class hamilton.caching.adapter.CachingBehavior(value)

Behavior applied by the caching adapter

DEFAULT:

Try to retrieve result from cache instead of executing the node. If the node is

executed, store the result. Compute the result data version and store it too.

RECOMPUTE:

Don’t try to retrieve result from cache and always execute the node. Otherwise,

behaves as default. Useful when nodes are stochastic (e.g., model training) or interact

with external components (e.g., read from database).

DISABLE:

Node is executed as if the caching feature wasn’t enabled. It never tries to retrieve

results. Results are never stored nor versioned. Behaves like IGNORE, but the node

remains a dependency for downstream nodes. This means downstream cache lookup

will likely fail systematically (i.e., if the cache is empty).

IGNORE:

Node is executed as if the caching feature wasn’t enable. It never tries to retrieve

results. Results are never stored nor versioned. IGNORE means downstream nodes

will ignore this node as a dependency for lookup. Ignoring clients and connections

can be useful since they shouldn’t directly impact the downstream results.

classmethod from_string(string: str) → CachingBehavior

Create a caching behavior from a string of the enum value. This is leveraged by the

hamilton.lifecycle.caching.SmartCacheAdapter and the

hamilton.function_modifiers.metadata.cache decorator.

422 Caching

CachingBehavior.from_string("recompute")

@cache decorator

class hamilton.function_modifiers.metadata.cache(*, behavior: Literal['default', 'recompute',

'ignore', 'disable'] | None = None, format: Literal['json', 'file', 'pickle', 'parquet', 'csv', 'feather', 'orc',

'excel'] | str | None = None, target_: str | Collection[str] | None | EllipsisType = Ellipsis)

BEHAVIOR_KEY = 'cache.behavior'

FORMAT_KEY = 'cache.format'

__init__(*, behavior: Literal['default', 'recompute', 'ignore', 'disable'] | None = None, format:

Literal['json', 'file', 'pickle', 'parquet', 'csv', 'feather', 'orc', 'excel'] | str | None = None, target_:

str | Collection[str] | None | EllipsisType = Ellipsis)

The @cache decorator can define the behavior and format of a specific node.

This feature is implemented via tags, but that could change. Thus you should not rely

on these tags for other purposes.

@cache(behavior="recompute", format="parquet")
def raw_data() -> pd.DataFrame: ...

If the function uses other function modifiers and define multiple nodes, you can set

target_ to specify which nodes to cache. The following only caches the performance

node.

@cache(format="json", target_="performance")
@extract_fields(trained_model=LinearRegression,
performance: dict)
def model_training() -> dict:

...
performance = {"rmse": 0.1, "mae": 0.2}
return {"trained_model": trained_model, "performance":

performance}

Parameters:

behavior – The behavior of the cache. This can be one

of the following: * default: caching is enabled *

recompute: always compute the node instead of

retrieving * ignore: the data version won’t be part of

downstream keys * disable: act as if caching wasn’t

enabled.

•

423 Caching

format – The format of the cache. This can be one of

the following: * json: JSON format * file: file format *

pickle: pickle format * parquet: parquet format * csv:

csv format * feather: feather format * orc: orc format *

excel: excel format

target_ – Target nodes to decorate. This can be one of

the following: * None: tag all nodes outputted by this

that are “final” (E.g. do not have a node outputted by

this that depend on them) * Ellipsis (…): tag all nodes

outputted by this * Collection[str]: tag only the nodes

with the specified names * str: tag only the node with

the specified name

decorate_node(node_: Node) → Node

Decorates the nodes with the cache tags.

Parameters:

node – Node to decorate

Returns:

Copy of the node, with tags assigned

Logging

class hamilton.caching.adapter.CachingEvent(run_id: str, actor: ~typing.Literal['adapter',

'metadata_store', 'result_store'], event_type: ~hamilton.caching.adapter.CachingEventType,

node_name: str, task_id: str | None = None, msg: str | None = None, value: ~typing.Any | None =

None, timestamp: float = <factory>)

Event logged by the caching adapter

__init__(run_id: str, actor: ~typing.Literal['adapter', 'metadata_store', 'result_store'],

event_type: ~hamilton.caching.adapter.CachingEventType, node_name: str, task_id: str |

None = None, msg: str | None = None, value: ~typing.Any | None = None, timestamp: float =

<factory>) → None

class hamilton.caching.adapter.CachingEventType(value)

Event types logged by the caching adapter

•

•

424 Caching

Adapter

class hamilton.caching.adapter.HamiltonCacheAdapter(path: str | Path = '.hamilton_cache',

metadata_store: MetadataStore | None = None, result_store: ResultStore | None = None, default:

Literal[True] | Collection[str] | None = None, recompute: Literal[True] | Collection[str] | None =

None, ignore: Literal[True] | Collection[str] | None = None, disable: Literal[True] | Collection[str] |

None = None, default_behavior: Literal['default', 'recompute', 'disable', 'ignore'] | None = None,

default_loader_behavior: Literal['default', 'recompute', 'disable', 'ignore'] | None = None,

default_saver_behavior: Literal['default', 'recompute', 'disable', 'ignore'] | None = None,

log_to_file: bool = False, **kwargs)

Adapter enabling Hamilton’s caching feature through Builder.with_cache()

from hamilton import driver
import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache()
.build()

)

then, you can access the adapter via
dr.cache

__init__(path: str | Path = '.hamilton_cache', metadata_store: MetadataStore | None = None,

result_store: ResultStore | None = None,

default: Literal[True] | Collection[str] | None = None, recompute: Literal[True] |

Collection[str] | None = None, ignore: Literal[True] | Collection[str] | None = None, disable:

Literal[True] | Collection[str] | None = None, default_behavior: Literal['default', 'recompute',

'disable', 'ignore'] | None = None, default_loader_behavior: Literal['default', 'recompute',

'disable', 'ignore'] | None = None, default_saver_behavior: Literal['default', 'recompute',

'disable', 'ignore'] | None = None, log_to_file: bool = False, **kwargs)

Initialize the cache adapter.

Parameters:

path – path where the cache metadata and results

will be stored

metadata_store – BaseStore handling metadata for

the cache adapter

result_store – BaseStore caching dataflow execution

results

•

•

•

425 Caching

default – Set caching behavior to DEFAULT for

specified node names. If True, apply to all nodes.

recompute – Set caching behavior to RECOMPUTE for

specified node names. If True, apply to all nodes.

ignore – Set caching behavior to IGNORE for specified

node names. If True, apply to all nodes.

disable – Set caching behavior to DISABLE for

specified node names. If True, apply to all nodes.

default_behavior – Set the default caching behavior.

default_loader_behavior – Set the default caching

behavior DataLoader nodes.

default_saver_behavior – Set the default caching

behavior DataSaver nodes.

log_to_file – If True, append cache event logs as they

happen in JSONL format.

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None, **future_kwargs)

Try to retrieve stored result from previous executions or execute the node.

Use the previously created cache_key to retrieve the data_version from memory or

the metadata_store. If data_version is retrieved try to retrieve the result. If it fails,

execute the node. Else, execute the node.

get_cache_key(run_id: str, node_name: str, task_id: str | None = None) → str | S

Get the cache_key stored in-memory for a specific run_id , node_name , and

task_id .

This method is public-facing and can be used directly to inspect the cache.

Parameters:

run_id – Id of the Hamilton execution run.

node_name – Name of the node associated with the

cache key. node_name is a unique identifier if task-

based execution is not used.

•

•

•

•

•

•

•

•

•

•

426 Caching

task_id – Id of the task when task-based execution is

used. Then, the tuple (node_name, task_id) is a

unique identifier.

Returns:

The cache key if it exists, otherwise return a sentinel

value.

from hamilton import driver
import my_dataflow

dr =
driver.Builder().with_modules(my_dataflow).with_cache().build()
dr.execute(...)

dr.cache.get_cache_key(run_id=dr.last_run_id,
node_name="my_node", task_id=None)

get_data_version(run_id: str, node_name: str, cache_key: str | None = None, task_id: str |

None = None) → str | S

Get the data_version for a specific run_id , node_name , and task_id .

This method is public-facing and can be used directly to inspect the cache. This will

check data versions stored both in-memory and in the metadata store.

Parameters:

run_id – Id of the Hamilton execution run.

node_name – Name of the node associated with the

data version. node_name is a unique identifier if task-

based execution is not used.

task_id – Id of the task when task-based execution is

used. Then, the tuple (node_name, task_id) is a

unique identifier.

Returns:

The data version if it exists, otherwise return a sentinel

value.

..code-block:: python

•

•

•

•

427 Caching

from hamilton import driver import my_dataflow

dr = driver.Builder().with_modules(my_dataflow).with_cache().build()

dr.execute(…)

dr.cache.get_data_version(run_id=dr.last_run_id, node_name=”my_node”,

task_id=None)

property last_run_id

Run id of the last started run. Not necessarily the last to complete.

logs(run_id: str | None = None, level: Literal['debug', 'info'] = 'info') → dict

Execution logs of the cache adapter.

Parameters:

run_id – If None , return all logged runs. If provided a

run_id , group logs by node.

level – If "debug" log all events. If "info" only log if

result is retrieved or executed.

Returns:

a mapping between node/task and a list of logged

events

from hamilton import driver
import my_dataflow

dr =
driver.Builder().with_modules(my_dataflow).with_cache().build()
dr.execute(...)
dr.execute(...)

all_logs = dr.cache.logs()
all_logs is a dictionary with run_ids as keys and lists of
CachingEvent as values.
{
run_id_1: [CachingEvent(...), CachingEvent(...)],
run_id_2: [CachingEvent(...), CachingEvent(...)],
}

run_logs = dr.cache.logs(run_id=dr.last_run_id)
run_logs are keyed by ``node_name``
{node_name: [CachingEvent(...), CachingEvent(...)], ...}

•

•

428 Caching

or ``(node_name, task_id)`` if task-based execution is
used.
{(node_name_1, task_id_1): [CachingEvent(...),
CachingEvent(...)], ...}

post_node_execute(*, run_id: str, node_: Node, result: str | None, success: bool = True,

error: Exception | None = None, task_id: str | None = None, **future_kwargs)

Get the cache_key and data_version stored in memory (respectively from

pre_node_execute and do_node_execute) and store the result in result_store if it

doesn’t exist.

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])

Set up the state of the adapter for a new execution.

Most attributes need to be keyed by run_id to prevent potential conflicts because the

same adapter instance is shared between across all Driver.execute() calls.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None, **future_kwargs)

Before node execution or retrieval, create the cache_key and set it in memory. The

cache_key is created based on the node’s code version and its dependencies’ data

versions.

Collecting data_version for upstream dependencies requires handling special cases

when task-based execution is used: - If the current node is COLLECT , the dependency

annotated with Collect[] needs to be versioned item by item instead of versioning

the full container. This is because the collect order is inconsistent. - If the current

node is INSIDE and the dependency is EXPAND , this means the kwargs dictionary

contains a single item. We need to version this individual item because it will not be

available from “inside” the branch for some executors (multiprocessing,

multithreading) because they lose access to the data_versions of OUTSIDE nodes

stored in self.data_versions .

resolve_behaviors(run_id: str) → Dict[str, CachingBehavior]

Resolve the caching behavior for each node based on the @cache decorator and the

Builder.with_cache() parameters for a specific run_id .

This is a user-facing method.

Behavior specified via Builder.with_cache() have precedence. If no parameters are

specified, the CachingBehavior.DEFAULT is used. If a node is Parallelizable (i.e.,

@expand), the CachingBehavior is set to CachingBehavior.RECOMPUTE to ensure the

yielded items are versioned individually. Internally, this uses the FunctionGraph

stored for each run_id and logs the resolved caching behavior for each node.

429 Caching

Parameters:

run_id – Id of the Hamilton execution run.

Returns:

A dictionary of {node name: caching behavior} .

resolve_code_versions(run_id: str, final_vars: List[str] | None = None, inputs: Dict[str, Any] |

None = None, overrides: Dict[str, Any] | None = None) → Dict[str, str]

Resolve the code version for each node for a specific run_id .

This is a user-facing method.

If final_vars is None, all nodes will be versioned. If final_vars is provided, the

inputs and overrides are used to determine the execution path and only version

the code for these nodes.

Parameters:

run_id – Id of the Hamilton execution run.

final_vars – Nodes requested for execution.

inputs – Input node values.

overrides – Override node values.

Returns:

A dictionary of {node name: code version} .

version_code(node_name: str, run_id: str | None = None) → str

Create a unique code version for the source code defining the node

version_data(result: Any, run_id: str = None) → str

Create a unique data version for the result

This is a user-facing method.

view_run(run_id: str | None = None, output_file_path: str | None = None)

View the dataflow execution, including cache hits/misses.

•

•

•

•

430 Caching

Parameters:

run_id – If None , view the last run. If provided a

run_id , view that run.

output_file_path – If provided a path, save the

visualization to a file.

from hamilton import driver
import my_dataflow

dr =
driver.Builder().with_modules(my_dataflow).with_cache().build()

execute 3 times
dr.execute(...)
dr.execute(...)
dr.execute(...)

view the last run
dr.cache.view_run()
this is equivalent to
dr.cache.view_run(run_id=dr.last_run_id)

get a specific run id
run_id = dr.cache.run_ids[1]
dr.cache.view_run(run_id=run_id)

Quirks and limitations
Caching is a large and complex feature. This section is an attempt to list quirks and limitations,

known and theoretical, to help debugging and guide feature development

The standard library includes a lot of types which are not primitives. Thus, Apache Hamilton

might not be supporting them explicitly. It should be simple to add, so ping us if you need it.

The ResultStore could be architectured better to support custom formats. Right now, we use a

DataSaver to produce the .parquet file and we pickle the DataLoader for later retrieval. Then,

the metadata and result stores are completely unaware of the .parquet file making it difficult

to handle cache eviction.

When a function with default parameter values passes through lifecycle hooks, the default

values are not part of the node_kwargs . They need to be retrieved manually from the

node.Node object.

•

•

•

•

•

431 Caching

supporting the Apache Hamilton AsyncDriver would require making the adapter async, but

also the stores. A potential challenge is ensuring that you can use the same cache (i.e., same

SQLite db and filesystem) for both sync and async drivers.

If the @cache allows to specify the format (e.g., json , parquet), we probably want

.with_cache() to support the same feature.

Apache Hamilton allows a single do_node_execute() hook. Since the caching feature uses it, it

is currently incompatible with other adapters leveraging it (PDBDebugger , CacheAdapter

(deprecated), GracefulErrorAdapter (somewhat redundant with caching), DiskCacheAdapter

(deprecated), NarwhalsAdapter (could be refactored))

the presence of MD5 hashing can be seen as a security risk and prevent adoption. read more in

DVC issues

when hitting the base case of fingerprinting.hash_value() we return the constant

UNHASHABLE_VALUE . If the adapter receives this value, it will append a random UUID to it. This is

to prevent collision between unhashable types. This data_version is no longer deterministic,

but the value can still be retrieved or be part of another node’s cache_key .

having @functools.singledispatch(object) allows to override the base case of hash_value()

because it will catch all types.

Data versioning

This module contains hashing functions for Python objects. It uses functools.singledispatch to

allow specialized implementations based on type. Singledispatch automatically applies the most

specific implementation

This module houses implementations for the Python standard library. Supporting all types is

considerable endeavor, so we’ll add support as types are requested by users.

Otherwise, 3rd party types can be supported via the h_databackends module. This registers

abstract types that can be checked without having to import the 3rd party library. For instance,

there are implementations for pandas.DataFrame and polars.DataFrame despite these libraries not

being imported here.

IMPORTANT all container types that make a recursive call to hash_value or a specific

implementation should pass the depth parameter to prevent RecursionError.

hamilton.caching.fingerprinting.hash_bytes(obj, *args, **kwargs) → str

Convert the primitive to a string and hash it

Primitive type returns a hash and doesn’t have to handle depth.

•

•

•

•

•

•

432 Caching

https://github.com/iterative/dvc/issues/3069
https://github.com/iterative/dvc/issues/3069

hamilton.caching.fingerprinting.hash_mapping(obj, *, ignore_order: bool = True, depth: int = 0,

**kwargs) → str

Hash each key then its value.

The mapping is always sorted first because order shouldn’t matter in a mapping.

NOTE Since Python 3.7, dictionary store insertion order. However, this function assumes that

they key order doesn’t matter to uniquely identify the dictionary.

foo = {"key": 3, "key2": 13}
bar = {"key2": 13, "key": 3}

hash_mapping(foo) == hash_mapping(bar)

hamilton.caching.fingerprinting.hash_none(obj, *args, **kwargs) → str

Hash for None is <none>

Primitive type returns a hash and doesn’t have to handle depth.

hamilton.caching.fingerprinting.hash_numpy_array(obj, *args, depth: int = 0, **kwargs) → str

Get the bytes representation of the array raw data and hash it.

Might not be ideal because different higher-level numpy objects could have the same

underlying array representation (e.g., masked arrays). Unsure, but it’s an area to investigate.

hamilton.caching.fingerprinting.hash_pandas_obj(obj, *args, depth: int = 0, **kwargs) → str

Convert a pandas dataframe, series, or index to a dictionary of {index: row_hash} then hash

it.

Given the hashing for mappings, the physical ordering or rows doesn’t matter. For example,

if the index is a date, the hash will represent the {date: row_hash}, and won’t preserve how

dates were ordered in the DataFrame.

hamilton.caching.fingerprinting.hash_polars_column(obj, *args, depth: int = 0, **kwargs) → str

Promote the single Series to a dataframe and hash it

hamilton.caching.fingerprinting.hash_polars_dataframe(obj, *args, depth: int = 0, **kwargs) → str

Convert a polars dataframe, series, or index to a list of hashes then hash it.

hamilton.caching.fingerprinting.hash_primitive(obj, *args, **kwargs) → str

Convert the primitive to a string and hash it

Primitive type returns a hash and doesn’t have to handle depth.

hamilton.caching.fingerprinting.hash_repr(obj, *args, **kwargs) → str

Use the built-in repr() to get a string representation of the object and hash it.

433 Caching

While .__repr__() might not be implemented for all classes, the function repr() will handle it,

along with exceptions, to always return a value.

Primitive type returns a hash and doesn’t have to handle depth.

hamilton.caching.fingerprinting.hash_sequence(obj, *args, depth: int = 0, **kwargs) → str

Hash each object of the sequence.

Orders matters for the hash since orders matters in a sequence.

hamilton.caching.fingerprinting.hash_set(obj, *args, depth: int = 0, **kwargs) → str

Hash each element of the set, then sort hashes, and create a hash of hashes.

For the same objects in the set, the hashes will be the same.

hamilton.caching.fingerprinting.hash_unordered_mapping(obj, *args, depth: int = 0, **kwargs) →

str

When hashing an unordered mapping, the two following dict have the same hash.

foo = {"key": 3, "key2": 13}
bar = {"key2": 13, "key": 3}

hash_mapping(foo) == hash_mapping(bar)

hamilton.caching.fingerprinting.hash_value(obj, *args, depth=0, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: None, *args, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: bool, *args, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: float, *args, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: int, *args, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: str, *args, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: bytes, *args, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: Sequence, *args, depth: int = 0, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: Mapping, *, ignore_order: bool = True, depth: int

= 0, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: Set, *args, depth: int = 0, **kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPandasColumn, *args, depth: int = 0,

**kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPandasDataFrame, *args, depth: int = 0,

**kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPolarsDataFrame, *args, depth: int = 0,

**kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: AbstractPolarsColumn, *args, depth: int = 0,

**kwargs) → str

hamilton.caching.fingerprinting.hash_value(obj: AbstractNumpyArray, *args, depth: int = 0,

**kwargs) → str

434 Caching

Fingerprinting strategy that computes a hash of the full Python object.

The default case hashes the __dict__ attribute of the object (recursive).

hamilton.caching.fingerprinting.set_max_depth(depth: int) → None

Set the maximum recursion depth for fingerprinting non-supported types.

Parameters:

depth – The maximum depth for fingerprinting.

Stores

stores.base

class hamilton.caching.stores.base.MetadataStore

abstractmethod delete(cache_key: str) → None

Delete data_version keyed by cache_key .

abstractmethod delete_all() → None

Delete all stored metadata.

abstractmethod exists(cache_key: str) → bool

boolean check if a data_version is found for cache_key If True, .get() should

successfully retrieve the data_version .

abstractmethod get(cache_key: str, **kwargs) → str | None

Try to retrieve data_version keyed by cache_key . If retrieval misses return None .

get_last_run() → Any

Return the metadata from the last started run.

abstractmethod get_run(run_id: str) → Sequence[dict]

Return a list of node metadata associated with a run.

For each node, the metadata should include cache_key (created or used) and

data_version . These values allow to manually query the MetadataStore or

ResultStore.

Decoding the cache_key gives the node_name , code_version , and

dependencies_data_versions . Individual implementations may add more information

or decode the cache_key before returning metadata.

435 Caching

abstractmethod get_run_ids() → Sequence[str]

Return a list of run ids, sorted from oldest to newest start time. A run_id is

registered when the metadata_store .initialize() is called.

abstractmethod initialize(run_id: str) → None

Setup the metadata store and log the start of the run

property last_run_id: str

Return

abstractmethod set(cache_key: str, data_version: str, **kwargs) → Any | None

Store the mapping cache_key -> data_version . Can include other metadata (e.g.,

node name, run id, code version) depending on the implementation.

property size: int

Number of unique entries (i.e., cache_keys) in the metadata_store

exception hamilton.caching.stores.base.ResultRetrievalError

Raised by the SmartCacheAdapter when ResultStore.get() fails.

class hamilton.caching.stores.base.ResultStore

abstractmethod delete(data_version: str) → None

Delete result keyed by data_version .

abstractmethod delete_all() → None

Delete all stored results.

abstractmethod exists(data_version: str) → bool

boolean check if a result is found for data_version If True, .get() should

successfully retrieve the result .

abstractmethod get(data_version: str, **kwargs) → Any | None

Try to retrieve result keyed by data_version . If retrieval misses, return None .

abstractmethod set(data_version: str, result: Any, **kwargs) → None

Store result keyed by data_version .

hamilton.caching.stores.base.search_data_adapter_registry(name: str, type_: type) →

Tuple[Type[DataSaver], Type[DataLoader]]

Find pair of DataSaver and DataLoader registered with name and supporting type_

stores.file

class hamilton.caching.stores.file.FileResultStore(path: str, create_dir: bool = True)

delete(data_version: str) → None

436 Caching

Delete result keyed by data_version .

delete_all() → None

Delete all stored results.

exists(data_version: str) → bool

boolean check if a result is found for data_version If True, .get() should

successfully retrieve the result .

get(data_version: str) → Any | None

Try to retrieve result keyed by data_version . If retrieval misses, return None .

set(data_version: str, result: Any, saver_cls: DataSaver | None = None, loader_cls:

DataLoader | None = None) → None

Store result keyed by data_version .

stores.sqlite

class hamilton.caching.stores.sqlite.SQLiteMetadataStore(path: str, connection_kwargs: dict |

None = None)

property connection: Connection

Connection to the SQLite database.

delete(cache_key: str) → None

Delete metadata associated with cache_key .

delete_all() → None

Delete all existing tables from the database

exists(cache_key: str) → bool

boolean check if a data_version is found for cache_key If True, .get() should

successfully retrieve the data_version .

get(cache_key: str) → str | None

Try to retrieve data_version keyed by cache_key . If retrieval misses return None .

get_run(run_id: str) → List[dict]

Return a list of node metadata associated with a run.

Parameters:

run_id – ID of the run to retrieve

Returns:

437 Caching

List of node metadata which includes cache_key ,

data_version , node_name , and code_version . The list

can be empty if a run was initialized but no nodes were

executed.

Raises:

IndexError – if the run_id is not found in metadata

store.

get_run_ids() → List[str]

Return a list of run ids, sorted from oldest to newest start time.

initialize(run_id) → None

Call initialize when starting a run. This will create database tables if necessary.

set(*, cache_key: str, data_version: str, run_id: str, node_name: str = None, code_version: str

= None, **kwargs) → None

Store the mapping cache_key -> data_version . Can include other metadata (e.g.,

node name, run id, code version) depending on the implementation.

stores.memory

class hamilton.caching.stores.memory.InMemoryMetadataStore

delete(cache_key: str) → None

Delete the data_version for cache_key .

delete_all() → None

Delete all stored metadata.

exists(cache_key: str) → bool

Indicate if cache_key exists and it can retrieve a data_version .

get(cache_key: str) → str | None

Retrieve the data_version for cache_key .

get_run(run_id: str) → List[Dict[str, str]]

Return a list of node metadata associated with a run.

get_run_ids() → List[str]

Return a list of all run_id values stored.

initialize(run_id: str) → None

Set up and log the beginning of the run.

438 Caching

classmethod load_from(metadata_store: MetadataStore) → InMemoryMetadataStore

Load in-memory metadata from another MetadataStore instance.

Parameters:

metadata_store – MetadataStore instance to load from.

Returns:

InMemoryMetadataStore copy of the metadata_store .

from hamilton import driver
from hamilton.caching.stores.sqlite import
SQLiteMetadataStore
from hamilton.caching.stores.memory import
InMemoryMetadataStore
import my_dataflow

sqlite_metadata_store =
SQLiteMetadataStore(path="./.hamilton_cache")
in_memory_metadata_store =
InMemoryMetadataStore.load_from(sqlite_metadata_store)

create the Driver with the in-memory metadata store
dr = (

driver.Builder()
.with_modules(my_dataflow)
.with_cache(metadata_store=in_memory_metadata_store)
.build()

)

persist_to(metadata_store: MetadataStore | None = None) → None

Persist in-memory metadata using another MetadataStore implementation.

Parameters:

metadata_store – MetadataStore implementation to use

for persistence. If None, a SQLiteMetadataStore is

created with the default path “./.hamilton_cache”.

from hamilton import driver
from hamilton.caching.stores.sqlite import
SQLiteMetadataStore
from hamilton.caching.stores.memory import
InMemoryMetadataStore

439 Caching

import my_dataflow

dr = (
driver.Builder()
.with_modules(my_dataflow)
.with_cache(metadata_store=InMemoryMetadataStore())
.build()

)

execute the Driver several time. This will populate the
in-memory metadata store
dr.execute(...)

persist to disk in-memory metadata
dr.cache.metadata_store.persist_to(SQLiteMetadataStore(path="./.hamilton_cache"))

set(cache_key: str, data_version: str, run_id: str, **kwargs) → Any | None

Set the data_version for cache_key and associate it with the run_id .

class hamilton.caching.stores.memory.InMemoryResultStore(persist_on_exit: bool = False)

delete(data_version: str) → None

Delete result keyed by data_version .

delete_all() → None

Delete all stored results.

exists(data_version: str) → bool

boolean check if a result is found for data_version If True, .get() should

successfully retrieve the result .

get(data_version: str) → Any | None

Try to retrieve result keyed by data_version . If retrieval misses, return None .

classmethod load_from(result_store: ResultStore, metadata_store: MetadataStore | None =

None, data_versions: Sequence[str] | None = None) → InMemoryResultStore

Load in-memory results from another ResultStore instance.

Since result stores do not store an index of their keys, you must provide a

MetadataStore instance or a list of data_version for which results should be loaded

in memory.

440 Caching

Parameters:

result_store – ResultStore instance to load results

from.

metadata_store – MetadataStore instance from

which all data_version are retrieved.

Returns:

InMemoryResultStore copy of the result_store .

from hamilton import driver
from hamilton.caching.stores.sqlite import
SQLiteMetadataStore
from hamilton.caching.stores.memory import
InMemoryMetadataStore
import my_dataflow

sqlite_metadata_store =
SQLiteMetadataStore(path="./.hamilton_cache")
in_memory_metadata_store =
InMemoryMetadataStore.load_from(sqlite_metadata_store)

create the Driver with the in-memory metadata store
dr = (

driver.Builder()
.with_modules(my_dataflow)
.with_cache(metadata_store=in_memory_metadata_store)
.build()

)

persist_to(result_store: ResultStore | None = None) → None

Persist in-memory results using another ResultStore implementation.

Parameters:

result_store – ResultStore implementation to use for

persistence. If None, a FileResultStore is created with the

default path “./.hamilton_cache”.

set(data_version: str, result: Any, **kwargs) → None

Store result keyed by data_version .

•

•

441 Caching

GraphAdapters

This section helps determine ways to execute Apache Hamilton. Note that these are special cases

of the Lifecycle Adapters meant to help with execution. They implement multiple lifecycle

customizations in a single place.

Reference

SimplePythonDataFrameGraphAdapter

class hamilton.base.SimplePythonDataFrameGraphAdapter

This is the original Hamilton graph adapter. It uses plain python and builds a dataframe

result.

This executes the Hamilton dataflow locally on a machine in a single threaded, single

process fashion. It assumes a pandas dataframe as a result.

Use this when you want to execute on a single machine, without parallelization, and you

want a pandas dataframe as output.

static check_input_type(node_type: Type, input_value: Any) → bool

Used to check whether the user inputs match what the execution strategy & functions

can handle.

Static purely for legacy reasons.

Parameters:

node_type – The type of the node.

input_value – An actual value that we want to inspect

matches our expectation.

Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) → bool

•

•

442 GraphAdapters

Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we’re statically type

checking the annotations for compatibility.

Parameters:

node_type – The type of the node.

input_type – The type of the input that would flow

into the node.

Returns:

True if the types are equivalent, False otherwise.

execute_node(node: Node, kwargs: Dict[str, Any]) → Any

Given a node that represents a hamilton function, execute it. Note, in some adapters

this might just return some type of “future”.

Parameters:

node – the Hamilton Node

kwargs – the kwargs required to exercise the node

function.

Returns:

the result of exercising the node.

SimplePythonGraphAdapter

class hamilton.base.SimplePythonGraphAdapter(result_builder: ResultMixin = None)

This class allows you to swap out the build_result very easily.

This executes the Hamilton dataflow locally on a machine in a single threaded, single

process fashion. It allows you to specify a ResultBuilder to control the return type of what

execute() returns.

•

•

•

•

443 GraphAdapters

Currently this extends SimplePythonDataFrameGraphAdapter, although that’s largely for

legacy reasons (and can probably be changed).

TODO – change this to extend the right class.

__init__(result_builder: ResultMixin = None)

Allows you to swap out the build_result very easily.

Parameters:

result_builder – A ResultMixin object that will be used

to build the result.

static build_dataframe_with_dataframes(outputs: Dict[str, Any]) → DataFrame

Builds a dataframe from the outputs in an “outer join” manner based on index.

The behavior of pd.Dataframe(outputs) is that it will do an outer join based on

indexes of the Series passed in. To handle dataframes, we unpack the dataframe into

a dict of series, check to ensure that no columns are redefined in a rolling fashion

going in order of the outputs requested. This then results in an “enlarged” outputs

dict that is then passed to pd.Dataframe(outputs) to get the final dataframe.

Parameters:

outputs – The outputs to build the dataframe from.

Returns:

A dataframe with the outputs.

build_result(**outputs: Dict[str, Any]) → Any

Delegates to the result builder function supplied.

static check_input_type(node_type: Type, input_value: Any) → bool

Used to check whether the user inputs match what the execution strategy & functions

can handle.

Static purely for legacy reasons.

Parameters:

node_type – The type of the node.

input_value – An actual value that we want to inspect

matches our expectation.

•

•

444 GraphAdapters

Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) → bool

Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we’re statically type

checking the annotations for compatibility.

Parameters:

node_type – The type of the node.

input_type – The type of the input that would flow

into the node.

Returns:

True if the types are equivalent, False otherwise.

static check_pandas_index_types_match(all_index_types: Dict[str, List[str]], time_indexes:

Dict[str, List[str]], no_indexes: Dict[str, List[str]]) → bool

Checks that pandas index types match.

This only logs warning errors, and if debug is enabled, a debug statement to list index

types.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) → bool

Method that checks whether two types are equivalent. This is used when the function

graph is being created.

•

•

445 GraphAdapters

Parameters:

type_from – The type of the node that is the source of

the edge.

type_to – The type of the node that is the destination

of the edge.

Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

do_validate_input(node_type: type, input_value: Any) → bool

Method that an input value maches an expected type.

Parameters:

node_type – The type of the node.

input_value – The value that we want to validate.

Returns:

Whether or not the input value matches the expected

type.

execute_node(node: Node, kwargs: Dict[str, Any]) → Any

•

•

•

•

•

•

•

•

446 GraphAdapters

Given a node that represents a hamilton function, execute it. Note, in some adapters

this might just return some type of “future”.

Parameters:

node – the Hamilton Node

kwargs – the kwargs required to exercise the node

function.

Returns:

the result of exercising the node.

input_types() → List[Type[Type]]

Currently this just shoves anything into a dataframe. We should probably tighten this

up.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

static pandas_index_types(outputs: Dict[str, Any]) → Tuple[Dict[str, List[str]], Dict[str,

List[str]], Dict[str, List[str]]]

This function creates three dictionaries according to whether there is an index type or

not.

The three dicts we create are: 1. Dict of index type to list of outputs that match it. 2.

Dict of time series / categorical index types to list of outputs that match it. 3. Dict of

no-index key to list of outputs with no index type.

Parameters:

outputs – the dict we’re trying to create a result from.

Returns:

dict of all index types, dict of time series/categorical

index types, dict if there is no index

HamiltonGraphAdapter

Graph adapters control how functions are executed as the graph is walked.

•

•

447 GraphAdapters

class hamilton.base.HamiltonGraphAdapter

Legacy graph adapter – see lifecycle methods for more information.

h_async.AsyncGraphAdapter

class hamilton.async_driver.AsyncGraphAdapter(result_builder: ResultMixin = None,

async_lifecycle_adapters: LifecycleAdapterSet | None = None)

Graph adapter for use with the AsyncDriver class.

__init__(result_builder: ResultMixin = None, async_lifecycle_adapters: LifecycleAdapterSet |

None = None)

Creates an AsyncGraphAdapter class. Note this will only work with the AsyncDriver

class.

Some things to note:

This executes everything at the end (recursively). E.G. the final DAG

nodes are awaited

This does not work with decorators when the async function is being

decorated. That is because that function is called directly within the

decorator, so we cannot await it.

build_result(**outputs: Any) → Any

Given a set of outputs, build the result.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None) → Any

Executes a node. Note this doesn’t actually execute it – rather, it returns a task. This

does not use async def, as we want it to be awaited on later – this await is done in

1.

2.

448 GraphAdapters

processing parameters of downstream functions/final results. We can ensure that as

we also run the driver that this corresponds to.

Note that this assumes that everything is awaitable, even if it isn’t. In that case, it just

wraps it in one.

Parameters:

task_id

node

run_id

node – Node to wrap

kwargs – Keyword arguments (either coroutines or

raw values) to call it with

Returns:

A task

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

h_threadpool.FutureAdapter

This is an adapter to delegate execution of the individual nodes in a Apache Hamilton graph to a

threadpool. This is useful when you have a graph with many nodes that can be executed in

parallel.

class hamilton.plugins.h_threadpool.FutureAdapter(max_workers: int = None,

thread_name_prefix: str = '', result_builder: ResultBuilder = None)

Adapter that lazily submits each function for execution to a ThreadpoolExecutor.

•

•

•

•

•

449 GraphAdapters

This adapter has similar behavior to the async Hamilton driver which allows for parallel

execution of functions.

This adapter works because we don’t have to worry about object serialization.

Caveats: - DAGs with lots of CPU intense functions will limit usefulness of this adapter,

unless they release the GIL. - DAGs with lots of I/O bound work will benefit from this

adapter, e.g. making API calls. - The max parallelism is limited by the number of threads in

the ThreadPoolExecutor.

Unsupported behavior: - The FutureAdapter does not support DAGs with Parallelizable &

Collect functions. This is due to laziness rather than anything inherently technical. If you’d

like this feature, please open an issue on the Hamilton repository.

__init__(max_workers: int = None, thread_name_prefix: str = '', result_builder: ResultBuilder

= None)

Constructor. :param max_workers: The maximum number of threads that can be used

to execute the given calls. :param thread_name_prefix: An optional name prefix to give

our threads. :param result_builder: Optional. Result builder to use for building the

result.

build_result(**outputs: Any) → Any

Given a set of outputs, build the result.

This function will block until all futures are resolved.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

do_remote_execute(*, execute_lifecycle_for_node: Callable, node: Node, **kwargs: Dict[str,

Any]) → Any

Function that submits the passed in function to the ThreadPoolExecutor to be

executed after wrapping it with the _new_fn function.

450 GraphAdapters

Parameters:

node – Node that is being executed

execute_lifecycle_for_node – Function executing

lifecycle_hooks and lifecycle_methods

kwargs – Keyword arguments that are being passed

into the function

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

CachingGraphAdapter

This is an experimental GraphAdapter; there is a possibility of their API changing. That said, the

code is stable, and you should feel comfortable giving the code for a spin - let us know how it

goes, and what the rough edges are if you find any. We’d love feedback if you are using these to

know how to improve them or graduate them.

class hamilton.experimental.h_cache.CachingGraphAdapter(cache_path: str, *args,

force_compute: Set[str] | None = None, writers: Dict[str, Callable[[Any, str, str], None]] | None =

None, readers: Dict[str, Callable[[Any, str], Any]] | None = None, **kwargs)

Caching adapter.

Any node with tag “cache” will be cached (or loaded from cache) in the format defined by

the tag’s value. There are a handful of formats supported, and other formats’ readers and

writers can be provided to the constructor.

Values are loaded from cache if the node’s file exists, unless one of these is true:

node is explicitly forced to be computed with a constructor argument,

any of its (potentially transitive) dependencies that are configured to be cached

was nevertheless computed (either forced or missing cached file).

•

•

•

•

•

451 GraphAdapters

Custom Serializers
One can provide custom readers and writers for any format by passing them to the

constructor. These readers and writers will override the default ones. If you don’t want to

override, but rather extend the default ones, you can do so by registering them with the

register method on the appropriate function.

Writer functions need to have the following signature: def write_<format>(data: Any, filepath:

str, name: str) -> None: … where data is the data to be written, filepath is the path to the file

to be written to, and name is the name of the node that is being written.

Reader functions need to have the following signature: def read_<format>(data: Any,

filepath: str) -> Any: … where data is an EMPTY OBJECT of the type you wish to instantiate,

and filepath is the path to the file to be read from.

For example, if you want to extend JSON reader/writer to work with your custom type T, you

can do the following:

@write_json.register(T)
def write_json_pd1(data: T, filepath: str, name: str) ->
None: ...

@read_json.register(T)
def read_json_dict(data: T, filepath: str) -> T: ...

Usage
This is a simple example of the usage of CachingGraphAdapter.

First, let’s define some nodes in nodes.py:

import pandas as pd
from hamilton.function_modifiers import tag

def data_a() -> pd.DataFrame: ...

@tag(cache="parquet")
def data_b() -> pd.DataFrame: ...

def transformed(data_a: pd.DataFrame, data_b: pd.DataFrame) ->
pd.DataFrame: ...

Notice that data_b is configured to be cached in a parquet file.

452 GraphAdapters

We then simply initialize the driver with a caching adapter:

from hamilton import base
from hamilton.driver import Driver
from hamilton.experimental import h_cache

import nodes

adapter = h_cache.CachingGraphAdapter(cache_path,
base.PandasDataFrameResult())
dr = Driver(config, nodes, adapter=adapter)
result = dr.execute(["transformed"])

Because `data_b` has been cached now, only `data_a` and
`transformed` nodes
will actually run.
result = dr.execute(["transformed"])

__init__(cache_path: str, *args, force_compute: Set[str] | None = None, writers: Dict[str,

Callable[[Any, str, str], None]] | None = None, readers: Dict[str, Callable[[Any, str], Any]] |

None = None, **kwargs)

Constructs the adapter.

Parameters:

cache_path – Path to the directory where cached files

are stored.

force_compute – Set of nodes that should be forced

to compute even if cache exists.

writers – A dictionary of writers for custom formats.

readers – A dictionary of readers for custom formats.

static build_dataframe_with_dataframes(outputs: Dict[str, Any]) → DataFrame

Builds a dataframe from the outputs in an “outer join” manner based on index.

The behavior of pd.Dataframe(outputs) is that it will do an outer join based on

indexes of the Series passed in. To handle dataframes, we unpack the dataframe into

a dict of series, check to ensure that no columns are redefined in a rolling fashion

going in order of the outputs requested. This then results in an “enlarged” outputs

dict that is then passed to pd.Dataframe(outputs) to get the final dataframe.

Parameters:

•

•

•

•

453 GraphAdapters

outputs – The outputs to build the dataframe from.

Returns:

A dataframe with the outputs.

build_result(**outputs: Dict[str, Any]) → Any

Clears the computed nodes information and delegates to the super class.

static check_input_type(node_type: Type, input_value: Any) → bool

Used to check whether the user inputs match what the execution strategy & functions

can handle.

Static purely for legacy reasons.

Parameters:

node_type – The type of the node.

input_value – An actual value that we want to inspect

matches our expectation.

Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) → bool

Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we’re statically type

checking the annotations for compatibility.

Parameters:

node_type – The type of the node.

input_type – The type of the input that would flow

into the node.

Returns:

True if the types are equivalent, False otherwise.

•

•

•

•

454 GraphAdapters

static check_pandas_index_types_match(all_index_types: Dict[str, List[str]], time_indexes:

Dict[str, List[str]], no_indexes: Dict[str, List[str]]) → bool

Checks that pandas index types match.

This only logs warning errors, and if debug is enabled, a debug statement to list index

types.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) → bool

Method that checks whether two types are equivalent. This is used when the function

graph is being created.

Parameters:

type_from – The type of the node that is the source of

the edge.

type_to – The type of the node that is the destination

of the edge.

Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

do_validate_input(node_type: type, input_value: Any) → bool

•

•

•

•

•

•

455 GraphAdapters

Method that an input value maches an expected type.

Parameters:

node_type – The type of the node.

input_value – The value that we want to validate.

Returns:

Whether or not the input value matches the expected

type.

execute_node(node: Node, kwargs: Dict[str, Any]) → Any

Executes nodes conditionally according to caching rules.

This node is executed if at least one of these is true:

no cache is present,

it is explicitly forced by passing it to the adapter in force_compute ,

at least one of its upstream nodes that had a @cache annotation was computed,

either due to lack of cache or being explicitly forced.

input_types() → List[Type[Type]]

Currently this just shoves anything into a dataframe. We should probably tighten this

up.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

static pandas_index_types(outputs: Dict[str, Any]) → Tuple[Dict[str, List[str]], Dict[str,

List[str]], Dict[str, List[str]]]

This function creates three dictionaries according to whether there is an index type or

not.

The three dicts we create are: 1. Dict of index type to list of outputs that match it. 2.

Dict of time series / categorical index types to list of outputs that match it. 3. Dict of

no-index key to list of outputs with no index type.

Parameters:

outputs – the dict we’re trying to create a result from.

Returns:

•

•

•

•

•

456 GraphAdapters

dict of all index types, dict of time series/categorical

index types, dict if there is no index

h_dask.DaskGraphAdapter

Runs the entire Hamilton DAG on dask.

class hamilton.plugins.h_dask.DaskGraphAdapter(dask_client: Client, result_builder: ResultMixin

= None, visualize_kwargs: dict = None, use_delayed: bool = True, compute_at_end: bool = True)

Class representing what’s required to make Hamilton run on Dask.

This walks the graph and translates it to run onto Dask.

Use pip install sf-hamilton[dask] to get the dependencies required to run this.

Try this adapter when:

Dask is a good choice to scale computation when you really can’t do things in

memory anymore with pandas. For most simple pandas operations, you

should not have to do anything to scale! You just need to load in data via

dask rather than pandas.

Dask can help scale to larger data sets if running on a cluster – you’ll just

have to switch to natively using their object types if that’s the case (set

use_delayed=False, and compute_at_end=False).

Use this adapter if you want to utilize multiple cores on a single machine, or

you want to scale to large data set sizes with a Dask cluster that you can

connect to.

The ONLY CAVEAT really is whether you use delayed or dask datatypes (or

both).

Please read the following notes about its limitations.

Notes on scaling:

Multi-core on single machine ✅

Distributed computation on a Dask cluster ✅

Scales to any size of data supported by Dask ✅; assuming you load it

appropriately via Dask loaders.

1.

2.

3.

4.

•

•

•

457 GraphAdapters

https://dask.org/

Works best with Pandas 2.0+ and pyarrow backend.

Function return object types supported:

Works for any python object that can be serialized by the Dask framework. ✅

Pandas?
Dask implements a good subset of the Pandas API:

You might be able to get away with scaling without having to change your code at

all!

See https://docs.dask.org/en/latest/dataframe-api.html for Pandas supported APIs.

If it is not supported by their API, you have to then read up and think about how to

structure you hamilton function computation – https://docs.dask.org/en/latest/

dataframe.html

if paired with DaskDataFrameResult & use_delayed=False & compute_at_end=False,

it will help you produce a dask dataframe as a result that you can then convert

back to pandas if you want.

Loading Data:

see https://docs.dask.org/en/latest/best-practices.html#load-data-with-dask.

we recommend creating a python module specifically encapsulating

functions that help you load data.

CAVEATS with use_delayed=True:

If using use_delayed=True serialization costs can outweigh the benefits of

parallelism, so you should benchmark your code to see if it’s worth it.

With this adapter & use_delayed=True, it can naively wrap all your functions

with delayed, which will mean they will be executed and scheduled across

the dask workers. This is a good choice if your computation is slow, or

Hamilton graph is highly parallelizable.

DISCLAIMER – this class is experimental, so signature changes are a possibility! But we’ll aim

to be backwards compatible where possible.

__init__(dask_client: Client, result_builder: ResultMixin = None, visualize_kwargs: dict =

None, use_delayed: bool = True, compute_at_end: bool = True)

•

•

•

•

•

•

•

•

•

•

458 GraphAdapters

https://docs.dask.org/en/latest/dataframe-api.html
https://docs.dask.org/en/latest/dataframe.html
https://docs.dask.org/en/latest/dataframe.html
https://docs.dask.org/en/latest/best-practices.html#load-data-with-dask

Constructor

You have the ability to pass in a ResultMixin object to the constructor to control the

return type that gets produced by running on Dask.

Parameters:

dask_client – the dask client – we don’t do anything

with it, but thought that it would be useful to wire

through here.

result_builder – The function that will build the

result. Optional, defaults to pandas dataframe.

visualize_kwargs – Arguments to visualize the graph

using dask’s internals. None, means no visualization.

Dict, means visualize – see https://docs.dask.org/en/

latest/api.html?highlight=visualize#dask.visualize for

what to pass in.

use_delayed – Default is True for backwards

compatibility. Whether to use dask.delayed to wrap

every function. Note: it is probably not necessary to

mix this with using dask objects, e.g. dataframes/

series. They are by nature lazily computed and

operate over the dask data types, so you don’t need to

wrap them with delayed. Use delayed if you want to

farm out computation.

compute_at_end – Default is True for backwards

compatibility. Whether to compute() at the end. That

is, should .compute() be called in the result builder to

quick off computation.

build_result(**outputs: Dict[str, Any]) → Any

Builds the result and brings it back to this running process.

Parameters:

outputs – the dictionary of key -> Union[delayed object

reference | value]

Returns:

•

•

•

•

•

459 GraphAdapters

https://docs.dask.org/en/latest/api.html?highlight=visualize#dask.visualize
https://docs.dask.org/en/latest/api.html?highlight=visualize#dask.visualize

The type of object returned by self.result_builder. Note

the following behaviors: - if you use_delayed=True, then

the result will be a delayed object. - if you

use_delayed=True & computed_at_end=True, then the

result will be the return type of self.result_builder. - if

you use_delayed=False & computed_at_end=True, this

will only work if the self.result_builder returns a dask

type, as we will try to compute it. - if you

use_delayed=False & computed_at_end=False, this will

return the result of self.result_builder.

static check_input_type(node_type: Type, input_value: Any) → bool

Used to check whether the user inputs match what the execution strategy & functions

can handle.

Static purely for legacy reasons.

Parameters:

node_type – The type of the node.

input_value – An actual value that we want to inspect

matches our expectation.

Returns:

True if the input is valid, False otherwise.

static check_node_type_equivalence(node_type: Type, input_type: Type) → bool

Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we’re statically type

checking the annotations for compatibility.

Parameters:

node_type – The type of the node.

input_type – The type of the input that would flow

into the node.

Returns:

•

•

•

•

460 GraphAdapters

True if the types are equivalent, False otherwise.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) → bool

Method that checks whether two types are equivalent. This is used when the function

graph is being created.

Parameters:

type_from – The type of the node that is the source of

the edge.

type_to – The type of the node that is the destination

of the edge.

Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

do_validate_input(node_type: type, input_value: Any) → bool

Method that an input value maches an expected type.

•

•

•

•

•

•

461 GraphAdapters

Parameters:

node_type – The type of the node.

input_value – The value that we want to validate.

Returns:

Whether or not the input value matches the expected

type.

execute_node(node: Node, kwargs: Dict[str, Any]) → Any

Function that is called as we walk the graph to determine how to execute a hamilton

function.

Parameters:

node – the node from the graph.

kwargs – the arguments that should be passed to it.

Returns:

returns a dask delayed object.

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

h_spark.PySparkUDFGraphAdapter

This is an experimental GraphAdapter; there is a possibility of their API changing. That said, the

code is stable, and you should feel comfortable giving the code for a spin - let us know how it

goes, and what the rough edges are if you find any. We’d love feedback if you are using these to

know how to improve them or graduate them.

•

•

•

•

462 GraphAdapters

class hamilton.plugins.h_spark.PySparkUDFGraphAdapter

UDF graph adapter for PySpark.

This graph adapter enables one to write Hamilton functions that can be executed as UDFs in

PySpark.

Core to this is the mapping of function arguments to Spark columns available in the passed

in dataframe.

This adapter currently supports:

regular UDFs, these are executed in a row based fashion.

and a single variant of Pandas UDFs: func(series+) -> series

can also run regular Hamilton functions, which will execute spark driver side.

DISCLAIMER – this class is experimental, so signature changes are a possibility!

__init__()

build_result(**outputs: Dict[str, Any]) → DataFrame

Builds the result and brings it back to this running process.

Parameters:

outputs – the dictionary of key -> Union[ray object

reference | value]

Returns:

The type of object returned by self.result_builder.

static check_input_type(node_type: Type, input_value: Any) → bool

If the input is a pyspark dataframe, skip, else delegate the check.

static check_node_type_equivalence(node_type: Type, input_type: Type) → bool

Checks for the htype.column annotation and deals with it.

execute_node(node: Node, kwargs: Dict[str, Any]) → Any

Given a node to execute, process it and apply a UDF if applicable.

Parameters:

node – the node we’re processing.

kwargs – the inputs to the function.

•

•

•

•

•

463 GraphAdapters

Returns:

the result of the function.

h_ray.RayGraphAdapter

The graph adapter to delegate execution of the individual nodes in a Apache Hamilton graph to

Ray.

class hamilton.plugins.h_ray.RayGraphAdapter(result_builder: ResultMixin, ray_init_config:

Dict[str, Any] = None, shutdown_ray_on_completion: bool = False)

Class representing what’s required to make Hamilton run on Ray.

This walks the graph and translates it to run onto Ray.

Use pip install sf-hamilton[ray] to get the dependencies required to run this.

Use this if:

you want to utilize multiple cores on a single machine, or you want to scale

to larger data set sizes with a Ray cluster that you can connect to. Note (1):

you are still constrained by machine memory size with Ray; you can’t just

scale to any dataset size. Note (2): serialization costs can outweigh the

benefits of parallelism so you should benchmark your code to see if it’s

worth it.

Notes on scaling:

Multi-core on single machine ✅

Distributed computation on a Ray cluster ✅

Scales to any size of data ⛔; you are LIMITED by the memory on the

instance/computer 💻.

Function return object types supported:

Works for any python object that can be serialized by the Ray framework. ✅

•

•

•

•

•

464 GraphAdapters

https://ray.io/

Pandas?

⛔ Ray DOES NOT do anything special about Pandas.

CAVEATS

Serialization costs can outweigh the benefits of parallelism, so you should

benchmark your code to see if it’s worth it.

DISCLAIMER – this class is experimental, so signature changes are a possibility!

__init__(result_builder: ResultMixin, ray_init_config: Dict[str, Any] = None,

shutdown_ray_on_completion: bool = False)

Constructor

You have the ability to pass in a ResultMixin object to the constructor to control the

return type that gets produce by running on Ray.

Parameters:

result_builder – Required. An implementation of

base.ResultMixin.

ray_init_config – allows to connect to an existing

cluster or start a new one with custom configuration

(https://docs.ray.io/en/latest/ray-core/api/doc/

ray.init.html)

shutdown_ray_on_completion – by default we leave

the cluster open, but we can also shut it down

do_build_result(outputs: Dict[str, Any]) → Any

Builds the result and brings it back to this running process.

Parameters:

outputs – the dictionary of key -> Union[ray object

reference | value]

Returns:

The type of object returned by self.result_builder.

static do_check_edge_types_match(type_from: Type, type_to: Type) → bool

•

•

•

•

•

465 GraphAdapters

https://docs.ray.io/en/latest/ray-core/api/doc/ray.init.html
https://docs.ray.io/en/latest/ray-core/api/doc/ray.init.html

Method that checks whether two types are equivalent. This is used when the function

graph is being created.

Parameters:

type_from – The type of the node that is the source of

the edge.

type_to – The type of the node that is the destination

of the edge.

Return bool:

Whether or not they are equivalent

do_remote_execute(*, execute_lifecycle_for_node: Callable, node: Node, **kwargs: Dict[str,

Any]) → Any

Function that is called as we walk the graph to determine how to execute a hamilton

function.

Parameters:

execute_lifecycle_for_node – wrapper function that

executes lifecycle hooks and methods

kwargs – the arguments that should be passed to it.

Returns:

returns a ray object reference.

static do_validate_input(node_type: Type, input_value: Any) → bool

Method that an input value maches an expected type.

Parameters:

node_type – The type of the node.

input_value – The value that we want to validate.

Returns:

Whether or not the input value matches the expected

type.

•

•

•

•

•

•

466 GraphAdapters

post_graph_execute(*args, **kwargs)

We have the option to close the cluster down after execution.

h_spark.SparkKoalasGraphAdapter

This is an experimental GraphAdapter; there is a possibility of their API changing. That said, the

code is stable, and you should feel comfortable giving the code for a spin - let us know how it

goes, and what the rough edges are if you find any. We’d love feedback if you are using these to

know how to improve them or graduate them.

class hamilton.plugins.h_spark.SparkKoalasGraphAdapter(spark_session, result_builder:

ResultMixin, spine_column: str)

Class representing what’s required to make Hamilton run on Spark with Koalas, i.e. Pandas

on Spark.

This walks the graph and translates it to run onto Apache Spark using the Pandas API on

Spark

Use pip install sf-hamilton[spark] to get the dependencies required to run this.

Currently, this class assumes you’re running SPARK 3.2+. You’d generally use this if you have

an existing spark cluster running in your workplace, and you want to scale to very large data

set sizes.

Some tips on koalas (before it was merged into spark 3.2):

https://databricks.com/blog/2020/03/31/10-minutes-from-pandas-to-koalas-

on-apache-spark.html

https://spark.apache.org/docs/latest/api/python/user_guide/

pandas_on_spark/index.html

Spark is a more heavyweight choice to scale computation for Hamilton graphs creating a

Pandas Dataframe.

Notes on scaling:

Multi-core on single machine ✅ (if you setup Spark locally to do so)

Distributed computation on a Spark cluster ✅

Scales to any size of data as permitted by Spark ✅

•

•

•

•

•

467 GraphAdapters

https://spark.apache.org/%22
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://databricks.com/blog/2020/03/31/10-minutes-from-pandas-to-koalas-on-apache-spark.html
https://databricks.com/blog/2020/03/31/10-minutes-from-pandas-to-koalas-on-apache-spark.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html
https://spark.apache.org/docs/latest/api/python/user_guide/pandas_on_spark/index.html

Function return object types supported:

⛔ Not generic. This does not work for every Hamilton graph.

✅ Currently we’re targeting this at Pandas/Koalas types [dataframes, series].

Pandas?

✅ Koalas on Spark 3.2+ implements a good subset of the pandas API. Keep it

simple and you should be good to go!

CAVEATS

Serialization costs can outweigh the benefits of parallelism, so you should

benchmark your code to see if it’s worth it.

DISCLAIMER – this class is experimental, so signature changes are a possibility!

__init__(spark_session, result_builder: ResultMixin, spine_column: str)

Constructor

You only have the ability to return either a Pandas on Spark Dataframe or a Pandas

Dataframe. To do that you either use the stock base.PandasDataFrameResult class, or

you use h_spark.KoalasDataframeResult.

Parameters:

spark_session – the spark session to use.

result_builder – the function to build the result –

currently on Pandas and Koalas are “supported”.

spine_column – the column we should use first as the

spine and then subsequently join against.

build_result(**outputs: Dict[str, Any]) → DataFrame | DataFrame | dict

Given a set of outputs, build the result.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

•

•

•

•

•

•

•

468 GraphAdapters

https://github.com/apache/hamilton/blob/main/hamilton/base.py#L39
https://github.com/apache/hamilton/blob/main/hamilton/experimental/h_spark.py#L16

the result of the execution of the graph.

static check_input_type(node_type: Type, input_value: Any) → bool

Function to equate an input value, with expected node type.

We need this to equate pandas and koalas objects/types.

Parameters:

node_type – the declared node type

input_value – the actual input value

Returns:

whether this is okay, or not.

static check_node_type_equivalence(node_type: Type, input_type: Type) → bool

Function to help equate pandas with koalas types.

Parameters:

node_type – the declared node type.

input_type – the type of what we want to pass into it.

Returns:

whether this is okay, or not.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

do_check_edge_types_match(type_from: type, type_to: type) → bool

Method that checks whether two types are equivalent. This is used when the function

graph is being created.

Parameters:

type_from – The type of the node that is the source of

the edge.

•

•

•

•

•

469 GraphAdapters

type_to – The type of the node that is the destination

of the edge.

Return bool:

Whether or not they are equivalent

do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any],

task_id: str | None = None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

do_validate_input(node_type: type, input_value: Any) → bool

Method that an input value maches an expected type.

Parameters:

node_type – The type of the node.

input_value – The value that we want to validate.

Returns:

Whether or not the input value matches the expected

type.

execute_node(node: Node, kwargs: Dict[str, Any]) → Any

Function that is called as we walk the graph to determine how to execute a hamilton

function.

Parameters:

node – the node from the graph.

•

•

•

•

•

•

•

•

470 GraphAdapters

kwargs – the arguments that should be passed to it.

Returns:

returns a koalas column

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

•

471 GraphAdapters

Lifecycle Adapters

Currently a few of the API extensions are still experimental. Note this doesn’t mean they’re not

well-tested or thought out – rather that we’re actively looking for feedback. More docs upcoming,

but for now fish around the experimental package, and give the extensions a try!

The other extensions live within plugins. These are fully supported and will be backwards

compatible across major versions.

Customization

The subsequent documents contain public-facing APIs for customizing Apache Hamilton’s

execution. Note that the public-facing APIs are still a work in progress – we will be improving the

documentation. We plan for the APIs, however, to be stable looking forward.

lifecycle.ResultBuilder

class hamilton.lifecycle.api.ResultBuilder

Abstract class for building results. All result builders should inherit from this class and

implement the build_result function. Note that applicable_input_type and output_type are

optional, but recommended, for backwards compatibility. They let us type-check this. They

will default to Any, which means that they’ll connect to anything.

abstractmethod build_result(**outputs: Any) → Any

Given a set of outputs, build the result.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

final do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

472 Lifecycle Adapters

https://github.com/apache/hamilton/tree/main/hamilton/experimental
https://github.com/apache/hamilton/tree/main/hamilton/plugins

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

lifecycle.LegacyResultMixin

class hamilton.lifecycle.api.LegacyResultMixin

Backwards compatible legacy result builder. This utilizes a static method as we used to do

that, although often times they got confused. If you want a result builder, use ResultBuilder

above instead.

static build_result(**outputs: Any) → Any

Given a set of outputs, build the result.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

473 Lifecycle Adapters

Returns the output type of this result builder :return: the type that this creates

lifecycle.api.GraphAdapter

class hamilton.lifecycle.api.GraphAdapter

This is an implementation of HamiltonGraphAdapter, which has now been implemented with

lifecycle methods/hooks.

static build_result(**outputs: Any) → Any

Given a set of outputs, build the result.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

abstractmethod static check_input_type(node_type: Type, input_value: Any) → bool

Used to check whether the user inputs match what the execution strategy & functions

can handle.

Static purely for legacy reasons.

Parameters:

node_type – The type of the node.

input_value – An actual value that we want to inspect

matches our expectation.

Returns:

True if the input is valid, False otherwise.

abstractmethod static check_node_type_equivalence(node_type: Type, input_type: Type) →

bool

Used to check whether two types are equivalent.

Static, purely for legacy reasons.

This is used when the function graph is being created and we’re statically type

checking the annotations for compatibility.

•

•

474 Lifecycle Adapters

Parameters:

node_type – The type of the node.

input_type – The type of the input that would flow

into the node.

Returns:

True if the types are equivalent, False otherwise.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

final do_check_edge_types_match(type_from: type, type_to: type) → bool

Method that checks whether two types are equivalent. This is used when the function

graph is being created.

Parameters:

type_from – The type of the node that is the source of

the edge.

type_to – The type of the node that is the destination

of the edge.

Return bool:

Whether or not they are equivalent

final do_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

•

•

•

•

•

•

•

475 Lifecycle Adapters

task_id – ID of the task, defaults to None if not in a

task setting

final do_validate_input(node_type: type, input_value: Any) → bool

Method that an input value maches an expected type.

Parameters:

node_type – The type of the node.

input_value – The value that we want to validate.

Returns:

Whether or not the input value matches the expected

type.

abstractmethod execute_node(node: Node, kwargs: Dict[str, Any]) → Any

Given a node that represents a hamilton function, execute it. Note, in some adapters

this might just return some type of “future”.

Parameters:

node – the Hamilton Node

kwargs – the kwargs required to exercise the node

function.

Returns:

the result of exercising the node.

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

•

•

•

•

•

476 Lifecycle Adapters

lifecycle.NodeExecutionHook

class hamilton.lifecycle.api.NodeExecutionHook

Implement this to hook into the node execution lifecycle. You can call anything before and

after the driver

final post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool,

error: Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

final pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str |

None = None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

abstractmethod run_after_node_execution(*, node_name: str, node_tags: Dict[str, Any],

node_kwargs: Dict[str, Any], node_return_type: type, result: Any, error: Exception | None,

success: bool, task_id: str | None, run_id: str, **future_kwargs: Any)

Hook that is executed post node execution.

Parameters:

node_name – Name of the node in question

node_tags – Tags of the node

node_kwargs – Keyword arguments passed to the

node

node_return_type – Return type of the node

result – Output of the node, None if an error occurred

error – Error that occurred, None if no error occurred

success – Whether the node executed successfully

task_id – The ID of the task, none if not in a task-

based environment

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

•

•

•

•

•

•

•

•

•

•

477 Lifecycle Adapters

abstractmethod run_before_node_execution(*, node_name: str, node_tags: Dict[str, Any],

node_kwargs: Dict[str, Any], node_return_type: type, task_id: str | None, run_id: str,

node_input_types: Dict[str, Any], **future_kwargs: Any)

Hook that is executed prior to node execution.

Parameters:

node_name – Name of the node.

node_tags – Tags of the node

node_kwargs – Keyword arguments to pass to the

node

node_return_type – Return type of the node

task_id – The ID of the task, none if not in a task-

based environment

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

node_input_types – the input types to the node and

what it is expecting

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

lifecycle.api.GraphExecutionHook

class hamilton.lifecycle.api.GraphExecutionHook

Implement this to execute code before and after graph execution. This is useful for logging,

etc…

final post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error:

Exception | None, results: Dict[str, Any] | None)

Just delegates to the interface method, passing in the right data.

final pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs:

Dict[str, Any], overrides: Dict[str, Any])

Implementation of the pre_graph_execute hook. This just converts the inputs to the

format the user-facing hook is expecting – performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

•

•

•

•

•

•

•

•

478 Lifecycle Adapters

abstractmethod run_after_graph_execution(*, graph: HamiltonGraph, success: bool, error:

Exception | None, results: Dict[str, Any] | None, run_id: str, **future_kwargs: Any)

This is run after graph execution. This allows you to do anything you want after the

graph executes, knowing the results of the execution/any errors.

Parameters:

graph – Graph that is being executed

results – Results of the graph execution

error – Error that occurred, None if no error occurred

success – Whether the graph executed successfully

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

abstractmethod run_before_graph_execution(*, graph: HamiltonGraph, final_vars: List[str],

inputs: Dict[str, Any], overrides: Dict[str, Any], execution_path: Collection[str], run_id: str,

**future_kwargs: Any)

This is run prior to graph execution. This allows you to do anything you want before

the graph executes, knowing the basic information that was passed in.

Parameters:

graph – Graph that is being executed

final_vars – Output variables of the graph

inputs – Input variables passed to the graph

overrides – Overrides passed to the graph

execution_path – Collection of nodes that will be

executed – these are just the nodes (not input nodes)

that will be run during the course of execution.

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

•

•

•

•

•

•

•

•

•

•

•

•

•

479 Lifecycle Adapters

lifecycle.api.EdgeConnectionHook

class hamilton.lifecycle.api.EdgeConnectionHook

Implement this to customize edges that are allowed in the graph. You can do customizations

around typing here.

abstractmethod check_edge_types_match(type_from: type, type_to: type, **kwargs: Any) →

bool

This is run to check if edge types match. Note that this is an OR functionality – this is

run after we do some default checks, so this can only be permissive. Reach out if you

want to be more restrictive than the default checks.

Parameters:

type_from – The type of the node that is the source of

the edge.

type_to – The type of the node that is the destination

of the edge.

kwargs – This is kept for future backwards

compatibility.

Returns:

Whether or not the two node types form a valid edge.

final do_check_edge_types_match(*, type_from: type, type_to: type) → bool

Wraps the check_edge_types_match method, providing a bridge to an external-facing

API. Do not override this!

final do_validate_input(*, node_type: type, input_value: Any) → bool

Wraps the validate_input method, providing a bridge to an external-facing API. Do not

override this!

abstractmethod validate_input(node_type: type, input_value: Any, **kwargs: Any) → bool

This is run to check if the input is valid for the node type. Note that this is an OR

functionality – this is run after we do some default checks, so this can only be

permissive. Reach out if you want to be more restrictive than the default checks.

Parameters:

node_type – Type of the node that is accepting the

input.

•

•

•

•

480 Lifecycle Adapters

input_value – Value of the input

kwargs – Keyword arguments – this is kept for future

backwards compatibility.

Returns:

Whether the input is valid for the node type.

lifecycle.api.NodeExecutionMethod

class hamilton.lifecycle.api.NodeExecutionMethod

API for executing a node. This takes in tags, callable, node name, and kwargs, and is

responsible for executing the node and returning the result. Note this is not (currently) able

to be layered together, although we may add that soon.

final do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None

= None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

abstractmethod run_to_execute_node(*, node_name: str, node_tags: Dict[str, Any],

node_callable: Any, node_kwargs: Dict[str, Any], task_id: str | None, is_expand: bool,

is_collect: bool, **future_kwargs: Any) → Any

This method is responsible for executing the node and returning the result.

Parameters:

node_name – Name of the node.

node_tags – Tags of the node.

•

•

•

•

•

•

•

•

481 Lifecycle Adapters

node_callable – Callable of the node.

node_kwargs – Keyword arguments to pass to the

node.

task_id – The ID of the task, none if not in a task-

based environment

is_expand – Whether the node is parallelizable.

is_collect – Whether the node is a collect node.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

Returns:

The result of the node execution – up to you to return

this.

lifecycle.api.StaticValidator

class hamilton.lifecycle.api.StaticValidator

Performs static validation of the DAG. Note that this has the option to perform default

validation for each method – this means that if you don’t implement one of these it is OK.

class MyTagValidator(api.StaticValidator):
'''Validates tags on a node'''

def run_to_validate_node(
self, *, node: HamiltonNode, **future_kwargs

) -> tuple[bool, Optional[str]]:
if node.tags.get("node_type", "") == "output":

table_name = node.tags.get("table_name")
if not table_name: # None or empty

error_msg = (f"Node {node.tags['module']}.
{node.name} "

"is an output node, but does not have a table_name tag.")
return False, error_msg

return True, None

run_to_validate_graph(graph: HamiltonGraph, **future_kwargs) → Tuple[bool, str | None]

•

•

•

•

•

•

482 Lifecycle Adapters

Override this to build custom DAG validations! Default to just returning that the graph

is valid, so you don’t have to implement it if you want to just implement a single

method. Runs post graph construction to validate a graph. You have access to a bunch

of metadata about the graph, stored in the graph argument.

Parameters:

graph – Graph to validate.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

Returns:

A tuple of whether the graph is valid and an error

message in the case of failure. Return [True, None] for a

valid graph. Otherwise, return a detailed error message –

this should have all context/debugging information.

run_to_validate_node(*, node: HamiltonNode, **future_kwargs) → Tuple[bool, str | None]

Override this to build custom node validations! Defaults to just returning that a node

is valid so you don’t have to implement it if you want to just implement a single

method. Runs post node construction to validate a node. You have access to a bunch

of metadata about the node, stored in the hamilton_node argument

Parameters:

node – Node to validate

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

Returns:

A tuple of whether the node is valid and an error

message in the case of failure. Return [True, None] for a

valid node.Otherwise, return a detailed error message –

this should have all context/debugging information, but

does not need to mention the node name (it will be

aggregated with others).

final validate_graph(*, graph: FunctionGraph, modules: List[ModuleType], config: Dict[str,

Any]) → Tuple[bool, Exception | None]

Validates the graph. This will raise an InvalidNodeException

•

•

•

•

483 Lifecycle Adapters

Parameters:

graph – Graph that has been constructed.

modules – Modules passed into the graph

config – Config passed into the graph

Returns:

A (is_valid, error_message) tuple

final validate_node(*, created_node: Node) → Tuple[bool, Exception | None]

Validates a node. This will raise an InvalidNodeException if the node is invalid.

Parameters:

created_node – Node that was created.

Raises:

InvalidNodeException – If the node is invalid.

lifecycle.api.GraphConstructionHook

class hamilton.lifecycle.api.GraphConstructionHook

Hook that is run after graph construction. This allows you to register/capture info on the

graph. Note that, in the case of materialization, this may be called multiple times (once

when we create the graph, once when we materialize). Currently information into that is not

exposed to the user, but we will be adding that in future iterations.

post_graph_construct(*, graph: FunctionGraph, modules: List[ModuleType], config: Dict[str,

Any])

Hooks that is called after the graph is constructed.

Parameters:

graph – Graph that has been constructed.

modules – Modules passed into the graph

config – Config passed into the graph

•

•

•

•

•

•

484 Lifecycle Adapters

abstractmethod run_after_graph_construction(*, graph: HamiltonGraph, config: Dict[str,

Any], **future_kwargs: Any)

Hook that is run post graph construction. This allows you to register/capture info on

the graph. A common pattern is to store something in your object’s state here so that

you can use it later (E.G. compute a hash on the graph)

Parameters:

graph – Graph that was constructed

config – Configuration used to construct the graph

future_kwargs – Reserved for backwards

compatibility.

lifecycle.api.TaskSubmissionHook

class hamilton.lifecycle.api.TaskSubmissionHook

Implement this to hook into the task submission process. Tasks are submitted to an

executor, which then controls how and where the nodes associated with the task are run.

pre_task_submission(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],

overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None)

Hook that is called immediately prior to task submission to an executor as a task

future. Note that this is only useful in dynamic execution, although we reserve the

right to add this back into the standard hamilton execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task.

nodes – Nodes that are being executed.

inputs – Inputs to the task.

overrides – Overrides to task execution.

spawning_task_id – ID of the task that spawned this

task.

purpose – Purpose of the current task group.

•

•

•

•

•

•

•

•

•

•

485 Lifecycle Adapters

abstractmethod run_before_task_submission(*, run_id: str, task_id: str, nodes: List[Node],

inputs: Dict[str, Any], overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None,

**future_kwargs)

Runs prior to a task being submitted to an executor. By definition this is run outside

of the task executor, on the process that executed the driver.

Parameters:

run_id – ID of the run this is under.

task_id – ID of the task we’re launching.

nodes – Nodes that are part of this task

inputs – Inputs to the task

overrides – Overrides passed to the task

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

future_kwargs – Reserved for backwards

compatibility.

lifecycle.api.TaskReturnHook

class hamilton.lifecycle.api.TaskReturnHook

Implement this to hook into the task return process. Tasks are submitted to an executor,

which executes the task and returns the results (or raises an error).

post_task_return(*, run_id: str, task_id: str, nodes: List[Node], result: Any, success: bool,

error: Exception | None, spawning_task_id: str | None, purpose: None)

Hook called immediately after a task returns from an executor. Note that this is only

useful in dynamic execution, although we reserve the right to add this back into the

standard hamilton execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task

•

•

•

•

•

•

•

•

•

•

486 Lifecycle Adapters

result – Return value of the task.

success – Whether or not the task executed

successfully

error – The error that was raised, if any

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

abstractmethod run_after_task_return(*, run_id: str, task_id: str, nodes: List[Node], result:

Any, success: bool, error: Exception | None, spawning_task_id: str | None, purpose: None,

**future_kwargs)

Runs after a task has been returned from a executor. By definition this is run outside

of the task executor, on the process that executed the driver.

Parameters:

run_id – ID of the run this is under.

task_id – ID of the task that was just executed.

nodes – Nodes that were part of this task

result – Result of the task

success – Whether the task was successful

error – The error the task threw, if any

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

future_kwargs – Reserved for backwards

compatibility.

lifecycle.api.TaskExecutionHook

class hamilton.lifecycle.api.TaskExecutionHook

Implement this to hook into the task execution process. Tasks consist of a group of one or

more nodes that are run on a task executor.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

487 Lifecycle Adapters

post_task_execute(*, run_id: str, task_id: str, nodes: List[Node],

results: Dict[str, Any] | None, success: bool, error: Exception, spawning_task_id: str | None,

purpose: None)

Hook called immediately after task execution. Note that this is only useful in dynamic

execution, although we reserve the right to add this back into the standard hamilton

execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task

nodes – Nodes that were executed

results – Results of the task

success – Whether or not the task executed

successfully

error – The error that was raised, if any

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

pre_task_execute(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],

overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None)

Hook that is called immediately prior to task execution. Note that this is only useful in

dynamic execution, although we reserve the right to add this back into the standard

hamilton execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task, unique in scope of the driver.

nodes – Nodes that are being executed

inputs – Inputs to the task

overrides – Overrides to task execution

spawning_task_id – ID of the task that spawned this

task

•

•

•

•

•

•

•

•

•

•

•

•

•

•

488 Lifecycle Adapters

purpose – Purpose of the current task group

abstractmethod run_after_task_execution(*, task_id: str, run_id: str, nodes:

List[HamiltonNode], results: Dict[str, Any] | None, success: bool, error: Exception,

spawning_task_id: str | None, purpose: None, **future_kwargs)

Runs after all of the nodes associated with a task have been executed. By definition

this is run inside of the executor and therefore may be run on separate or distributed

processes.

Parameters:

task_id – ID of the task that was just executed

run_id – ID of the run this was under.

nodes – Nodes that were part of this task

results – Results of the task, per-node

success – Whether the task was successful

error – The error the task threw, if any

future_kwargs – Reserved for backwards

compatibility.

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

abstractmethod run_before_task_execution(*, task_id: str, run_id: str, nodes:

List[HamiltonNode], inputs: Dict[str, Any], overrides: Dict[str, Any], spawning_task_id: str |

None, purpose: None, **future_kwargs)

Runs prior to any of the nodes associated with a task. By definition this is run inside

of the executor and therefore may be run on separate or distributed processes.

Parameters:

task_id – ID of the task we’re launching.

run_id – ID of the run this is under.

nodes – Nodes that are part of this task

inputs – Inputs to the task

overrides – Overrides passed to the task

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

489 Lifecycle Adapters

future_kwargs – Reserved for backwards

compatibility.

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

lifecycle.api.TaskGroupingHook

class hamilton.lifecycle.api.TaskGroupingHook

Implement this to run something after task grouping or task expansion. This will allow you

to capture information about the tasks during Parallelize/Collect blocks in dynamic DAG

execution.

final post_task_expand(*, run_id: str, task_id: str, parameters: Dict[str, Any])

Hook that is called immediately after a task is expanded into parallelizable tasks.

Note that this is only useful in dynamic execution.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task.

parameters – Parameters that are being passed to

each of the expanded tasks.

final post_task_group(*, run_id: str, task_ids: List[str])

Hook that is called immediately after a task group is created. Note that this is only

useful in dynamic execution, although we reserve the right to add this back into the

standard hamilton execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_ids – IDs of tasks that are in the group.

abstractmethod run_after_task_expansion(*, run_id: str, task_id: str, parameters: Dict[str,

Any], **future_kwargs)

Runs after task expansion in Parallelize/Collect blocks. This allows you to capture

information about the task that was expanded.

•

•

•

•

•

•

•

•

490 Lifecycle Adapters

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task that was expanded.

parameters – Parameters that were passed to the

task.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility.

abstractmethod run_after_task_grouping(*, run_id: str, task_ids: List[str], **future_kwargs)

Runs after task grouping. This allows you to capture information about which tasks

were created for a given run.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_ids – List of tasks that were grouped together.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility.

Available Adapters

In addition to the base classes for lifecycle adapters, we have a few adapters implemented and

available for use. Note that some of these are plugins, meaning they require installing additional

(external) libraries.

Recall to add lifecycle adapters, you just need to call the with_adapters method of the driver:

dr = (
driver
.Builder()
.with_modules(...)
.with_adapters(

Adapter1(...),
Adapter2(...),
*more_adapters)

...build()
)

•

•

•

•

•

•

•

491 Lifecycle Adapters

lifecycle.PDBDebugger

class hamilton.lifecycle.default.PDBDebugger(node_filter: Callable[[str, Dict[str, Any]], bool] |

List[str] | str | None, before: bool = False, during: bool = False, after: bool = False)

Class to inject a PDB debugger into a node execution. This is still somewhat experimental as

it is a debugging utility. We reserve the right to change the API and the implementation of

this class in the future.

__init__(node_filter: Callable[[str, Dict[str, Any]], bool] | List[str] | str | None, before: bool =

False, during: bool = False, after: bool = False)

Creates a PDB debugger. This has three possible modes:

Before – places you in a function with (a) node information, and (b) inputs

During – runs the node with pdb.run. Note this may not always work or give

what you expect as

node functions are often wrapped in multiple levels of input

modifications/whatnot. That said, it should give you something. Also

note that this is not (currently) compatible with graph adapters.

After – places you in a function with (a) node information, (b) inputs, and (c)

results

Parameters:

node_filter – A function that takes a node name and a

node tags dict and returns a boolean. If the boolean is

True, the node will be printed out.

before – Whether to place you in a PDB debugger

before a node executes

during – Whether to place you in a PDB debugger

during a node’s execution

after – Whether to place you in a PDB debugger after

a node executes

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

1.

2.

3.

•

•

•

•

•

492 Lifecycle Adapters

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], node_return_type: type, result: Any, error: Exception | None, success: bool,

task_id: str | None, **future_kwargs: Any)

Executes after a node, whether or not it was successful. Does nothing, just runs

pdb.set_trace().

Parameters:

node_name – Name of the node

node_tags – Tags of the node

node_kwargs – Keyword arguments passed to the

node

node_return_type – Return type of the node

result – Result of the node, None if there was an error

error – Error of the node, None if there was no error

success – Whether the node ran successful or not

task_id – Task ID of the node, if any

future_kwargs – Additional keyword arguments that

may be passed to the hook yet are ignored for now

•

•

•

•

•

•

•

•

•

•

•

•

493 Lifecycle Adapters

run_before_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], node_return_type: type, task_id: str | None, **future_kwargs: Any)

Executes before a node executes. Does nothing, just runs pdb.set_trace()

Parameters:

node_name – Name of the node

node_tags – Tags of the node

node_kwargs – Keyword arguments passed to the

node

node_return_type – Return type of the node

task_id – ID of the task that the node is in, if any

future_kwargs – Additional keyword arguments that

may be passed to the hook yet are ignored for now

Returns:

Result of the node

run_to_execute_node(*, node_name: str, node_tags: Dict[str, Any], node_callable: Any,

node_kwargs: Dict[str, Any], task_id: str | None, **future_kwargs: Any) → Any

Executes the node with a PDB debugger. This modifies the global

PDBDebugger.CONTEXT variable to contain information about the node,

so you can access it while debugging.

Parameters:

node_name – Name of the node

node_tags – Tags of the node

node_callable – Callable function of the node

node_kwargs – Keyword arguments passed to the

node

task_id – ID of the task that the node is in, if any

future_kwargs – Additional keyword arguments that

may be passed to the hook yet are ignored for now

•

•

•

•

•

•

•

•

•

•

•

•

494 Lifecycle Adapters

Returns:

Result of the node

lifecycle.PrintLn

Use this hook to print out data before/after a node’s execution for debugging

class hamilton.lifecycle.default.PrintLn(verbosity: int = 1, print_fn: ~typing.Callable[[str], None] =

<built-in function print>, node_filter: ~typing.Callable[[str, ~typing.Dict[str, ~typing.Any]], bool] |

~typing.List[str] | str | None = None)

Basic hook to print out information before/after node execution.

__init__(verbosity: int = 1, print_fn: ~typing.Callable[[str], None] = <built-in function print>,

node_filter: ~typing.Callable[[str, ~typing.Dict[str, ~typing.Any]], bool] | ~typing.List[str] | str

| None = None)

Prints out information before/after node execution.

Parameters:

verbosity – The verbosity level to print out at.

verbosity=1 Print out just the node name and time it

took to execute verbosity=2. Print out inputs of the

node + results on execute

print_fn – A function that takes a string and prints it

out – defaults to print. Pass in a logger function, etc…

if you so choose.

node_filter – A function that takes a node name and a

node tags dict and returns a boolean. If the boolean is

True, the node will be printed out. If False, it will not

be printed out.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

•

•

•

495 Lifecycle Adapters

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], result: Any, error: Exception | None, success: bool, task_id: str | None,

**future_kwargs: Any)

Runs after a node executes. Prints out the node name and time it took, the output if

verbosity is 1.

Parameters:

node_name – Name of the node

node_tags – Tags of the node

node_kwargs – Keyword arguments passed to the

node

result – Result of the node

error – Error of the node

success – Whether the node was successful or not

task_id – ID of the task that the node is in, if any

future_kwargs – Additional keyword arguments that

may be passed to the hook yet are ignored for now

run_before_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], task_id: str | None, **future_kwargs: Any)

Runs before a node executes. Prints out the node name and inputs if verbosity is 2.

Parameters:

node_name – Name of the node

node_tags – Tags of the node

node_kwargs – Keyword arguments of the node

task_id – ID of the task that the node is in, if any

future_kwargs – Additional keyword arguments that

may be passed to the hook yet are ignored for now

•

•

•

•

•

•

•

•

•

•

•

•

•

496 Lifecycle Adapters

plugins.h_tqdm.ProgressBar

Provides a progress bar for Apache Hamilton execution. Must have tqdm installed to use it:

pip install sf-hamilton[tqdm] (use quotes if using zsh)

class hamilton.plugins.h_tqdm.ProgressBar(desc: str = 'Graph execution', max_node_name_width:

int = 50, **kwargs)

An adapter that uses tqdm to show progress bars for the graph execution.

Note: you need to have tqdm installed for this to work. If you don’t have it installed, you can

install it with pip install tqdm (or pip install sf-hamilton[tqdm] – use quotes if you’re using

zsh).

from hamilton.plugins import h_tqdm

dr = (
driver.Builder()
.with_config({})
.with_modules(some_modules)
.with_adapters(h_tqdm.ProgressBar(desc="DAG-NAME"))
.build()

)
and then when you call .execute() or .materialize() you'll get
a progress bar!

__init__(desc: str = 'Graph execution', max_node_name_width: int = 50, **kwargs)

Create a new Progress Bar adapter.

Parameters:

desc – The description to show in the progress bar.

E.g. DAG Name is a good choice.

kwargs – Additional kwargs to pass to TQDM. See

TQDM docs for more info.

node_name_target_width – the target width for the

node name so that the progress bar is consistent. If

this is None, it will take the longest, until it hits

max_node_name_width.

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)

Just delegates to the interface method, passing in the right data.

•

•

•

497 Lifecycle Adapters

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])

Implementation of the pre_graph_execute hook. This just converts the inputs to the

format the user-facing hook is expecting – performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_graph_execution(**future_kwargs)

This is run after graph execution. This allows you to do anything you want after the

graph executes, knowing the results of the execution/any errors.

Parameters:

graph – Graph that is being executed

results – Results of the graph execution

error – Error that occurred, None if no error occurred

success – Whether the graph executed successfully

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_after_node_execution(**future_kwargs)

Hook that is executed post node execution.

Parameters:

node_name – Name of the node in question

node_tags – Tags of the node

node_kwargs – Keyword arguments passed to the

node

•

•

•

•

•

•

•

•

•

498 Lifecycle Adapters

node_return_type – Return type of the node

result – Output of the node, None if an error occurred

error – Error that occurred, None if no error occurred

success – Whether the node executed successfully

task_id – The ID of the task, none if not in a task-

based environment

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_before_graph_execution(*, graph: HamiltonGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any], execution_path: Collection[str], **future_kwargs: Any)

This is run prior to graph execution. This allows you to do anything you want before

the graph executes, knowing the basic information that was passed in.

Parameters:

graph – Graph that is being executed

final_vars – Output variables of the graph

inputs – Input variables passed to the graph

overrides – Overrides passed to the graph

execution_path – Collection of nodes that will be

executed – these are just the nodes (not input nodes)

that will be run during the course of execution.

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_before_node_execution(*, node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], node_return_type: type, task_id: str | None, **future_kwargs: Any)

Hook that is executed prior to node execution.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

499 Lifecycle Adapters

Parameters:

node_name – Name of the node.

node_tags – Tags of the node

node_kwargs – Keyword arguments to pass to the

node

node_return_type – Return type of the node

task_id – The ID of the task, none if not in a task-

based environment

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

node_input_types – the input types to the node and

what it is expecting

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

plugins.h_rich.RichProgressBar

Provides a progress bar for Apache Hamilton execution. Must have rich installed to use it:

pip install sf-hamilton[rich] (use quotes if using zsh)

class hamilton.plugins.h_rich.RichProgressBar(run_desc: str = '', collect_desc: str = '', columns:

list[str | ProgressColumn] | None = None, **kwargs)

An adapter that uses rich to show simple progress bars for the graph execution.

Note: you need to have rich installed for this to work. If you don’t have it installed, you can

install it with pip install rich (or pip install sf-hamilton[rich] – use quotes if you’re using

zsh).

from hamilton import driver
from hamilton.plugins import h_rich

dr = (
driver.Builder()
.with_config({})
.with_modules(some_modules)
.with_adapters(h_rich.RichProgressBar())

•

•

•

•

•

•

•

•

500 Lifecycle Adapters

.build()
)

and then when you call .execute() or .materialize() you’ll get a progress bar!

Additionally, this progress bar will also work with task-based execution, showing the

progress of overall execution as well as the tasks within a parallelized group.

from hamilton import driver
from hamilton.execution import executors
from hamilton.plugins import h_rich

dr = (
driver.Builder()
.with_modules(__main__)
.enable_dynamic_execution(allow_experimental_mode=True)
.with_adapters(RichProgressBar())
.with_local_executor(executors.SynchronousLocalTaskExecutor())
.with_remote_executor(executors.SynchronousLocalTaskExecutor())
.build()

)

__init__(run_desc: str = '', collect_desc: str = '', columns: list[str | ProgressColumn] | None =

None, **kwargs) → None

Create a new Rich Progress Bar adapter.

Parameters:

run_desc – The description to show for the running

phase.

collect_desc – The description to show for the

collecting phase (if applicable).

columns – Column configuration for the progress bar.

See rich docs for more info.

kwargs – Additional kwargs to pass to

rich.progress.Progress. See rich docs for more info.

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)

Just delegates to the interface method, passing in the right data.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

•

•

•

•

501 Lifecycle Adapters

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

post_task_execute(*, run_id: str, task_id: str, nodes: List[Node],

results: Dict[str, Any] | None, success: bool, error: Exception, spawning_task_id: str | None,

purpose: None)

Hook called immediately after task execution. Note that this is only useful in dynamic

execution, although we reserve the right to add this back into the standard hamilton

execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task

nodes – Nodes that were executed

results – Results of the task

success – Whether or not the task executed

successfully

error – The error that was raised, if any

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

post_task_expand(*, run_id: str, task_id: str, parameters: Dict[str, Any])

Hook that is called immediately after a task is expanded into parallelizable tasks.

Note that this is only useful in dynamic execution.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task.

parameters – Parameters that are being passed to

each of the expanded tasks.

post_task_group(*, run_id: str, task_ids: List[str])

Hook that is called immediately after a task group is created. Note that this is only

useful in dynamic execution, although we reserve the right to add this back into the

standard hamilton execution pattern.

•

•

•

•

•

•

•

•

•

•

•

502 Lifecycle Adapters

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_ids – IDs of tasks that are in the group.

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])

Implementation of the pre_graph_execute hook. This just converts the inputs to the

format the user-facing hook is expecting – performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_task_execute(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],

overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None)

Hook that is called immediately prior to task execution. Note that this is only useful in

dynamic execution, although we reserve the right to add this back into the standard

hamilton execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task, unique in scope of the driver.

nodes – Nodes that are being executed

inputs – Inputs to the task

overrides – Overrides to task execution

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

run_after_graph_execution(**kwargs: Any)

This is run after graph execution. This allows you to do anything you want after the

graph executes, knowing the results of the execution/any errors.

Parameters:

graph – Graph that is being executed

•

•

•

•

•

•

•

•

•

•

503 Lifecycle Adapters

results – Results of the graph execution

error – Error that occurred, None if no error occurred

success – Whether the graph executed successfully

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_after_node_execution(**kwargs)

Hook that is executed post node execution.

Parameters:

node_name – Name of the node in question

node_tags – Tags of the node

node_kwargs – Keyword arguments passed to the

node

node_return_type – Return type of the node

result – Output of the node, None if an error occurred

error – Error that occurred, None if no error occurred

success – Whether the node executed successfully

task_id – The ID of the task, none if not in a task-

based environment

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_after_task_execution(*, purpose: NodeGroupPurpose, **kwargs)

Runs after all of the nodes associated with a task have been executed. By definition

this is run inside of the executor and therefore may be run on separate or distributed

processes.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

504 Lifecycle Adapters

Parameters:

task_id – ID of the task that was just executed

run_id – ID of the run this was under.

nodes – Nodes that were part of this task

results – Results of the task, per-node

success – Whether the task was successful

error – The error the task threw, if any

future_kwargs – Reserved for backwards

compatibility.

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

run_after_task_expansion(*, parameters: dict[str, Any], **kwargs)

Runs after task expansion in Parallelize/Collect blocks. This allows you to capture

information about the task that was expanded.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task that was expanded.

parameters – Parameters that were passed to the

task.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility.

run_after_task_grouping(*, task_ids: List[str], **kwargs)

Runs after task grouping. This allows you to capture information about which tasks

were created for a given run.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_ids – List of tasks that were grouped together.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

505 Lifecycle Adapters

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility.

run_before_graph_execution(*, execution_path: Collection[str], **kwargs: Any)

This is run prior to graph execution. This allows you to do anything you want before

the graph executes, knowing the basic information that was passed in.

Parameters:

graph – Graph that is being executed

final_vars – Output variables of the graph

inputs – Input variables passed to the graph

overrides – Overrides passed to the graph

execution_path – Collection of nodes that will be

executed – these are just the nodes (not input nodes)

that will be run during the course of execution.

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_before_node_execution(**kwargs)

Hook that is executed prior to node execution.

Parameters:

node_name – Name of the node.

node_tags – Tags of the node

node_kwargs – Keyword arguments to pass to the

node

node_return_type – Return type of the node

task_id – The ID of the task, none if not in a task-

based environment

run_id – Run ID (unique in process scope) of the

current run. Use this to track state.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

506 Lifecycle Adapters

node_input_types – the input types to the node and

what it is expecting

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

run_before_task_execution(*, purpose: NodeGroupPurpose, **kwargs)

Runs prior to any of the nodes associated with a task. By definition this is run inside

of the executor and therefore may be run on separate or distributed processes.

Parameters:

task_id – ID of the task we’re launching.

run_id – ID of the run this is under.

nodes – Nodes that are part of this task

inputs – Inputs to the task

overrides – Overrides passed to the task

future_kwargs – Reserved for backwards

compatibility.

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

plugins.h_ddog.DDOGTracer

class hamilton.plugins.h_ddog.DDOGTracer(root_name: str, include_causal_links: bool = False,

service: str = None)

Lifecycle adapter to use datadog to run tracing on node execution. This works with the

following execution environments: 1. Vanilla Hamilton – no task-based computation, just

nodes 2. Task-based, synchronous 3. Task-based with Multithreading, Ray, and Dask It will

likely work with others, although we have not yet tested them. This does not work with

async (yet).

Note that this is not a typical use of Datadog if you’re not using hamilton for a microservice.

It does work quite nicely, however! Monitoring ETLs is not a typical datadog case (you can’t

see relationships between nodes/tasks or data summaries), but it is easy enough to work

with and gives some basic information.

•

•

•

•

•

•

•

•

•

•

507 Lifecycle Adapters

This tracer bypasses context management so we can more accurately track relationships

between nodes/tags. Also, we plan to get this working with OpenTelemetry, and use that for

datadog integration.

To use this, you’ll want to run pip install sf-hamilton[ddog] (or pip install “sf-

hamilton[ddog]” if using zsh)

__init__(root_name: str, include_causal_links: bool = False, service: str = None)

Creates a DDOGTracer. This has the option to specify some parameters.

Parameters:

root_name – Name of the root trace/span. Due to the

way datadog inherits, this will inherit an active span.

include_causal_links – Whether or not to include

span causal links. Note that there are some edge-

cases here, and This is in beta for datadog, and

actually broken in the current client, but it has been

fixed and will be released shortly: https://github.com/

DataDog/dd-trace-py/issues/8049. Furthermore, the

query on datadog is slow for displaying causal links.

We’ve disabled this by default, but feel free to test it

out – its likely they’ll be improving the docum

service – Service name – will pick it up from the

environment through DDOG if not available.

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)

Just delegates to the interface method, passing in the right data.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

post_task_execute(*, run_id: str, task_id: str, nodes: List[Node],

results: Dict[str, Any] | None, success: bool, error: Exception, spawning_task_id: str | None,

purpose: None)

Hook called immediately after task execution. Note that this is only useful in dynamic

execution, although we reserve the right to add this back into the standard hamilton

execution pattern.

•

•

•

508 Lifecycle Adapters

https://github.com/DataDog/dd-trace-py/issues/8049
https://github.com/DataDog/dd-trace-py/issues/8049

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task

nodes – Nodes that were executed

results – Results of the task

success – Whether or not the task executed

successfully

error – The error that was raised, if any

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])

Implementation of the pre_graph_execute hook. This just converts the inputs to the

format the user-facing hook is expecting – performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_task_execute(*, run_id: str, task_id: str, nodes: List[Node], inputs: Dict[str, Any],

overrides: Dict[str, Any], spawning_task_id: str | None, purpose: None)

Hook that is called immediately prior to task execution. Note that this is only useful in

dynamic execution, although we reserve the right to add this back into the standard

hamilton execution pattern.

Parameters:

run_id – ID of the run, unique in scope of the driver.

task_id – ID of the task, unique in scope of the driver.

nodes – Nodes that are being executed

inputs – Inputs to the task

overrides – Overrides to task execution

•

•

•

•

•

•

•

•

•

•

•

•

•

509 Lifecycle Adapters

spawning_task_id – ID of the task that spawned this

task

purpose – Purpose of the current task group

run_after_graph_execution(*, error: Exception | None, run_id: str, **future_kwargs: Any)

Runs after graph execution. Garbage collects + finishes the root span.

Parameters:

error – Error the graph raised when running, if any

run_id – ID of the run

future_kwargs – reserved for future keyword

arguments/backwards compatibility.

run_after_node_execution(*, node_name: str, error: Exception | None, task_id: str | None,

run_id: str, **future_kwargs: Any)

Runs after a node’s execution – completes the span.

Parameters:

node_name – Name of the node

error – Error that the node raised, if any

task_id – Task ID that spawned the node

run_id – ID of the run.

future_kwargs – reserved for future keyword

arguments/backwards compatibility.

run_after_task_execution(*, task_id: str, run_id: str, error: Exception, **future_kwargs)

Rusn after task execution. Finishes task-level spans.

•

•

•

•

•

•

•

•

•

•

510 Lifecycle Adapters

Parameters:

task_id – ID of the task, ID of the run.

run_id – ID of the run

error – Error the graph raised when running, if any

future_kwargs – Future keyword arguments for

backwards compatibility

run_before_graph_execution(*, run_id: str, **future_kwargs: Any)

Runs before graph execution – sets the state so future ones can reference it.

Parameters:

run_id – ID of the run

future_kwargs – reserved for future keyword

arguments/backwards compatibility.

run_before_node_execution(*, node_name: str, node_kwargs: Dict[str, Any], node_tags:

Dict[str, Any], task_id: str | None, run_id: str, **future_kwargs: Any)

Runs before a node’s execution. Sets up/stores spans.

Parameters:

node_name – Name of the node.

node_kwargs – Keyword arguments of the node.

node_tags – Tags of the node (they’ll get stored as

datadog tags)

task_id – Task ID that spawned the node

run_id – ID of the run.

future_kwargs – reserved for future keyword

arguments/backwards compatibility.

run_before_task_execution(*, task_id: str, run_id: str, **future_kwargs)

Runs before task execution. Sets up the task span.

Parameters:

task_id – ID of the task

•

•

•

•

•

•

•

•

•

•

•

•

•

511 Lifecycle Adapters

run_id – ID of the run,

future_kwargs – reserved for future keyword

arguments/backwards compatibility.

class hamilton.plugins.h_ddog.AsyncDDOGTracer(root_name: str, include_causal_links: bool =

False, service: str | None = None)

__init__(root_name: str, include_causal_links: bool = False, service: str | None = None)

Creates a AsyncDDOGTracer, the asyncio-friendly version of DDOGTracer.

This has the option to specify some parameters:

Parameters:

root_name – Name of the root trace/span. Due to the

way datadog inherits, this will inherit an active span.

include_causal_links – Whether or not to include

span causal links. Note that there are some edge-

cases here, and This is in beta for datadog, and

actually broken in the current client, but it has been

fixed and will be released shortly: https://github.com/

DataDog/dd-trace-py/issues/8049. Furthermore, the

query on datadog is slow for displaying causal links.

We’ve disabled this by default, but feel free to test it

out – its likely they’ll be improving the docum

service – Service name – will pick it up from the

environment through DDOG if not available.

async post_graph_construct(graph: FunctionGraph, modules: List[ModuleType], config:

Dict[str, Any]) → None

Runs after graph construction. This is a no-op for this plugin.

Parameters:

graph – Graph that has been constructed.

modules – Modules passed into the graph

config – Config passed into the graph

async post_graph_execute(run_id: str, graph: FunctionGraph, success: bool, error: Exception

| None, results: Dict[str, Any] | None) → None

Runs after graph execution. Garbage collects + finishes the root span.

•

•

•

•

•

•

•

•

512 Lifecycle Adapters

https://github.com/DataDog/dd-trace-py/issues/8049
https://github.com/DataDog/dd-trace-py/issues/8049

Parameters:

run_id – ID of the run, unique in scope of the driver.

graph – Graph that was executed

success – Whether or not the graph executed

successfully

error – Error that was raised, if any

results – Results of the graph execution

async post_node_execute(run_id: str, node_: Node, success: bool, error: Exception | None,

result: Any, task_id: str | None = None, **future_kwargs: dict) → None

Runs after a node’s execution – completes the span.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

success – Whether or not the node executed

successfully

error – The error that was raised, if any

result – The result of the node execution, if no error

was raised

task_id – ID of the task, defaults to None if not in a

task-based execution

async pre_graph_execute(run_id: str, graph: FunctionGraph, final_vars: List[str], inputs:

Dict[str, Any], overrides: Dict[str, Any]) → None

Runs before graph execution – sets the state so future ones can reference it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

graph – Graph that is being executed

•

•

•

•

•

•

•

•

•

•

•

•

•

•

513 Lifecycle Adapters

final_vars – Variables we are extracting from the

graph

inputs – Inputs to the graph

overrides – Overrides to graph execution

async pre_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None

= None) → None

Runs before a node’s execution. Sets up/stores spans.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

lifecycle.FunctionInputOutputTypeChecker

Use this hook to print out data before/after a node’s execution for debugging

class hamilton.lifecycle.default.FunctionInputOutputTypeChecker(check_input: bool = True,

check_output: bool = True)

This lifecycle hook checks the input and output types of a function.

It is a simple, but very strict type check against the declared type with what was actually

received. E.g. if you don’t want to check the types of a dictionary, don’t annotate it with a

type.

__init__(check_input: bool = True, check_output: bool = True)

Constructor.

Parameters:

check_input – check inputs to all functions

check_output – check outputs to all functions

•

•

•

•

•

•

•

•

•

514 Lifecycle Adapters

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs: Dict[str,

Any], node_return_type: type, result: Any, error: Exception | None, success: bool, task_id: str

| None, run_id: str, **future_kwargs: Any)

Checks that the result type matches the expected node return type.

run_before_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], node_return_type: type, task_id: str | None, run_id: str, node_input_types:

Dict[str, Any], **future_kwargs: Any)

Checks that the result type matches the expected node return type.

plugins.h_slack.SlackNotifier

Provides a Slack notifier for Apache Hamilton execution. Must have slack_sdk installed to use it:

pip install sf-hamilton[slack] (use quotes if using zsh)

class hamilton.plugins.h_slack.SlackNotifier(api_key: str, channel: str, **kwargs)

This is a adapter that sends a message to a slack channel when a node is executed & fails.

Note: you need to have slack_sdk installed for this to work. If you don’t have it installed, you

can install it with pip install slack_sdk (or pip install sf-hamilton[slack] – use quotes if

you’re using zsh).

from hamilton.plugins import h_slack

dr = (
driver.Builder()
.with_config({})
.with_modules(some_modules)
.with_adapters(h_slack.SlackNotifier(api_key="YOUR_API_KEY",

channel="YOUR_CHANNEL"))
.build()

)

515 Lifecycle Adapters

and then when you call .execute() or .materialize() you'll get
a message in your slack channel!

__init__(api_key: str, channel: str, **kwargs)

Constructor.

Parameters:

api_key – API key to use for sending messages.

channel – Channel to send messages to.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs: Dict[str,

Any], node_return_type: type, result: Any, error: Exception | None, success: bool, task_id: str

| None, run_id: str, **future_kwargs: Any)

Sends a message to the slack channel after a node is executed.

run_before_node_execution(node_name: str, node_tags: Dict[str, Any], node_kwargs:

Dict[str, Any], node_return_type: type, **future_kwargs: Any)

Placeholder required to subclass NodeExecutionMethod

lifecycle.GracefulErrorAdapter

class hamilton.lifecycle.default.GracefulErrorAdapter(error_to_catch: Type[Exception],

sentinel_value: Any = None, try_all_parallel: bool = True, allow_injection: bool = True)

Gracefully handles errors in a graph’s execution. This allows you to proceed despite failure,

dynamically pruning branches. While it still runs every node, it replaces them with no-ops if

any upstream required dependencies fail (including optional dependencies).

__init__(error_to_catch: Type[Exception], sentinel_value: Any = None, try_all_parallel: bool =

True, allow_injection: bool = True)

•

•

516 Lifecycle Adapters

Initializes the adapter. Allows you to customize the error to catch (which exception

your graph will throw to indicate failure), as well as the sentinel value to use in place

of a node’s result if it fails (this defaults to None).

Note that this is currently only compatible with the dict-based result builder (use at

your own risk with pandas series, etc…).

Be careful using None as the default – feel free to replace it with a sentinel value of

your choice (this could negatively impact your graph’s execution if you actually do

intend to use None return values).

You can use this as follows:

my_module.py
custom exception
class DoNotProceed(Exception):

pass

def wont_proceed() -> int:
raise DoNotProceed()

def will_proceed() -> int:
return 1

def never_reached(wont_proceed: int) -> int:
return 1 # this should not be reached

dr = (
driver.Builder()
.with_modules(my_module)
.with_adapters(

default.GracefulErrorAdapter(
error_to_catch=DoNotProceed,
sentinel_value=None

)
)
.build()

)
dr.execute(

["will_proceed", "never_reached"]
) # will return {'will_proceed': 1, 'never_reached': None}

Note you can customize the error you want it to fail on and the sentinel value to use

in place of a node’s result if it fails.

517 Lifecycle Adapters

For Parallelizable nodes, this adapter will attempt to iterate over the node outputs. If

an error occurs, the sentinel value is returned and no more iterations over the node

will occur. Meaning if item (3) fails out of 1,2,3,4,5, 4/5 will not run. If you set

try_all_parallel to be False, it only sends one sentinel value into the parallelize

sub-dag.

Here’s an example for parallelizable to demonstrate try_all_parallel:

parallel_module.py
custom exception
class DoNotProceed(Exception):

pass

def start_point() -> Parallelizable[int]:
for i in range(5):

if i == 3:
raise DoNotProceed()

yield i

def inner(start_point: int) -> int:
return start_point

def gather(inner: Collect[int]) -> list[int]:
return inner

dr = (
driver.Builder()
.with_modules(parallel_module)
.with_adapters(

default.GracefulErrorAdapter(
error_to_catch=DoNotProceed,
sentinel_value=None,
try_all_parallel=True,

)
)
.build()

)
dr.execute(["gather"]) # will return {'gather':
[0,1,2,None]}

dr = (
driver.Builder()
.with_modules(parallel_module)
.with_adapters(

default.GracefulErrorAdapter(
error_to_catch=DoNotProceed,

518 Lifecycle Adapters

sentinel_value=None,
try_all_parallel=False,

)
)
.build()

)
dr.execute(["gather"]) # will return {'gather': [None]}

Parameters:

error_to_catch – The error to catch

sentinel_value – The sentinel value to use in place of

a node’s result if it fails

try_all_parallel – Gather parallelizable outputs until a

failure, then add a Sentinel.

allow_injection – Flag for considering the

accept_error_sentinels tag. Defaults to True.

default.accept_error_sentinels()

Tag a function to allow passing in error sentinels.

For use with GracefulErrorAdapter . The standard adapter behavior is to skip a node when

an error sentinel is one of its inputs. This decorator will cause the node to run, and place

the error sentinel into the appropriate input.

Take care to ensure your sentinels are easily distinguishable if you do this - see the note in

the GracefulErrorAdapater docstring.

A use case is any data or computation aggregation step that still wants partial results, or

considers a failure interesting enough to log or notify.

SENTINEL = object()

...

@accept_error_sentinels
def results_gathering(result_1: float, result_2: float) ->
dict[str, Any]:

answer = {}
for name, res in zip(["result 1", "result 2"], [result_1,

result_2])
answer[name] = res
if res is SENTINEL:

answer[name] = "Node failure: no result"

•

•

•

•

519 Lifecycle Adapters

You may want side-effects for a failure.
_send_text_that_your_runs_errored()

return answer

...
adapter = GracefulErrorAdapter(sentinel_value=SENTINEL)
...

plugins.h_spark.SparkInputValidator

class hamilton.plugins.h_spark.SparkInputValidator

This is a graph hook adapter that allows you to get past a <4.0.0 limitation in spark. Spark

has the option to choose between spark connect and spark, which largely have the same

API. That said, they don’t have the proper subclass relationships, which make hamilton fail

on the input type checking.

See the following for more information as to why this is necessary: - https://

community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-

vs-pyspark-sql-dataframe/td-p/71055 - https://issues.apache.org/jira/browse/SPARK-47909

You can access an instance of this through the convenience variable SPARK_INPUT_CHECK.

This allows you to bypass that. This has to be used with the driver builder pattern – this will

look as follows:

from hamilton import driver
from hamilton.plugins import h_spark

dr =
driver.Builder().with_modules(...).with_adapters(h_spark.SPARK_INPUT_CHECK).build()

Then run it as you would normally. Note that in spark==4.0.0, you will only need the spark

session check, not the dataframe check.

do_validate_input(*, node_type: type, input_value: Any) → bool

Validates the input. Treats connect/classic sessios/dataframe as interchangeable.

plugins.h_narhwals.NarwhalsAdapter

Provides a convenience wrapper for the Narwhals library; use the Narwhals decorator underneath.

Must have Narwhals installed to use it:

pip install “sf-hamilton[narwhals]”

520 Lifecycle Adapters

https://community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-vs-pyspark-sql-dataframe/td-p/71055
https://community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-vs-pyspark-sql-dataframe/td-p/71055
https://community.databricks.com/t5/data-engineering/pyspark-sql-connect-dataframe-dataframe-vs-pyspark-sql-dataframe/td-p/71055
https://issues.apache.org/jira/browse/SPARK-47909

class hamilton.plugins.h_narwhals.NarwhalsAdapter

Adapter to make it simpler to use narwhals with Hamilton.

from hamilton import base, driver
from hamilton.plugins import h_narwhals
import example

pandas
dr = (

driver.Builder()
.with_config({"load": "pandas"})
.with_modules(example)
.with_adapters(

h_narwhals.NarwhalsAdapter(),
h_narwhals.NarwhalsDataFrameResultBuilder(

base.PandasDataFrameResult()
),

)
.build()

)
result = dr.execute(

[example.group_by_mean, example.example1],
inputs={"col_name": "a"}

)

do_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None) → Any

Method that is called to implement node execution. This can replace the execution of

a node with something all together, augment it, or delegate it.

Parameters:

run_id – ID of the run, unique in scope of the driver.

node – Node that is being executed

kwargs – Keyword arguments that are being passed

into the node

task_id – ID of the task, defaults to None if not in a

task setting

run_to_execute_node(*, node_name: str, node_tags: Dict[str, Any], node_callable: Any,

node_kwargs: Dict[str, Any], task_id: str | None, **future_kwargs: Any) → Any

This method is responsible for executing the node and returning the result.

It uses nw_kwargs from the node tags to know if any special flags should be passed

to the narwhals decorator function.

•

•

•

•

521 Lifecycle Adapters

Parameters:

node_name – Name of the node.

node_tags – Tags of the node.

node_callable – Callable of the node.

node_kwargs – Keyword arguments to pass to the

node.

task_id – The ID of the task, none if not in a task-

based environment

future_kwargs – Additional keyword arguments – this

is kept for backwards compatibility

Returns:

The result of the node execution – up to you to return

this.

plugins.h_narhwals.NarwhalsDataFrameResultBuilder

Result builder to be used with the NarwhalsAdapter. Must have Narwhals installed to use it:

pip install “sf-hamilton[narwhals]”

class hamilton.plugins.h_narwhals.NarwhalsDataFrameResultBuilder(result_builder:

ResultBuilder | LegacyResultMixin)

Builds the result. It unwraps the narwhals parts of it and delegates to the passed in result

builder.

from hamilton import base, driver
from hamilton.plugins import h_narwhals, h_polars
import example

polars
dr = (

driver.Builder()
.with_config({"load": "polars"})
.with_modules(example)
.with_adapters(

h_narwhals.NarwhalsAdapter(),
h_narwhals.NarwhalsDataFrameResultBuilder(

•

•

•

•

•

•

522 Lifecycle Adapters

h_polars.PolarsDataFrameResult()
),

)
.build()

)
result = dr.execute(

["group_by_mean", "example1"],
inputs={"col_name": "a"}

)

__init__(result_builder: ResultBuilder | LegacyResultMixin)

build_result(**outputs: Any) → Any

Given a set of outputs, build the result.

Parameters:

outputs – the outputs from the execution of the graph.

Returns:

the result of the execution of the graph.

do_build_result(outputs: Dict[str, Any]) → Any

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

plugins.h_mlflow.MLFlowTracker

class hamilton.plugins.h_mlflow.MLFlowTracker(tracking_uri: str | None = None, registry_uri: str |

None = None, artifact_location: str | None = None, experiment_name: str = 'Hamilton',

experiment_tags: dict | None = None, experiment_description: str | None = None, run_id: str |

523 Lifecycle Adapters

None = None, run_name: str | None = None, run_tags: dict | None = None, run_description: str |

None = None, log_system_metrics: bool = False)

Driver adapter logging Hamilton execution results to an MLFlow server.

__init__(tracking_uri: str | None = None, registry_uri: str | None = None, artifact_location:

str | None = None, experiment_name: str = 'Hamilton', experiment_tags: dict | None = None,

experiment_description: str | None = None, run_id: str | None = None, run_name: str | None

= None, run_tags: dict | None = None, run_description: str | None = None,

log_system_metrics: bool = False)

Configure the MLFlow client and experiment for the lifetime of the tracker

Parameters:

tracking_uri – Destination of the logged artifacts and

metadata. It can be a filesystem, database, or server.

[reference](https://mlflow.org/docs/latest/getting-

started/tracking-server-overview/index.html)

registry_uri – Destination of the registered models. By

default it’s the same as the tracking destination, but

they can be different. [reference](https://mlflow.org/

docs/latest/getting-started/registering-first-model/

index.html)

artifact_location – Root path on tracking server where

experiment is stored

experiment_name – MLFlow experiment name used to

group runs.

experiment_tags – Tags to query experiments

programmatically (not displayed).

experiment_description – Description of the

experiment displayed

run_id – Run id to log to an existing run (every

execution logs to the same run)

run_name – Run name displayed and used to query

runs. You can have multiple runs with the same name

but different run ids.

run_tags – Tags to query runs and appears as

columns in the UI for filtering and grouping. It

•

•

•

•

•

•

•

•

•

524 Lifecycle Adapters

https://mlflow.org/docs/latest/getting-started/tracking-server-overview/index.html
https://mlflow.org/docs/latest/getting-started/tracking-server-overview/index.html
https://mlflow.org/docs/latest/getting-started/registering-first-model/index.html
https://mlflow.org/docs/latest/getting-started/registering-first-model/index.html
https://mlflow.org/docs/latest/getting-started/registering-first-model/index.html

automatically includes serializable inputs and Driver

config.

run_description – Description of the run displayed

log_system_metrics – Log system metrics to display

(requires additonal dependencies)

post_graph_construct(*, graph: FunctionGraph, modules: List[ModuleType], config: Dict[str,

Any])

Hooks that is called after the graph is constructed.

Parameters:

graph – Graph that has been constructed.

modules – Modules passed into the graph

config – Config passed into the graph

post_graph_execute(*, run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)

Just delegates to the interface method, passing in the right data.

post_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Wraps the after_execution method, providing a bridge to an external-facing API. Do

not override this!

pre_graph_execute(*, run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])

Implementation of the pre_graph_execute hook. This just converts the inputs to the

format the user-facing hook is expecting – performing a walk of the DAG to pass in the

set of nodes to execute. Delegates to the interface method.

pre_node_execute(*, run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

Wraps the before_execution method, providing a bridge to an external-facing API. Do

not override this!

run_after_graph_construction(*, config: dict[str, Any], **kwargs)

Store the Driver config before creating the graph

run_after_graph_execution(success: bool, *args, **kwargs)

End the MLFlow run

•

•

•

•

•

525 Lifecycle Adapters

run_after_node_execution(*, node_name: str, node_return_type: Type, node_tags: dict,

node_kwargs: dict, result: Any, **kwargs)

Log materializers and final vars as artifacts

run_before_graph_execution(*, run_id: str, final_vars: List[str], inputs: Dict[str, Any], graph:

HamiltonGraph, **kwargs)

Create and start MLFlow run. Log graph version, run_id, inputs, overrides

run_before_node_execution(*args, **kwargs)

Placeholder required to subclass NodeExecutionHook

lifecycle.NoEdgeAndInputTypeChecking

Use this hook turn off edge and input type checking during graph construction and execution; the

only time you’d really want this is during some really fast and loose development. Otherwise

production use of this should be frowned upon.

class hamilton.lifecycle.default.NoEdgeAndInputTypeChecking

Permissive adapter to help you skip edge and input type checking.

Useful for development.

from hamilton import driver
from hamilton.lifecycle import NoEdgeAndInputTypeChecking

dr =
driver.Builder().with_adapters(NoEdgeAndInputTypeChecking()).build()

now driver is built without any type checking
dr.execute([...], ...)

check_edge_types_match(type_from: type, type_to: type, **kwargs: Any) → bool

This is run to check if edge types match. Note that this is an OR functionality – this is

run after we do some default checks, so this can only be permissive. Return True -

always

do_check_edge_types_match(*, type_from: type, type_to: type) → bool

Wraps the check_edge_types_match method, providing a bridge to an external-facing

API. Do not override this!

do_validate_input(*, node_type: type, input_value: Any) → bool

Wraps the validate_input method, providing a bridge to an external-facing API. Do not

override this!

526 Lifecycle Adapters

validate_input(node_type: type, input_value: Any, **kwargs: Any) → bool

This is run to check if the input is valid for the node type. Note that this is an OR

functionality – this is run after we do some default checks, so this can only be

permissive. Returns True - always.

plugins.h_openlineage.OpenLineageAdapter

class hamilton.plugins.h_openlineage.OpenLineageAdapter(client: OpenLineageClient,

namespace: str, job_name: str)

This adapter emits OpenLineage events.

create the openlineage client
from openlineage.client import OpenLineageClient

write to file
from openlineage.client.transport.file import FileConfig,
FileTransport
file_config = FileConfig(

log_file_path="/path/to/your/file",
append=False,

)
client = OpenLineageClient(transport=FileTransport(file_config))

write to HTTP, e.g. marquez
client = OpenLineageClient(url="http://localhost:5000")

create the adapter
adapter = OpenLineageAdapter(client, "my_namespace",
"my_job_name")

add to Hamilton
import your pipeline code
dr =
driver.Builder().with_modules(YOUR_MODULES).with_adapters(adapter).build()
execute as normal -- and openlineage events will be emitted
dr.execute(...)

Note for data lineage to be emitted, you must use the “materializer” abstraction to provide

metadata. See https://hamilton.apache.org/concepts/materialization/. This can be done via

the @datasaver() and @dataloader() decorators, or using the @load_from or @save_to

decorators, as well as passing in data savers and data loaders via .with_materializers() on

the Driver Builder, or via .materialize() on the driver object.

__init__(client: OpenLineageClient, namespace: str, job_name: str)

Constructor. You pass in the OLClient.

527 Lifecycle Adapters

https://hamilton.apache.org/concepts/materialization/

Parameters:

self

client

namespace

job_name

Returns:

post_graph_execute(run_id: str, graph: FunctionGraph, success: bool, error: Exception |

None, results: Dict[str, Any] | None)

Emits a Run COMPLETE or FAIL event.

Parameters:

run_id

graph

success

error

results

Returns:

post_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], success: bool, error:

Exception | None, result: Any | None, task_id: str | None = None)

Run Event: will emit a RUNNING event with updates on input/outputs.

A Job Event will be emitted for graph execution, and additional SQLJob facet if data

was loaded from a SQL source.

A Dataset Event will be emitted if a dataloader or datasaver was used:

input data set if loader

output data set if saver

appropriate facets will be added to the dataset where it makes sense.

TODO: attach statistics facets

•

•

•

•

•

•

•

•

•

•

•

•

528 Lifecycle Adapters

Parameters:

run_id

node

kwargs

success

error

result

task_id

Returns:

pre_graph_execute(run_id: str, graph: FunctionGraph, final_vars: List[str], inputs: Dict[str,

Any], overrides: Dict[str, Any])

Emits a Run START event. Emits a Job Event with the sourceCode Facet for the entire

DAG as the job.

Parameters:

run_id

graph

final_vars

inputs

overrides

Returns:

pre_node_execute(run_id: str, node_: Node, kwargs: Dict[str, Any], task_id: str | None =

None)

No event emitted.

•

•

•

•

•

•

•

•

•

•

•

•

529 Lifecycle Adapters

ResultBuilders

This section helps determine what comes out of the box for determining how to construct a return

type from execute .

Reference

Generic

Result builders help you augment what is returned by the driver’s execute() function. Here are the

generic ones.

class hamilton.base.ResultMixin

Legacy result builder – see lifecycle methods for more information.

class hamilton.base.DictResult

Simple function that returns the dict of column -> value results.

It returns the results as a dictionary, where the keys map to outputs requested, and values

map to what was computed for those values.

Use this when you want to:

debug dataflows.

have heterogeneous return types.

Want to manually transform the result into something of your choosing.

from hamilton import base, driver

dict_builder = base.DictResult()
adapter = base.SimplePythonGraphAdapter(dict_builder)
dr = driver.Driver(config, *modules, adapter=adapter)
dict_result = dr.execute([...], inputs=...)

Note, if you just want the dict result + the SimplePythonGraphAdapter, you can use the

DefaultAdapter

1.

2.

3.

530 ResultBuilders

adapter = base.DefaultAdapter()

static build_result(**outputs: Dict[str, Any]) → Dict

This function builds a simple dict of output -> computed values.

input_types() → List[Type[Type]] | None

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

Numpy

class hamilton.base.NumpyMatrixResult

Mixin for building a Numpy Matrix from the result of walking the graph.

All inputs to the build_result function are expected to be numpy arrays.

from hamilton import base, driver

adapter = base.SimplePythonGraphAdapter(base.NumpyMatrixResult())
dr = driver.Driver(config, *modules, adapter=adapter)
numpy_matrix = dr.execute([...], inputs=...)

static build_result(**outputs: Dict[str, Any]) → matrix

Builds a numpy matrix from the passed in, inputs.

Note: this does not check that the inputs are all numpy arrays/array like things.

Parameters:

outputs – function_name -> np.array.

Returns:

numpy matrix

531 ResultBuilders

Pandas

class hamilton.base.PandasDataFrameResult

Mixin for building a pandas dataframe from the result.

It returns the results as a Pandas Dataframe, where the columns map to outputs requested,

and values map to what was computed for those values. Note: this only works if the

computed values are pandas series, or scalar values.

Use this when you want to create a pandas dataframe.

Example:

from hamilton import base, driver
df_builder = base.PandasDataFrameResult()
adapter = base.SimplePythonGraphAdapter(df_builder)
dr = driver.Driver(config, *modules, adapter=adapter)
df = dr.execute([...], inputs=...)

static build_result(**outputs: Dict[str, Any]) → DataFrame

Builds a Pandas DataFrame from the outputs.

This function will check the index types of the outputs, and log warnings if they don’t

match. The behavior of pd.Dataframe(outputs) is that it will do an outer join based on

indexes of the Series passed in.

Parameters:

outputs – the outputs to build a dataframe from.

class hamilton.base.StrictIndexTypePandasDataFrameResult

A ResultBuilder that produces a dataframe only if the index types match exactly.

Note: If there is no index type on some outputs, e.g. the value is a scalar, as long as there

exists a single pandas index type, no error will be thrown, because a dataframe can be

easily created.

Use this when you want to create a pandas dataframe from the outputs, but you want to

ensure that the index types match exactly.

To use:

from hamilton import base, driver
strict_builder = base.StrictIndexTypePandasDataFrameResult()
adapter = base.SimplePythonGraphAdapter(strict_builder)

532 ResultBuilders

dr = driver.Driver(config, *modules, adapter=adapter)
df = dr.execute([...], inputs=...) # this will now error if
index types mismatch.

static build_result(**outputs: Dict[str, Any]) → DataFrame

Builds a Pandas DataFrame from the outputs.

This function will check the index types of the outputs, and log warnings if they don’t

match. The behavior of pd.Dataframe(outputs) is that it will do an outer join based on

indexes of the Series passed in.

Parameters:

outputs – the outputs to build a dataframe from.

Polars

class hamilton.plugins.h_polars.PolarsDataFrameResult

A ResultBuilder that produces a polars dataframe.

Use this when you want to create a polars dataframe from the outputs. Caveat: you need to

ensure that the length of the outputs is the same, otherwise you will get an error; mixed

outputs aren’t that well handled.

To use:

from hamilton import base, driver
from hamilton.plugins import polars_extensions

polars_builder = polars_extensions.PolarsDataFrameResult()
adapter = base.SimplePythonGraphAdapter(polars_builder)
dr = driver.Driver(config, *modules, adapter=adapter)
df = dr.execute([...], inputs=...) # returns polars dataframe

Note: this is just a first attempt at something for Polars. Think it should handle more? Come

chat/open a PR!

build_result(**outputs: Dict[str, Series | DataFrame | Any]) → DataFrame

This is the method that Hamilton will call to build the final result. It will pass in the

results of the requested outputs that you passed in to the execute() method.

Note: this function could do smarter things; looking for contributions here!

533 ResultBuilders

Parameters:

outputs – The results of the requested outputs.

Returns:

a polars DataFrame.

Dask

class hamilton.plugins.h_dask.DaskDataFrameResult

static build_result(**outputs: Dict[str, Any]) → Any

Builds a dask dataframe from the outputs.

This has some assumptions:

the order specified in the output will mirror the order of “joins” here.

it tries to massage types into dask types where it can

otherwise it duplicates any “scalars/objects” using the first valid input with

an index as the template. It assumes a single partition.

plugins.h_pyarrow.PyarrowTableResult

class hamilton.plugins.h_pyarrow.PyarrowTableResult

Add this result builder to a materializer’s combine statement to convert your dataframe

object to a pyarrow representation and make it compatible with pyarrow DataSavers.

It implicitly support input_type == Any, but it expects dataframe objects implementing the

dataframe interchange protocol: ref: https://arrow.apache.org/docs/python/

interchange_protocol.html for example: - pandas - polars - dask - vaex - ibis - duckdb

results

build_result(**outputs: Any) → Any

This function converts objects implementing the __dataframe__ protocol to a pyarrow

table. It doesn’t support receiving multiple outputs because it can’t handle any

joining logic.

ref: https://arrow.apache.org/docs/python/interchange_protocol.html

do_build_result(outputs: Dict[str, Any]) → Any

1.

2.

3.

534 ResultBuilders

https://arrow.apache.org/docs/python/interchange_protocol.html
https://arrow.apache.org/docs/python/interchange_protocol.html
https://arrow.apache.org/docs/python/interchange_protocol.html

Implements the do_build_result method from the BaseDoBuildResult class. This is

kept from the user as the public-facing API is build_result, allowing us to change the

API/implementation of the internal set of hooks

input_types() → List[Type[Type]]

Gives the applicable types to this result builder. This is optional for backwards

compatibility, but is recommended.

Returns:

A list of types that this can apply to.

output_type() → Type

Returns the output type of this result builder :return: the type that this creates

Custom ResultBuilder

If you have a use case for a custom ResultBuilder, tell us on Slack or via a GitHub issues. Knowing

about your use case and talking through help ensures we aren’t duplicating effort, and that it’ll be

using part of the API we don’t intend to change.

What you need to do
You need to implement a class that implements a single function - see GitHub:

class ResultBuilder(object):
"""Base class housing the result builder"""
@abc.abstractmethod
def build_result(self, **outputs: typing.Dict[str, typing.Any]) -

> typing.Any:
"""This function builds the result given the computed

values."""
pass

For example:

import typing
from hamilton import lifecycle
class MyCustomBuilder(lifecycle.ResultBuilder):

add a constructor if you need to
@staticmethod
def build_result(**outputs: typing.Dict[str, typing.Any]) ->

YOUR_RETURN_TYPE:
"""Custom function you fill in"""

535 ResultBuilders

https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://github.com/apache/hamilton/issues/new?assignees=&labels=&projects=&template=feature_request.md&title=
https://github.com/apache/hamilton/blob/main/hamilton/base.py#L18-L28

your logic would go here
return OBJECT_OF_YOUR_CHOOSING

How to use it
You would then have the option to pair that with a graph adapter that takes in a ResultMixin

object. E.g. SimplePythonGraphAdapter . See GraphAdapters for which ones take in a custom

ResultMixin object.

You can pass the result builder or a graph adapters to the

driver.Builder(result_builder).with_adapters(...) function.

536 ResultBuilders

I/O

This section contains any information about I/O within Apache Hamilton. If you’re using

materializers or the save_to/load_from decorator, you’ll need this page to help you find the set of

available loading/saving targets.

Reference

Using Data Adapters

This is an index of all the available data adapters, both savers and loaders. Note that some savers

and loaders are the same (certain classes can handle both), but some are different. You will want

to reference this when calling out to any of the following:

Using save_to [or for just exposing metadata datasaver].

Using load_from [or for just exposing metadata dataloader].

Using materializers.

To read these tables, you want to first look at the key to determine which format you want – these

should be human-readable and familiar to you. Then you’ll want to look at the types field to figure

out which is the best for your case (the object you want to load from or save to).

Finally, look up the adapter params to see what parameters you can pass to the data adapters.

The optional params come with their default value specified.

If you want more information, click on the module, it will send you to the code that implements it

to see how the parameters are used.

As an example, say we wanted to save a pandas dataframe to a CSV file. We would first find the

key csv, which would inform us that we want to call save_to.csv (or to.csv in the case of

materialize). Then, we would look at the types field, finding that there is a pandas dataframe

adapter. Finally, we would look at the params field, finding that we can pass path, and (optionally)

sep (which we’d realize defaults to , when looking at the code).

All together, we’d end up with:

1.

2.

3.

537 I/O

import pandas as pd
from hamilton.function_modifiers import value, save_to

@save_to.csv(path=value("my_file.csv"))
def my_data(...) -> pd.DataFrame:

...

For a less “abstracted” approach, where you just expose metadata from saving and loading, you

can annotated your saving/loading functions to do so, e.g. analogous to the above you could do:

import pandas as pd
from hamilton.function_modifiers import datasaver

def my_data(...) -> pd.DataFrame:
your function
...
return _df # return some df

@datasaver
def my_data_saver(my_data: pd.DataFrame, path: str) -> dict:

code to save my_data
return {"path": path, "type": "csv", ...} # add other metadata

See dataloader for more information on how to load data and expose metadata via this more

lighter weight way.

If you want to extend the @save_to or @load_from decorators, see Using Data Adapters for

documentation, and the example in the repository for an example of how to do so.

Note that you will need to call registry.register_adapters (or import a module that does that) prior

to dynamically referring to these in the code – otherwise we won’t know about them, and won’t be

able to access that key!

Data Loaders

key loader params types module

json
path str dict

list

hamilton.io.default_data_loaders

json hamilton.plugins.pandas_extensions

538 I/O

https://github.com/apache/hamilton/blob/main/examples/materialization/README.md
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L30-L45
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L551-L632

key loader params types module

filepath_or_buffer Union chunksize
Optional=None compression Union=infer

convert_axes Optional=None convert_dates
Union=True date_unit Optional=None dtype
Union=None dtype_backend Optional=None

encoding Optional=None encoding_errors
Optional=strict engine str=ujson

keep_default_dates bool=True lines
bool=False nrows Optional=None orient
Optional=None precise_float bool=False

storage_options Optional=None typ
str=frame

DataFrame

json
DataFrame

hamilton.plugins.polars_post_1_0_0_extensions

539 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L509-L540

key loader params types module

source Union schema
collections.abc.Mapping[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]] | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]]]=None

schema_overrides
collections.abc.Mapping[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]] | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]]]=None

540 I/O

key loader params types module

json
path Union XGBModel

Booster

hamilton.plugins.xgboost_extensions

literal
value Any Any

hamilton.io.default_data_loaders

file
path str encoding str=utf-8 str

hamilton.io.default_data_loaders

file
path Union LGBMModel

Booster

CVBooster

hamilton.plugins.lightgbm_extensions

pickle
path str object

Any

hamilton.io.default_data_loaders

pickle
filepath_or_buffer Union=None path
Union=None compression Union=infer

storage_options Optional=None

DataFrame
hamilton.plugins.pandas_extensions

environment
names Tuple dict

hamilton.io.default_data_loaders

yaml
path Union str int

float

bool

dict

list

hamilton.plugins.yaml_extensions

npy
ndarray

hamilton.plugins.numpy_extensions

541 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/xgboost_extensions.py#L57-L78
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L177-L191
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L65-L81
https://github.com/apache/hamilton/blob/main/hamilton/plugins/lightgbm_extensions.py#L66-L86
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L126-L141
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L460-L510
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L161-L175
https://github.com/apache/hamilton/blob/main/hamilton/plugins/yaml_extensions.py#L35-L54
https://github.com/apache/hamilton/blob/main/hamilton/plugins/numpy_extensions.py#L62-L92

key loader params types module

path Union mmap_mode Optional=None

allow_pickle Optional=None fix_imports
Optional=None encoding Literal=ASCII

csv
path Union sep Optional=, delimiter
Optional=None header Union=infer names
Optional=None index_col Union=None

usecols Union=None dtype Union=None engine
Optional=None converters Optional=None

true_values Optional=None false_values
Optional=None skipinitialspace
Optional=False skiprows Union=None

skipfooter int=0 nrows Optional=None

na_values Union=None keep_default_na
bool=True na_filter bool=True verbose
bool=False skip_blank_lines bool=True

parse_dates Union=False keep_date_col
bool=False date_format Optional=None

dayfirst bool=False cache_dates bool=True

iterator bool=False chunksize
Optional=None compression Union=infer

thousands Optional=None decimal str=.

lineterminator Optional=None quotechar
Optional=None quoting int=0 doublequote
bool=True escapechar Optional=None

comment Optional=None encoding
str=utf-8 encoding_errors Union=strict

dialect Union=None on_bad_lines
Union=error delim_whitespace bool=False

low_memory bool=True memory_map
bool=False float_precision Optional=None

storage_options Optional=None

dtype_backend Literal=numpy_nullable

DataFrame
hamilton.plugins.pandas_extensions

csv
DataFrame

hamilton.plugins.polars_post_1_0_0_extensions

542 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L106-L273
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L78-L184

key loader params types module

file Union has_header bool=True

include_header bool=True columns
Union=None new_columns Sequence=None

separator str=, comment_char str=None

quote_char str=" skip_rows int=0 dtypes
Union=None null_values Union=None

missing_utf8_is_empty_string bool=False

ignore_errors bool=False try_parse_dates
bool=False n_threads int=None

infer_schema_length int=100 batch_size
int=8192 n_rows int=None encoding
Union=utf8 low_memory bool=False

rechunk bool=True use_pyarrow bool=False

storage_options Dict=None

skip_rows_after_header int=0

row_count_name str=None row_count_offset
int=0 sample_size int=1024 eol_char
str= raise_if_empty bool=True

csv
file Union has_header bool=True columns
Union=None new_columns Sequence=None

separator str=, comment_char str=None

quote_char str=" skip_rows int=0 dtypes
Union=None null_values Union=None

missing_utf8_is_empty_string bool=False

ignore_errors bool=False try_parse_dates
bool=False n_threads int=None

infer_schema_length int=100 batch_size
int=8192 n_rows int=None encoding
Union=utf8 low_memory bool=False

rechunk bool=True use_pyarrow bool=False

storage_options Dict=None

skip_rows_after_header int=0

row_count_name str=None row_count_offset
int=0 eol_char str= raise_if_empty
bool=True

LazyFrame
hamilton.plugins.polars_lazyframe_extensions

543 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_lazyframe_extensions.py#L92-L192

key loader params types module

csv
spark SparkSession path str header
bool=True sep str=,

DataFrame
hamilton.plugins.spark_extensions

parquet
path Union engine Literal=auto columns
Optional=None storage_options
Optional=None use_nullable_dtypes
bool=False dtype_backend
Literal=numpy_nullable filesystem
Optional=None filters Union=None

DataFrame
hamilton.plugins.pandas_extensions

parquet
file Union columns Union=None n_rows
int=None use_pyarrow bool=False

memory_map bool=True storage_options
Dict=None parallel Any=auto

row_count_name str=None row_count_offset
int=0 low_memory bool=False

pyarrow_options Dict=None use_statistics
bool=True rechunk bool=True

DataFrame
hamilton.plugins.polars_post_1_0_0_extensions

parquet
file Union columns Union=None n_rows
int=None use_pyarrow bool=False

memory_map bool=True storage_options
Dict=None parallel Any=auto

row_count_name str=None row_count_offset
int=0 low_memory bool=False

use_statistics bool=True rechunk bool=True

LazyFrame
hamilton.plugins.polars_lazyframe_extensions

parquet
spark SparkSession path str DataFrame

hamilton.plugins.spark_extensions

sql
DataFrame

hamilton.plugins.pandas_extensions

544 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/spark_extensions.py#L52-L68
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L365-L413
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L249-L310
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_lazyframe_extensions.py#L194-L248
https://github.com/apache/hamilton/blob/main/hamilton/plugins/spark_extensions.py#L70-L82
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L701-L758

key loader params types module

query_or_table str db_connection Union

chunksize Optional=None coerce_float
bool=True columns Optional=None dtype
Union=None dtype_backend Optional=None

index_col Union=None params Union=None

parse_dates Union=None

xml
path_or_buffer Union xpath Optional=./*

namespace Optional=None elems_only
Optional=False attrs_only Optional=False

names Optional=None dtype Optional=None

converters Optional=None parse_dates
Union=False encoding Optional=utf-8

parser str=lxml stylesheet Union=None

iterparse Optional=None compression
Union=infer storage_options
Optional=None dtype_backend
str=numpy_nullable

DataFrame
hamilton.plugins.pandas_extensions

html
io Union match Optional=.+ flavor
Union=None header Union=None index_col
Union=None skiprows Union=None attrs
Optional=None parse_dates Optional=None

thousands Optional=, encoding
Optional=None decimal str=. converters
Optional=None na_values Iterable=None

keep_default_na bool=True displayed_only
bool=True extract_links Optional=None

dtype_backend Literal=numpy_nullable

storage_options Optional=None

DataFrame
hamilton.plugins.pandas_extensions

stata
DataFrame

hamilton.plugins.pandas_extensions

545 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L816-L893
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L968-L1046
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1141-L1203

key loader params types module

filepath_or_buffer Union convert_dates
bool=True convert_categoricals bool=True

index_col Optional=None convert_missing
bool=False preserve_dtypes bool=True

columns Optional=None order_categoricals
bool=True chunksize Optional=None iterator
bool=False compression Union=infer

storage_options Optional=None

feather
path Union columns Optional=None

use_threads bool=True storage_options
Optional=None dtype_backend
Literal=numpy_nullable

DataFrame
hamilton.plugins.pandas_extensions

feather
source Union columns Union=None n_rows
Optional=None use_pyarrow bool=False

memory_map bool=True storage_options
Optional=None row_count_name
Optional=None row_count_offset int=0

rechunk bool=True

DataFrame
hamilton.plugins.polars_post_1_0_0_extensions

feather
source Union columns Union=None n_rows
Optional=None use_pyarrow bool=False

memory_map bool=True storage_options
Optional=None row_count_name
Optional=None row_count_offset int=0

rechunk bool=True

LazyFrame
hamilton.plugins.polars_lazyframe_extensions

orc
path Union columns Optional=None

dtype_backend Literal=numpy_nullable

filesystem Union=None

DataFrame
hamilton.plugins.pandas_extensions

excel hamilton.plugins.pandas_extensions

546 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1267-L1306
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L360-L410
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_lazyframe_extensions.py#L250-L298
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1353-L1390
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1429-L1496

key loader params types module

path Union=None sheet_name Union=0

header Union=0 names Optional=None

index_col Union=None usecols Union=None

dtype Union=None engine Optional=None

converters Union=None true_values
Optional=None false_values Optional=None

skiprows Union=None nrows Optional=None

keep_default_na bool=True na_filter
bool=True verbose bool=False parse_dates
Union=False date_format Union=None

thousands Optional=None decimal str=.

comment Optional=None skipfooter int=0

storage_options Optional=None

dtype_backend Literal=numpy_nullable

engine_kwargs Optional=None

DataFrame

table
DataFrame

hamilton.plugins.pandas_extensions

547 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1577-L1657

key loader params types module

filepath_or_buffer Union sep Optional=None

delimiter Optional=None header
Union=infer names Optional=None

index_col Union=None usecols
Optional=None dtype Union=None engine
Optional=None converters Optional=None

true_values Optional=None false_values
Optional=None skipinitialspace bool=False

skiprows Union=None skipfooter int=0 nrows
Optional=None na_values Union=None

keep_default_na bool=True na_filter
bool=True verbose bool=False

skip_blank_lines bool=True parse_dates
Union=False infer_datetime_format
bool=False keep_date_col bool=False

date_parser Optional=None date_format
Optional=None dayfirst bool=False

cache_dates bool=True iterator bool=False

chunksize Optional=None compression
Union=infer thousands Optional=None

decimal str=. lineterminator Optional=None

quotechar Optional=" quoting int=0

doublequote bool=True escapechar
Optional=None comment Optional=None

encoding Optional=None encoding_errors
Optional=strict dialect Optional=None

on_bad_lines Union=error delim_whitespace
bool=False low_memory bool=True

memory_map bool=False float_precision
Optional=None storage_options
Optional=None dtype_backend
Literal=numpy_nullable

fwf
filepath_or_buffer Union colspecs
Union=infer widths Optional=None

infer_nrows int=100 dtype_backend
Literal=numpy_nullable

DataFrame
hamilton.plugins.pandas_extensions

548 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1659-L1695

key loader params types module

spss
path Union usecols Union=None

convert_categoricals bool=True

dtype_backend Literal=numpy_nullable

DataFrame
hamilton.plugins.pandas_extensions

avro
file Union columns Union=None n_rows
Optional=None

DataFrame
hamilton.plugins.polars_post_1_0_0_extensions

ndjson
DataFrame

hamilton.plugins.polars_post_1_0_0_extensions

549 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1697-L1732
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L444-L475
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L567-L598

key loader params types module

source Union schema
collections.abc.Mapping[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]] | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]]]=None

schema_overrides
collections.abc.Mapping[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]] | collections.abc.Sequence[str
| tuple[str,
typing.Union[ForwardRef('DataTypeClass'),
ForwardRef('DataType'), type[int],
type[float], type[bool], type[str],
type['date'], type['time'],
type['datetime'], type['timedelta'],
type[list[typing.Any]],
type[tuple[typing.Any, ...]], type[bytes],
type[object], type['Decimal'], type[None],
NoneType]]]=None

database
DataFrame

hamilton.plugins.polars_post_1_0_0_extensions

550 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L784-L829

key loader params types module

query str connection Union iter_batches
bool=False batch_size Optional=None

schema_overrides Optional=None

infer_schema_length Optional=None

execute_options Optional=None

spreadsheet
source Union sheet_id Union=None

sheet_name Union=None engine
Literal=xlsx2csv engine_options
Optional=None read_options Optional=None

schema_overrides Optional=None

raise_if_empty bool=True

DataFrame
hamilton.plugins.polars_post_1_0_0_extensions

dlt
resource DltResource DataFrame

hamilton.plugins.dlt_extensions

mlflow
model_uri Optional=None mode
Literal=tracking run_id Optional=None

path Union=model model_name
Optional=None version Union=None

version_alias Optional=None flavor
Union=None mlflow_kwargs Dict=None

Any
hamilton.plugins.mlflow_extensions

Data Savers

key saver params types module

json
path str dict list

hamilton.io.default_data_loaders

json
DataFrame

hamilton.plugins.pandas_extensions

551 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L625-L672
https://github.com/apache/hamilton/blob/main/hamilton/plugins/dlt_extensions.py#L57-L95
https://github.com/apache/hamilton/blob/main/hamilton/plugins/mlflow_extensions.py#L112-L202
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L47-L63
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L634-L699

key saver params types module

filepath_or_buffer
Union compression
str=infer

date_format
str=epoch date_unit
str=ms

default_handler
Optional=None

double_precision
int=10 force_ascii
bool=True index
Optional=None

indent int=0 lines
bool=False mode
str=w orient
Optional=None

storage_options
Optional=None

json
file Union DataFrame LazyFrame

hamilton.plugins.polars_post_1_0_0_extensions

json
path Union XGBModel Booster

hamilton.plugins.xgboost_extensions

file
path str encoding
str=utf-8

str
hamilton.io.default_data_loaders

file
path Union bytes BytesIO

hamilton.io.default_data_loaders

file
LGBMModel Booster

CVBooster

hamilton.plugins.lightgbm_extensions

552 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L542-L565
https://github.com/apache/hamilton/blob/main/hamilton/plugins/xgboost_extensions.py#L36-L55
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L83-L100
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L102-L124
https://github.com/apache/hamilton/blob/main/hamilton/plugins/lightgbm_extensions.py#L36-L64

key saver params types module

path Union

num_iteration
Optional=None

start_iteration
int=0

importance_type
Literal=split

pickle
path str object

hamilton.io.default_data_loaders

pickle
path Union

compression
Union=infer

protocol int=5

storage_options
Optional=None

DataFrame
hamilton.plugins.pandas_extensions

memory
Any

hamilton.io.default_data_loaders

yaml
path Union str int float bool

dict list

hamilton.plugins.yaml_extensions

plt
Figure

hamilton.plugins.matplotlib_extensions

553 I/O

https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L143-L159
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L515-L549
https://github.com/apache/hamilton/blob/main/hamilton/io/default_data_loaders.py#L193-L210
https://github.com/apache/hamilton/blob/main/hamilton/plugins/yaml_extensions.py#L56-L75
https://github.com/apache/hamilton/blob/main/hamilton/plugins/matplotlib_extensions.py#L34-L96

key saver params types module

path Union dpi
Union=None format
Optional=None

metadata
Optional=None

bbox_inches
Union=None

pad_inches
Union=None

facecolor
Union=None

edgecolor
Union=None backend
Optional=None

orientation
Optional=None

papertype
Optional=None

transparent
Optional=None

bbox_extra_artists
Optional=None

pil_kwargs
Optional=None

npy
path Union

allow_pickle
Optional=None

fix_imports
Optional=None

ndarray
hamilton.plugins.numpy_extensions

csv
DataFrame

hamilton.plugins.pandas_extensions

554 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/numpy_extensions.py#L34-L60
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L275-L363

key saver params types module

path Union sep
Optional=, na_rep
str= float_format
Union=None columns
Optional=None

header Union=True

index
Optional=False

index_label
Union=None mode
str=w encoding
Optional=None

compression
Union=infer

quoting
Optional=None

quotechar
Optional="

lineterminator
Optional=None

chunksize
Optional=None

date_format
Optional=None

doublequote
bool=True

escapechar
Optional=None

decimal str=. errors
str=strict

storage_options
Optional=None

csv
DataFrame LazyFrame

hamilton.plugins.polars_post_1_0_0_extensions

555 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L186-L247

key saver params types module

file Union

include_header
bool=True separator
str=,

line_terminator
str= quote_char
str=" batch_size
int=1024

datetime_format
str=None

date_format
str=None

time_format
str=None

float_precision
int=None null_value
str=None

quote_style
Type=None

parquet
path Union engine
Literal=auto

compression
Optional=snappy

index
Optional=None

partition_cols
Optional=None

storage_options
Optional=None

extra_kwargs
Optional=None

DataFrame
hamilton.plugins.pandas_extensions

parquet
DataFrame LazyFrame

hamilton.plugins.polars_post_1_0_0_extensions

556 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L415-L458
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L312-L358

key saver params types module

file Union

compression
Any=zstd

compression_level
int=None statistics
bool=False

row_group_size
int=None

use_pyarrow
bool=False

pyarrow_options
Dict=None

sql
table_name str

db_connection Any

chunksize
Optional=None

dtype Union=None

if_exists str=fail

index bool=True

index_label
Union=None method
Union=None schema
Optional=None

DataFrame
hamilton.plugins.pandas_extensions

xml
DataFrame

hamilton.plugins.pandas_extensions

557 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L760-L814
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L895-L966

key saver params types module

path_or_buffer
Union index
bool=True

root_name
str=data row_name
str=row na_rep
Optional=None

attr_cols
Optional=None

elems_cols
Optional=None

namespaces
Optional=None

prefix
Optional=None

encoding str=utf-8

xml_declaration
bool=True

pretty_print
bool=True parser
str=lxml stylesheet
Union=None

compression
Union=infer

storage_options
Optional=None

html
DataFrame

hamilton.plugins.pandas_extensions

558 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1048-L1139

key saver params types module

buf Union=None

columns
Optional=None

col_space
Union=None header
Optional=True

index
Optional=True

na_rep
Optional=NaN

formatters
Union=None

float_format
Optional=None

sparsify
Optional=True

index_names
Optional=True

justify str=None

max_rows
Optional=None

max_cols
Optional=None

show_dimensions
bool=False decimal
str=. bold_rows
bool=True classes
Union=None escape
Optional=True

notebook
Literal=False

border int=None

table_id
Optional=None

render_links
bool=False

encoding
Optional=utf-8

559 I/O

key saver params types module

stata
path Union=None

convert_dates
Optional=None

write_index
bool=True

byteorder
Optional=None

time_stamp
Optional=None

data_label
Optional=None

variable_labels
Optional=None

version Literal=114

convert_strl
Optional=None

compression
Union=infer

storage_options
Optional=None

value_labels
Optional=None

DataFrame
hamilton.plugins.pandas_extensions

feather
path Union dest
Optional=None

compression
Literal=None

compression_level
Optional=None

chunksize
Optional=None

version Optional=2

DataFrame
hamilton.plugins.pandas_extensions

560 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1205-L1265
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1308-L1351

key saver params types module

feather
file Union=None

compression
Type=uncompressed

DataFrame LazyFrame
hamilton.plugins.polars_post_1_0_0_extensions

orc
path Union engine
Literal=pyarrow

index
Optional=None

engine_kwargs
Optional=None

DataFrame
hamilton.plugins.pandas_extensions

excel
DataFrame

hamilton.plugins.pandas_extensions

561 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L412-L442
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1392-L1427
https://github.com/apache/hamilton/blob/main/hamilton/plugins/pandas_extensions.py#L1498-L1575

key saver params types module

path Union

sheet_name
str=Sheet1 na_rep
str= float_format
Optional=None

columns
Optional=None

header Union=True

index bool=True

index_label
Union=None startrow
int=0 startcol
int=0 engine
Optional=None

merge_cells
bool=True inf_rep
str=inf

freeze_panes
Optional=None

storage_options
Optional=None

engine_kwargs
Optional=None

mode Optional=w

if_sheet_exists
Optional=None

datetime_format
str=None

date_format
str=None

avro
file Union

compression
Any=uncompressed

DataFrame LazyFrame
hamilton.plugins.polars_post_1_0_0_extensions

ndjson
file Union DataFrame LazyFrame

hamilton.plugins.polars_post_1_0_0_extensions

562 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L477-L507
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L600-L623

key saver params types module

database
table_name str

connection Union

if_table_exists
Literal=fail

engine
Literal=sqlalchemy

DataFrame LazyFrame
hamilton.plugins.polars_post_1_0_0_extensions

spreadsheet
DataFrame LazyFrame

hamilton.plugins.polars_post_1_0_0_extensions

563 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L831-L868
https://github.com/apache/hamilton/blob/main/hamilton/plugins/polars_post_1_0_0_extensions.py#L674-L782

workbook Union

worksheet
Optional=None

position Union=A1

table_style
Union=None

table_name
Optional=None

column_formats
Optional=None

dtype_formats
Optional=None

conditional_formats
Optional=None

header_format
Optional=None

column_totals
Union=None

column_widths
Union=None

row_totals
Union=None

row_heights
Union=None

sparklines
Optional=None

formulas
Optional=None

float_precision
int=3

include_header
bool=True autofilter
bool=True autofit
bool=False

hidden_columns
Union=None

hide_gridlines
bool=None

sheet_zoom
Optional=None

freeze_panes
Union=None

564 I/O

key saver params types module

png
path Union dpi
float=200 format
str=png metadata
Optional=None

bbox_inches
str=None

pad_inches
float=0.1 backend
Optional=None

papertype str=None

transparent
bool=None

bbox_extra_artists
Optional=None

pil_kwargs
Optional=None

ConfusionMatrixDisplay

DetCurveDisplay

PrecisionRecallDisplay

PredictionErrorDisplay

RocCurveDisplay

DecisionBoundaryDisplay

LearningCurveDisplay

PartialDependenceDisplay

ValidationCurveDisplay

Figure

hamilton.plugins.sklearn_plot_extensions

dlt
pipeline Pipeline

table_name str

primary_key
Optional=None

write_disposition
Optional=None

columns
Optional=None

schema
Optional=None

loader_file_format
Optional=None

Iterable DataFrame

Table RecordBatch

hamilton.plugins.dlt_extensions

mlflow
Any

hamilton.plugins.mlflow_extensions

565 I/O

https://github.com/apache/hamilton/blob/main/hamilton/plugins/sklearn_plot_extensions.py#L64-L119
https://github.com/apache/hamilton/blob/main/hamilton/plugins/dlt_extensions.py#L98-L149
https://github.com/apache/hamilton/blob/main/hamilton/plugins/mlflow_extensions.py#L32-L110

key saver params types module

path Union=model

register_as
Optional=None

flavor Union=None

run_id
Optional=None

mlflow_kwargs
Dict=None

Data Adapters

Reference for data adapter base classes:

class hamilton.io.data_adapters.DataLoader

Base class for data loaders. Data loaders are used to load data from a data source. Note

that they are inherently polymorphic – they declare what type(s) they can load to, and may

choose to load differently depending on the type they are loading to.

abstractmethod classmethod applicable_types() → Collection[Type]

Returns the types that this data loader can load to. These will be checked against the

desired type to determine whether this is a suitable loader for that type.

Note that a loader can load to multiple types. This is the function to override if you

want to add a new type to a data loader.

Note if you have any specific requirements for loading types (generic/whatnot), you

can override applies_to as well, but it will make it much harder to document/

determine what is happening.

Returns:

classmethod applies_to(type_: Type[Type]) → bool

Tells whether or not this data loader can load to a specific type. For instance, a CSV

data loader might be able to load to a dataframe, a json, but not an integer.

I.e. is the adapter type a subclass of the passed in type?

566 I/O

This is a classmethod as it will be easier to validate, and we have to construct this,

delayed, with a factory.

Parameters:

type – Candidate type

Returns:

True if this data loader can load to the type, False

otherwise.

classmethod can_load() → bool

Returns whether this adapter can “load” data. Subclasses are meant to implement

this function to tell the framework what to do with them.

Returns:

classmethod can_save() → bool

Returns whether this adapter can “save” data. Subclasses are meant to implement

this function to tell the framework what to do with them.

Returns:

classmethod get_optional_arguments() → Dict[str, Type[Type]]

Gives the optional arguments for the class. Note that this just uses the type hints

from the dataclass.

Returns:

The optional arguments for the class.

classmethod get_required_arguments() → Dict[str, Type[Type]]

Gives the required arguments for the class. Note that this just uses the type hints

from the dataclass.

Returns:

The required arguments for the class.

abstractmethod load_data(type_: Type[Type]) → Tuple[Type, Dict[str, Any]]

Loads the data from the data source. Note this uses the constructor parameters to

determine how to load the data.

567 I/O

Returns:

The type specified

abstractmethod classmethod name() → str

Returns the name of the data loader. This is used to register the data loader with the

load_from decorator.

Returns:

The name of the data loader.

class hamilton.io.data_adapters.DataSaver

Base class for data savers. Data savers are used to save data to a data source. Note that

they are inherently polymorphic – they declare what type(s) they can save from, and may

choose to save differently depending on the type they are saving from.

abstractmethod classmethod applicable_types() → Collection[Type]

Returns the types that this data loader can load to. These will be checked against the

desired type to determine whether this is a suitable loader for that type.

Note that a loader can load to multiple types. This is the function to override if you

want to add a new type to a data loader.

Note if you have any specific requirements for loading types (generic/whatnot), you

can override applies_to as well, but it will make it much harder to document/

determine what is happening.

Returns:

classmethod applies_to(type_: Type[Type]) → bool

Tells whether or not this data saver can ingest a specific type to save it.

I.e. is the adapter type a superclass of the passed in type?

This is a classmethod as it will be easier to validate, and we have to construct this,

delayed, with a factory.

Parameters:

type – Candidate type

Returns:

568 I/O

True if this data saver can handle to the type, False

otherwise.

classmethod can_load() → bool

Returns whether this adapter can “load” data. Subclasses are meant to implement

this function to tell the framework what to do with them.

Returns:

classmethod can_save() → bool

Returns whether this adapter can “save” data. Subclasses are meant to implement

this function to tell the framework what to do with them.

Returns:

classmethod get_optional_arguments() → Dict[str, Type[Type]]

Gives the optional arguments for the class. Note that this just uses the type hints

from the dataclass.

Returns:

The optional arguments for the class.

classmethod get_required_arguments() → Dict[str, Type[Type]]

Gives the required arguments for the class. Note that this just uses the type hints

from the dataclass.

Returns:

The required arguments for the class.

abstractmethod classmethod name() → str

Returns the name of the data loader. This is used to register the data loader with the

load_from decorator.

Returns:

The name of the data loader.

abstractmethod save_data(data: Any) → Dict[str, Any]

Saves the data to the data source.

Note this uses the constructor parameters to determine how to save the data.

569 I/O

Returns:

Any relevant metadata. This is up the the data saver, but

will likely include the URI, etc… This is going to be

similar to the metadata returned by the data loader in

the loading tuple.

class hamilton.io.data_adapters.AdapterCommon

abstractmethod classmethod applicable_types() → Collection[Type]

Returns the types that this data loader can load to. These will be checked against the

desired type to determine whether this is a suitable loader for that type.

Note that a loader can load to multiple types. This is the function to override if you

want to add a new type to a data loader.

Note if you have any specific requirements for loading types (generic/whatnot), you

can override applies_to as well, but it will make it much harder to document/

determine what is happening.

Returns:

abstractmethod classmethod applies_to(type_: Type[Type]) → bool

Tells whether or not this adapter applies to the given type.

Note: you need to understand the edge direction to properly determine applicability.

For loading data, the loader type needs to be a subclass of the type being loaded into.

For saving data, the saver type needs to be a superclass of the type being passed in.

This is a classmethod as it will be easier to validate, and we have to construct this,

delayed, with a factory.

Parameters:

type – Candidate type

Returns:

True if this adapter can be used with that type, False

otherwise.

classmethod can_load() → bool

Returns whether this adapter can “load” data. Subclasses are meant to implement

this function to tell the framework what to do with them.

570 I/O

Returns:

classmethod can_save() → bool

Returns whether this adapter can “save” data. Subclasses are meant to implement

this function to tell the framework what to do with them.

Returns:

classmethod get_optional_arguments() → Dict[str, Type[Type]]

Gives the optional arguments for the class. Note that this just uses the type hints

from the dataclass.

Returns:

The optional arguments for the class.

classmethod get_required_arguments() → Dict[str, Type[Type]]

Gives the required arguments for the class. Note that this just uses the type hints

from the dataclass.

Returns:

The required arguments for the class.

abstractmethod classmethod name() → str

Returns the name of the data loader. This is used to register the data loader with the

load_from decorator.

Returns:

The name of the data loader.

571 I/O

Dataflows

Here lies reference documentation for dataflows module functions that enable you to discover

and use community-contributed dataflows. See the ecosystem page for available dataflow

resources.

Reference

clear_storage()

hamilton.dataflows.clear_storage()

Clears all the data under DATAFLOW_FOLDER. By default its “~/.hamilton/dataflows”.

copy()

hamilton.dataflows.copy(dataflow: ModuleType, destination_path: str, overwrite: bool = False,

renamed_module: str = None)

Copies a dataflow module to the passed in path.

from hamilton import dataflows

dynamically pull and then copy
NAME_OF_DATAFLOW = dataflow.import_module("NAME_OF_DATAFLOW",
"NAME_OF_USER")
dataflow.copy(NAME_OF_DATAFLOW,
destination_path="PATH_TO_DIRECTORY")
copy from the installed library
from hamilton.contrib.user.NAME_OF_USER import NAME_OF_DATAFLOW

dataflow.copy(NAME_OF_DATAFLOW,
destination_path="PATH_TO_DIRECTORY")

Parameters:

dataflow – the module to copy.•

572 Dataflows

file:///home/runner/work/hamilton/hamilton/docs/ecosystem/index.html

destination_path – the path to a directory to place the

module in.

overwrite – whether to overwrite the destination. Default

is False and raise an error.

renamed_module – whether to rename the copied

module. Default is None and will use the original name.

find()

hamilton.dataflows.find(query: str, version: str = None, user: str = None)

Searches for locally downloaded dataflows based on a query string.

Parameters:

query – key words to search for.

version – the version to inspect. “latest” will resolve to the

most recent commit, else pass a commit SHA.

user – the github name of the user.

Returns:

list of tuples of (version, user, dataflow)

import_module()

hamilton.dataflows.import_module(dataflow: str, user: str = None, version: str = 'latest', overwrite:

bool = False) → ModuleType

Pulls & imports dataflow code from github and returns a module.

from hamilton import dataflows, driver
downloads into ~/.hamilton/dataflows and loads the module --
WARNING: ensure you know what code you're importing!
NAME_OF_DATAFLOW = dataflow.import_module("NAME_OF_DATAFLOW") #
if using official dataflow
NAME_OF_DATAFLOW = dataflow.import_module("NAME_OF_DATAFLOW",
"NAME_OF_USER")

•

•

•

•

•

•

573 Dataflows

dr = (
driver.Builder()
.with_config({}) # replace with configuration as appropriate
.with_modules(NAME_OF_DATAFLOW)
.build()

)
execute the dataflow, specifying what you want back. Will
return a dictionary.
result = dr.execute(

[NAME_OF_DATAFLOW.FUNCTION_NAME, ...], # this specifies what
you want back

inputs={...} # pass in inputs as appropriate
)

Parameters:

dataflow – the name of the dataflow.

user – Optional. If none it assumes official.

version – the version to get. “latest” will resolve to the

most recent commit. Otherwise pass a the commit SHA

you want to pull.

overwrite – whether to overwrite the local path. Default is

False.

Returns:

a Module that you can then pass to Hamilton.

inspect()

Use this to get cursory information about a Apache Hamilton module.

class hamilton.dataflows.InspectResult(version, user, dataflow, python_dependencies,

configurations)

hamilton.dataflows.inspect(dataflow: str, user: str = None, version: str = 'latest') → InspectResult

Inspects a dataflow for information.

This is a helper function to get information about a dataflow that exists locally. It does not

get more information because we don’t want to assume we can import the module.

•

•

•

•

574 Dataflows

from hamilton import dataflows

info = dataflows.inspect("text_summarization", "zilto")

Parameters:

dataflow – the dataflow name.

user – the github name of the user. None for DAGWorks

official.

version – the version to inspect. “latest” will resolve to the

most recent commit, else pass a commit SHA.

Returns:

hamilton.dataflow.InspectResult object that contains

version, user URL, dataflow URL, python dependencies,

configurations.

inspect_module()

Use this to get deep information about a Apache Hamilton module.

class hamilton.dataflows.InspectModuleResult(version, user, dataflow, python_dependencies,

configurations, possible_inputs, nodes, designated_outputs)

hamilton.dataflows.inspect_module(module: ModuleType) → InspectModuleResult

Inspects the import module for information.

This does more than inspect because the module has been loaded and thus we can put it

into a Hamilton driver and ask questions of it.

from hamilton.contrib.user.zilto import text_summarization
from hamilton import dataflows

info = dataflows.inspect_module(text_summarization)

Parameters:

•

•

•

575 Dataflows

module – the module with Hamilton code to deeply

introspect.

Returns:

hamilton.dataflow.InspectModuleResult object.

install_dependencies_string()

hamilton.dataflows.install_dependencies_string(dataflow: str, user: str = None, version: str =

'latest') → str

Returns a string for the user to install dependencies.

Parameters:

dataflow – the name of the dataflow.

user – the github name of the user.

version – the version to inspect. “latest” will resolve to the

most recent commit, else pass a commit SHA.

Returns:

pip install string to use.

latest_commit()

hamilton.dataflows.latest_commit(dataflow: str, user: str = None) → str

Determines the latest commit for a dataflow.

This is useful to know if you want to pull the latest version of a dataflow.

Parameters:

dataflow – the string name of the dataflow

user – the name of the user. None if official.

•

•

•

•

•

576 Dataflows

Returns:

the commit sha.

list()

hamilton.dataflows.list(version: str = 'latest', user: str = None) → list

Lists dataflows locally downloaded based on commit_ish and user.

Parameters:

version – the version to inspect. “latest” will resolve to the

most recent commit, else pass a commit SHA.

user – the github name of the user.

Returns:

list of tuples of (version, user, dataflow)

pull_module()

hamilton.dataflows.pull_module(dataflow: str, user: str = None, version: str = 'latest', overwrite:

bool = False)

Pulls a dataflow module.

Saves to hamilton.dataflow.USER_PATH. An import should just work right after doing this.

It performs the following:

Creates a URL to pull from github.

Pulls the code for the dataflow.

Save to the local location based on hamilton.dataflow.USER_PATH.

Parameters:

dataflow – the dataflow name.

user – the user’s github handle.

•

•

1.

2.

3.

•

•

577 Dataflows

version – the commit version. “latest” will resolve to the

most recent commit, else pass a commit SHA.

overwrite – whether to overwrite. Default is False.

•

•

578 Dataflows

Telemetry

If you do not wish to participate in telemetry capture, one can opt-out with one of the following

methods:

Set it to false programmatically in your code before creating a Hamilton Driver:

from hamilton import telemetry
telemetry.disable_telemetry()

Set the key telemetry_enabled to false in ~/.hamilton.conf under the DEFAULT section:

[DEFAULT]
telemetry_enabled = False

Set HAMILTON_TELEMETRY_ENABLED=false as an environment variable. Either setting it for your

shell session:

export HAMILTON_TELEMETRY_ENABLED=false

or passing it as part of the run command:

HAMILTON_TELEMETRY_ENABLED=false python NAME_OF_MY_DRIVER.py

1.

2.

3.

579 Telemetry

ASF

Apache Software Foundation links.

Foundation

License

Events

Privacy

Security

Sponsorship

Thanks

Code of Conduct

Mailing Lists

Apache Hamilton uses mailing lists for project discussions, announcements, and community

engagement.

Users Mailing List

For general questions, discussions, and user support.

How to Subscribe

Send an empty email to users-subscribe@hamilton.apache.org. Use a subject line like “subscribe”

to avoid spam filters. You will receive a confirmation message with instructions to complete the

subscription process.

How to Unsubscribe

Send an empty message to users-unsubscribe@hamilton.apache.org from the same email address

used to subscribe.

How to Post

•

•

•

•

•

•

•

•

580 ASF

https://www.apache.org/
https://www.apache.org/licenses/
https://www.apache.org/events/current-event.html
https://privacy.apache.org/policies/privacy-policy-public.html
https://www.apache.org/security/
https://www.apache.org/foundation/sponsorship.html
https://www.apache.org/foundation/thanks.html
https://www.apache.org/foundation/policies/conduct.html
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-subscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org
mailto:users-unsubscribe%40hamilton.apache.org

Once subscribed, send messages to users@hamilton.apache.org

Archives

View users list archives

Dev Mailing List

For development discussions, design proposals, and contributing to Apache Hamilton.

How to Subscribe

Send an empty email to dev-subscribe@hamilton.apache.org. Use a subject line like “subscribe”

to avoid spam filters. You will receive a confirmation message with instructions to complete the

subscription process.

How to Unsubscribe

Send an empty message to dev-unsubscribe@hamilton.apache.org from the same email address

used to subscribe.

How to Post

Once subscribed, send messages to dev@hamilton.apache.org

Archives

View dev list archives

581 ASF

mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
mailto:users%40hamilton.apache.org
https://lists.apache.org/list.html?users@hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-subscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev-unsubscribe%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
mailto:dev%40hamilton.apache.org
https://lists.apache.org/list.html?dev@hamilton.apache.org

© Copyright The Apache Software Foundation, Licensed under the Apache License,

Version 2.0..

Created using Sphinx 9.0.4.

http://sphinx-doc.org/

	Hamilton
	Table of Contents

	Welcome to Apache Hamilton
	Why should you use Apache Hamilton (incubating)?
	Architecture Overview
	Who is using Apache Hamilton?
	Testimonials
	Yuan Liu
	Kyle Pounder
	Michał Siedlaczek
	Fran Boon
	Louwrens
	Get Started
	www.tryhamilton.dev
	Get started with Apache Hamilton locally
	Why use Apache Hamilton?
	Comparison to Other Frameworks
	Orchestration Systems
	Feature Stores
	Data Science Ecosystems/ML platforms
	Registries / Experiment Tracking
	Python Dataframe/manipulation Libraries
	Python “big data” systems

	Install
	Installing with pip
	Installing with conda
	Installing from source

	Your First Dataflow
	Write transformation functions
	Run your dataflow

	Learning Resources
	📒 User Guide Documentation
	📚 Reference Documentation
	🌐 Ecosystem & Integrations
	✍ tryhamilton.dev
	👋 Slack
	📣 Talks & Videos
	📰 External Blogs
	🎙 Podcasts

	Contributing
	License
	Usage analytics & data privacy

	Concepts
	Glossary
	Functions, nodes & dataflow
	Functions
	Specifying dependencies
	Helper function
	Function naming tips

	Nodes
	Anatomy of a node

	Dataflow
	How other frameworks build graphs
	Readability
	Maintainability

	Recap
	Next step

	Driver
	Define the Driver
	Visualize the dataflow
	Execute the dataflow
	Development tips
	With a Python module
	With a Jupyter notebook

	Recap
	Next step

	Visualization
	Available visualizations
	View full dataflow
	View executed dataflow

	View node dependencies
	Configure your visualization
	Custom node labels with display_name
	Apply custom style

	Materialization
	Different ways to write the same dataflow
	Without materialization
	Limitations

	With materialization
	Simple Materialization
	Static materializers
	Dynamic materializers
	Function modifiers

	DataLoader and DataSaver

	Function modifiers
	Decorators
	Reminder: Anatomy of a node
	Add metadata to a node
	@tag
	Query node by tag
	Customize visualization by tag
	@schema

	Validate node output
	@check_output*
	pandera support
	pydantic support

	Split node output into n nodes
	@unpack_fields
	@extract_fields
	@extract_columns

	Define one function, create n nodes
	@parameterize

	Select functions to include
	@config

	Load and save external data
	@load_from
	@save_to

	Builder
	with_modules()
	with_config()
	with_materializers()

	with_cache()
	with_adapters()
	enable_dynamic_execution()

	Caching
	How does it work?
	Cache key

	Observing the cache
	Logging
	Visualization
	Structured logs

	Cached result format
	Caching behavior
	Setting caching behavior
	via @cache
	via Builder().with_cache()
	Set a default behavior

	Code version
	Data version
	Recursion depth
	Support additional types

	Storage
	Setting the cache path
	By project
	Globally
	Separate locations

	Inspect storage
	In-memory
	Persist cache
	Load cache

	Roadmap

	Function modifiers (Advanced)
	Dynamic DAGs/Parallel Execution
	Using an Adapter
	Using the Parallelizable[] and Collect[] types
	Known Caveats
	Serialization
	Multiple Collects

	UI Overview
	Local Mode
	Docker/Deployed Mode
	Install
	Building the Docker Images locally
	Self-Hosting
	Running on Snowflake

	Get started
	Existing Apache Hamilton Code
	I need some Apache Hamilton code to run

	Features
	Dataflow versioning
	Assets/features catalog
	Browser
	Run tracking + telemetry

	SDK Configuration
	Changing where data is sent
	Changing behavior of what is captured

	Best Practices
	Function Naming
	It enables you to define your Apache Hamilton dataflow
	It drives collaboration and reuse
	It serves as documentation itself

	Migrating to Apache Hamilton
	Continuous Integration for Comparisons
	Integrate into your code base via a “custom wrapper object”

	Code Organization
	Team thinking
	Helps isolate what you’re working on
	Enables you to replace parts of your DAG easily for different contexts

	Common Indices
	Best practice:

	Output Immutability
	Best practice:

	Using within your ETL System
	Compatibility Matrix
	ETL Recipe

	Loading Data
	Plugging in new Data Sources
	Modules as Interfaces
	Using the Config to Decide Sources

	User Guide
	Jupyter notebooks
	1 - Dynamically create modules within your notebook
	Use Hamilton Jupyter Magic
	Importing specific functions into cell modules

	Using ad_hoc_utils to create a temporary module (e.g. use in google colab)
	Caveat with this approach:

	2 - Importing modules into your notebook
	Step 1 — Install Jupyter & Apache Hamilton
	Step 2— Set up the files
	Step 3— The basic process of iteration

	Pro-tip: You can use ipython magic to autoreload code
	Pro-tip: You can import functions directly

	Loading data
	Caching
	Basics
	Understanding the cache_key

	Adding a node
	Changing inputs
	Changing code
	Changing external data
	Idempotency
	.with_cache() to specify caching behavior
	@cache to specify caching behavior
	When to use @cache vs. .with_cache()?

	Force recompute all
	Setting default behavior
	Materializers
	Usage patterns

	Changing the cache format
	Introspecting the cache
	Interactively explore runs

	Managing storage
	Setting the cache path
	Instantiating the result_store and metadata_store
	Deleting data and recovering storage

	Usage patterns
	🚧 INTERNALS
	Manually retrieve results
	Decoding the cache_key
	Manually retrieve metadata

	Feature engineering
	Offline Feature Engineering
	Apache Hamilton Example

	Streaming Feature Engineering
	Apache Hamilton Example

	Online Feature Engineering
	Apache Hamilton Example

	Write once, run anywhere blog post:
	Best Egg Platform Blog Post:
	FAQ
	Q. Can I use Apache Hamilton for feature engineering with Feast?

	Model training
	LLM workflows
	Data quality
	Lineage + Apache Hamilton
	Common Problems (and therefore questions)
	What is “Lineage”?
	Apache Hamilton’s Lineage Capabilities
	Lineage as Code
	Reproducibility
	Auditing and Compliance
	Troubleshooting and Debugging
	Collaboration

	Recipe for using Apache Hamilton’s Lineage Capabilities
	A script you could write to ask questions of your DAGs

	Scaling computation
	Microservice
	Extension autoloading
	Autoloading behavior
	Disable autoloading
	1. Programmatically
	2. Environment variables
	3. Configuration file

	Manually loading extensions
	1. Importing the extension
	2. Registering the extension

	Wrapping the Driver
	Command line interface
	Installation
	hamilton (global)
	hamilton build
	hamilton diff
	hamilton version
	hamilton view

	pre-commit hooks
	Use pre-commit hooks for safer Apache Hamilton code changes
	What are pre-commit hooks?
	Add pre-commit hooks to your project
	Steps to get started

	Custom Apache Hamilton pre-commit hooks
	Checking dataflow definition
	Checking dataflow paths

	Add Apache Hamilton pre-commit to your project

	Apache Hamilton UI
	Reference
	UI Overview
	Local Mode
	Docker/Deployed Mode
	Install
	Building the Docker Images locally
	Self-Hosting
	Running on Snowflake

	Get started
	Existing Apache Hamilton Code
	I need some Apache Hamilton code to run

	Features
	Dataflow versioning
	Assets/features catalog
	Browser
	Run tracking + telemetry

	SDK Configuration
	Changing where data is sent
	Changing behavior of what is captured

	IDE extension
	Reference
	Apache Hamilton VSCode
	Features
	Dataflow visualization
	Completion suggestions
	Outline
	Symbol navigation
	Extension walkthrough

	Roadmap

	Language Server
	Installation
	Developers

	Integrations
	dlt
	Extract, Transform, Load (ETL)
	Extract
	Transform
	Load
	ETL Summary

	Extract, Load, Transform (ELT)
	Extract & Load
	Transform
	ELT Summary

	dlt materializer plugin
	DataLoader
	DataSaver
	Combining both

	Next steps

	FastAPI
	Challenges
	1. Test your FastAPI application
	2. Document your API

	Apache Hamilton + FastAPI
	Example
	Client
	Backend dataflow with Apache Hamilton
	Server definition with FastAPI
	Visualize endpoints’ dataflow

	Benefits

	Ibis
	Standalone Ibis
	Challenge 1 - Maintain and test large data transformations codebases
	Challenge 2 - Orchestrate Ibis code in production

	How Apache Hamilton complements Ibis
	Write modular Ibis code
	Table-level
	Column-level

	Orchestrate Ibis anywhere

	How Ibis complements Apache Hamilton
	Performance boost
	Atomic data transformation documentation
	Working across rows with user-defined functions (UDFs)

	Ibis + Apache Hamilton - a natural pairing

	Streamlit
	Challenges
	1. Hard to read UI and data flows.
	2. Cache and state management

	Apache Hamilton + Streamlit
	Example
	Benefits

	dbt

	Code Comparisons
	Kedro
	Imperative vs. Declarative
	1. Define steps
	2. Assemble dataflow
	3. Execute dataflow

	Framework weight
	Kedro

	Feature comparison
	More information

	Dagster
	TL;DR
	Dataflow definition
	Dataflow execution
	More information

	LangChain
	A simple joke example
	A streamed joke example
	A “batch” parallel joke example
	A “async” joke example
	Switch LLM to completion for joke
	Switch to using Anthropic
	Logging
	Fallbacks

	Airflow
	High-level differences:
	Code examples:
	Apache Hamilton:
	Airflow:

	Meet-ups
	Past Meet-ups
	July 2025
	December 2024
	October 2024
	August 2024
	June 2024
	April 2024
	March 2024
	February 2024

	Ecosystem
	🚀 Interactive Tutorials
	Built-in Integrations
	Data Frameworks
	Machine Learning & Data Science
	Orchestration & Workflow Systems
	Data Engineering & ETL
	Observability & Monitoring
	Visualization
	Developer Tools
	Cloud Providers & Infrastructure
	Storage & Caching
	Other Utilities

	External Resources
	Community Resources
	📚 Dataflow Hub
	📝 Blog & Tutorials
	🎥 Video Content

	Contributing to the Ecosystem
	Adding a New Integration
	Support & Questions

	Stay Updated

	Decorators
	Custom Decorators
	Reference
	check_output*
	config.when*
	dataloader
	Example Usage:

	datasaver
	Example Usage:

	does
	unpack_fields
	extract_columns
	extract_fields
	inject
	load_from
	parameterize
	parameterize_extract_columns
	parameterize_frame
	parameterize_sources
	parameterized_subdag
	parameterize_values
	pipe family
	pipe
	pipe_input
	pipe_output
	mutate

	resolve
	save_to
	subdag
	schema
	tag*
	with_columns
	Pandas
	Polar (Eager)
	Polars (Lazy)
	PySpark

	Drivers
	Instantiation
	Execution
	Using a DAG once
	Using a DAG multiple times
	Short circuiting some DAG computation
	Reference
	Builder
	Driver
	DefaultGraphExecutor
	TaskBasedGraphExecutor
	AsyncDriver
	Async Builder
	Custom Driver

	Caching
	Reference
	Caching logic
	Caching Behavior
	@cache decorator
	Logging
	Adapter
	Quirks and limitations

	Data versioning
	Stores
	stores.base
	stores.file
	stores.sqlite
	stores.memory

	GraphAdapters
	Reference
	SimplePythonDataFrameGraphAdapter
	SimplePythonGraphAdapter
	HamiltonGraphAdapter
	h_async.AsyncGraphAdapter
	h_threadpool.FutureAdapter
	CachingGraphAdapter
	Custom Serializers
	Usage

	h_dask.DaskGraphAdapter
	Notes on scaling:
	Function return object types supported:
	Pandas?
	Loading Data:
	CAVEATS with use_delayed=True:

	h_spark.PySparkUDFGraphAdapter
	h_ray.RayGraphAdapter
	Notes on scaling:
	Function return object types supported:
	Pandas?
	CAVEATS

	h_spark.SparkKoalasGraphAdapter
	Notes on scaling:
	Function return object types supported:
	Pandas?
	CAVEATS

	Lifecycle Adapters
	Customization
	lifecycle.ResultBuilder
	lifecycle.LegacyResultMixin
	lifecycle.api.GraphAdapter
	lifecycle.NodeExecutionHook
	lifecycle.api.GraphExecutionHook
	lifecycle.api.EdgeConnectionHook
	lifecycle.api.NodeExecutionMethod
	lifecycle.api.StaticValidator
	lifecycle.api.GraphConstructionHook
	lifecycle.api.TaskSubmissionHook
	lifecycle.api.TaskReturnHook
	lifecycle.api.TaskExecutionHook
	lifecycle.api.TaskGroupingHook

	Available Adapters
	lifecycle.PDBDebugger
	lifecycle.PrintLn
	plugins.h_tqdm.ProgressBar
	plugins.h_rich.RichProgressBar
	plugins.h_ddog.DDOGTracer
	lifecycle.FunctionInputOutputTypeChecker
	plugins.h_slack.SlackNotifier
	lifecycle.GracefulErrorAdapter
	plugins.h_spark.SparkInputValidator
	plugins.h_narhwals.NarwhalsAdapter
	plugins.h_narhwals.NarwhalsDataFrameResultBuilder
	plugins.h_mlflow.MLFlowTracker
	lifecycle.NoEdgeAndInputTypeChecking
	plugins.h_openlineage.OpenLineageAdapter

	ResultBuilders
	Reference
	Generic
	Numpy
	Pandas
	Polars
	Dask
	plugins.h_pyarrow.PyarrowTableResult
	Custom ResultBuilder
	What you need to do
	How to use it

	I/O
	Reference
	Using Data Adapters
	Data Loaders
	Data Savers
	Data Adapters

	Dataflows
	Reference
	clear_storage()
	copy()
	find()
	import_module()
	inspect()
	inspect_module()
	install_dependencies_string()
	latest_commit()
	list()
	pull_module()

	Telemetry
	ASF
	Mailing Lists
	Users Mailing List
	Dev Mailing List

