This documentation is automatically generated by online-judge-tools/verification-helper
#include "combinatorial_opt/basepolyhedron.hpp"
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <vector>
// CUT begin
// LinearProgrammingOnBasePolyhedron : Maximize/minimize linear function on base polyhedron, using
// Edmonds' algorithm
//
// maximize/minimize cx s.t. (x on some base polyhedron)
// Reference: <https://www.amazon.co.jp/dp/B01N6G0579>, Sec. 2.4, Algorithm 2.2-2.3
// "Submodular Functions, Matroids, and Certain Polyhedra" [Edmonds+, 1970]
// Used for: <https://yukicoder.me/problems/no/1316>
template <typename Tvalue> struct LinearProgrammingOnBasePolyhedron {
using Tfunc = std::function<Tvalue(int, const std::vector<Tvalue> &)>;
static Tvalue EPS;
int N;
std::vector<Tvalue> c;
Tfunc maximize_xi;
Tvalue xsum;
bool minimize;
Tvalue fun;
std::vector<Tvalue> x;
bool infeasible;
void _init(const std::vector<Tvalue> &c_, Tfunc q_, Tvalue xsum_, Tvalue xlowerlimit,
bool minimize_) {
N = c_.size();
c = c_;
maximize_xi = q_;
xsum = xsum_;
minimize = minimize_;
fun = 0;
x.assign(N, xlowerlimit);
infeasible = false;
}
void _solve() {
std::vector<std::pair<Tvalue, int>> c2i(N);
for (int i = 0; i < N; i++) c2i[i] = std::make_pair(c[i], i);
std::sort(c2i.begin(), c2i.end());
if (!minimize) std::reverse(c2i.begin(), c2i.end());
for (const auto &p : c2i) {
const int i = p.second;
x[i] = maximize_xi(i, x);
}
Tvalue error = std::accumulate(x.begin(), x.end(), Tvalue(0)) - xsum;
if (error > EPS or -error > EPS) {
infeasible = true;
} else {
for (int i = 0; i < N; i++) fun += x[i] * c[i];
}
}
LinearProgrammingOnBasePolyhedron(const std::vector<Tvalue> &c_, Tfunc q_, Tvalue xsum_,
Tvalue xlowerlimit, bool minimize_) {
_init(c_, q_, xsum_, xlowerlimit, minimize_);
_solve();
}
};
template <> long long LinearProgrammingOnBasePolyhedron<long long>::EPS = 0;
template <> long double LinearProgrammingOnBasePolyhedron<long double>::EPS = 1e-10;
#line 1 "combinatorial_opt/basepolyhedron.hpp"
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <vector>
// CUT begin
// LinearProgrammingOnBasePolyhedron : Maximize/minimize linear function on base polyhedron, using
// Edmonds' algorithm
//
// maximize/minimize cx s.t. (x on some base polyhedron)
// Reference: <https://www.amazon.co.jp/dp/B01N6G0579>, Sec. 2.4, Algorithm 2.2-2.3
// "Submodular Functions, Matroids, and Certain Polyhedra" [Edmonds+, 1970]
// Used for: <https://yukicoder.me/problems/no/1316>
template <typename Tvalue> struct LinearProgrammingOnBasePolyhedron {
using Tfunc = std::function<Tvalue(int, const std::vector<Tvalue> &)>;
static Tvalue EPS;
int N;
std::vector<Tvalue> c;
Tfunc maximize_xi;
Tvalue xsum;
bool minimize;
Tvalue fun;
std::vector<Tvalue> x;
bool infeasible;
void _init(const std::vector<Tvalue> &c_, Tfunc q_, Tvalue xsum_, Tvalue xlowerlimit,
bool minimize_) {
N = c_.size();
c = c_;
maximize_xi = q_;
xsum = xsum_;
minimize = minimize_;
fun = 0;
x.assign(N, xlowerlimit);
infeasible = false;
}
void _solve() {
std::vector<std::pair<Tvalue, int>> c2i(N);
for (int i = 0; i < N; i++) c2i[i] = std::make_pair(c[i], i);
std::sort(c2i.begin(), c2i.end());
if (!minimize) std::reverse(c2i.begin(), c2i.end());
for (const auto &p : c2i) {
const int i = p.second;
x[i] = maximize_xi(i, x);
}
Tvalue error = std::accumulate(x.begin(), x.end(), Tvalue(0)) - xsum;
if (error > EPS or -error > EPS) {
infeasible = true;
} else {
for (int i = 0; i < N; i++) fun += x[i] * c[i];
}
}
LinearProgrammingOnBasePolyhedron(const std::vector<Tvalue> &c_, Tfunc q_, Tvalue xsum_,
Tvalue xlowerlimit, bool minimize_) {
_init(c_, q_, xsum_, xlowerlimit, minimize_);
_solve();
}
};
template <> long long LinearProgrammingOnBasePolyhedron<long long>::EPS = 0;
template <> long double LinearProgrammingOnBasePolyhedron<long double>::EPS = 1e-10;