This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum"
#include "../lazy_rbst.hpp"
#include "../../modint.hpp"
#include <algorithm>
#include <iostream>
#include <utility>
#include <vector>
using namespace std;
using mint = ModInt<998244353>;
struct S {
mint sum;
int sz;
};
using F = pair<bool, pair<mint, mint>>;
S op(S l, S r) { return S{l.sum + r.sum, l.sz + r.sz}; }
S mapping(F f, S x) {
if (!f.first) return x;
mint a = f.second.first, b = f.second.second;
return {x.sum * a + b * x.sz, x.sz};
}
S reversal(S x) { return x; }
F composition(F fnew, F gold) {
if (!fnew.first) return gold;
if (!gold.first) return fnew;
auto anew = fnew.second.first, bnew = fnew.second.second;
auto aold = gold.second.first, bold = gold.second.second;
return {true, {anew * aold, anew * bold + bnew}};
}
F id() { return {false, {1, 0}}; }
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int N, Q;
cin >> N >> Q;
vector<S> A(N);
for (auto &x : A) cin >> x.sum, x.sz = 1;
lazy_rbst<1000001, S, op, F, reversal, mapping, composition, id> rbst;
auto root = rbst.new_tree();
rbst.assign(root, A);
while (Q--) {
int tp;
cin >> tp;
if (tp == 0) {
int i, x;
cin >> i >> x;
rbst.insert(root, i, S{x, 1});
N++;
} else if (tp == 1) {
int i;
cin >> i;
rbst.erase(root, i);
N--;
} else if (tp == 2) {
int l, r;
cin >> l >> r;
rbst.reverse(root, l, r);
} else if (tp == 3) {
int l, r, b, c;
cin >> l >> r >> b >> c;
rbst.apply(root, l, r, {true, {b, c}});
} else if (tp == 4) {
int l, r;
cin >> l >> r;
cout << rbst.prod(root, l, r).sum << '\n';
}
}
}
#line 1 "data_structure/test/lazy_rbst.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/dynamic_sequence_range_affine_range_sum"
#line 2 "data_structure/lazy_rbst.hpp"
#include <array>
#include <cassert>
#include <chrono>
#include <utility>
#include <vector>
// Lazy randomized binary search tree
template <int LEN, class S, S (*op)(S, S), class F, S (*reversal)(S), S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct lazy_rbst {
// Do your RuBeSTy! ⌒°( ・ω・)°⌒
inline uint32_t _rand() { // XorShift
static uint32_t x = 123456789, y = 362436069, z = 521288629, w = 88675123;
uint32_t t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
struct Node {
Node *l, *r;
S val, sum;
F lz;
bool is_reversed;
int sz;
Node(const S &v)
: l(nullptr), r(nullptr), val(v), sum(v), lz(id()), is_reversed(false), sz(1) {}
Node() : l(nullptr), r(nullptr), lz(id()), is_reversed(false), sz(0) {}
template <class OStream> friend OStream &operator<<(OStream &os, const Node &n) {
os << '[';
if (n.l) os << *(n.l) << ',';
os << n.val << ',';
if (n.r) os << *(n.r);
return os << ']';
}
};
using Nptr = Node *;
std::array<Node, LEN> data;
int d_ptr;
int size(Nptr t) const { return t != nullptr ? t->sz : 0; }
lazy_rbst() : d_ptr(0) {}
protected:
Nptr update(Nptr t) {
t->sz = 1;
t->sum = t->val;
if (t->l) {
t->sz += t->l->sz;
t->sum = op(t->l->sum, t->sum);
}
if (t->r) {
t->sz += t->r->sz;
t->sum = op(t->sum, t->r->sum);
}
return t;
}
void all_apply(Nptr t, F f) {
t->val = mapping(f, t->val);
t->sum = mapping(f, t->sum);
t->lz = composition(f, t->lz);
}
void _toggle(Nptr t) {
auto tmp = t->l;
t->l = t->r, t->r = tmp;
t->sum = reversal(t->sum);
t->is_reversed ^= true;
}
void push(Nptr &t) {
_duplicate_node(t);
if (t->lz != id()) {
if (t->l) {
_duplicate_node(t->l);
all_apply(t->l, t->lz);
}
if (t->r) {
_duplicate_node(t->r);
all_apply(t->r, t->lz);
}
t->lz = id();
}
if (t->is_reversed) {
if (t->l) _toggle(t->l);
if (t->r) _toggle(t->r);
t->is_reversed = false;
}
}
virtual void _duplicate_node(Nptr &) {}
Nptr _make_node(const S &val) {
if (d_ptr >= LEN) throw;
return &(data[d_ptr++] = Node(val));
}
public:
Nptr new_tree() { return nullptr; } // 新たな木を作成
int mem_used() const { return d_ptr; }
bool empty(Nptr t) const { return t == nullptr; }
// lとrをrootとする木同士を結合して,新たなrootを返す
Nptr merge(Nptr l, Nptr r) {
if (l == nullptr or r == nullptr) return l != nullptr ? l : r;
if (_rand() % uint32_t(l->sz + r->sz) < uint32_t(l->sz)) {
push(l);
l->r = merge(l->r, r);
return update(l);
} else {
push(r);
r->l = merge(l, r->l);
return update(r);
}
}
// [0, k)の木と[k, root->size())の木に分けて各root
// (部分木の要素数が0ならnullptr)を返す
std::pair<Nptr, Nptr> split(Nptr &root, int k) { // rootの子孫からあとk個欲しい
if (root == nullptr) return std::make_pair(nullptr, nullptr);
push(root);
if (k <= size(root->l)) { // leftからk個拾える
auto p = split(root->l, k);
root->l = p.second;
return std::make_pair(p.first, update(root));
} else {
auto p = split(root->r, k - size(root->l) - 1);
root->r = p.first;
return std::make_pair(update(root), p.second);
}
}
// 0-indexedでarray[pos]の手前に新たな要素 x を挿入する
void insert(Nptr &root, int pos, const S &x) {
auto p = split(root, pos);
root = merge(p.first, merge(_make_node(x), p.second));
}
// 0-indexedでarray[pos]を削除する(先頭からpos+1個目の要素)
void erase(Nptr &root, int pos) {
auto p = split(root, pos);
auto p2 = split(p.second, 1);
root = merge(p.first, p2.second);
}
// 1点更新 array[pos].valにupdvalを入れる
void set(Nptr &root, int pos, const S &x) {
auto p = split(root, pos);
auto p2 = split(p.second, 1);
_duplicate_node(p2.first);
*p2.first = Node(x);
root = merge(p.first, merge(p2.first, p2.second));
}
// 遅延評価を利用した範囲更新 [l, r)
void apply(Nptr &root, int l, int r, const F &f) {
if (l == r) return;
auto p = split(root, l);
auto p2 = split(p.second, r - l);
all_apply(p2.first, f);
root = merge(p.first, merge(p2.first, p2.second));
}
S prod(Nptr &root, int l, int r) {
assert(l < r);
auto p = split(root, l);
auto p2 = split(p.second, r - l);
if (p2.first != nullptr) push(p2.first);
S res = p2.first->sum;
root = merge(p.first, merge(p2.first, p2.second));
return res;
}
// array[pos].valを取得する
S get(Nptr &root, int pos) { return prod(root, pos, pos + 1); }
template <bool (*g)(S)> int max_right(Nptr root, const S &e) {
return max_right(root, e, [](S x) { return g(x); });
}
template <class G> int max_right(Nptr root, const S &e, G g) {
assert(g(e));
if (root == nullptr) return 0;
push(root);
Nptr now = root;
S prod_now = e;
int sz = 0;
while (true) {
if (now->l != nullptr) {
push(now->l);
auto pl = op(prod_now, now->l->sum);
if (g(pl)) {
prod_now = pl;
sz += now->l->sz;
} else {
now = now->l;
continue;
}
}
auto pl = op(prod_now, now->val);
if (!g(pl)) return sz;
prod_now = pl, sz++;
if (now->r == nullptr) return sz;
push(now->r);
now = now->r;
}
}
template <bool (*g)(S)> int min_left(Nptr root, const S &e) {
return min_left(root, e, [](S x) { return g(x); });
}
template <class G> int min_left(Nptr root, const S &e, G g) {
assert(g(e));
if (root == nullptr) return 0;
push(root);
Nptr now = root;
S prod_now = e;
int sz = size(root);
while (true) {
if (now->r != nullptr) {
push(now->r);
auto pr = op(now->r->sum, prod_now);
if (g(pr)) {
prod_now = pr;
sz -= now->r->sz;
} else {
now = now->r;
continue;
}
}
auto pr = op(now->val, prod_now);
if (!g(pr)) return sz;
prod_now = pr, sz--;
if (now->l == nullptr) return sz;
push(now->l);
now = now->l;
}
}
void reverse(Nptr &root) { _duplicate_node(root), _toggle(root); }
void reverse(Nptr &root, int l, int r) {
auto p2 = split(root, r);
auto p1 = split(p2.first, l);
reverse(p1.second);
root = merge(merge(p1.first, p1.second), p2.second);
}
// データを壊して新規にinitの内容を詰める
void assign(Nptr &root, const std::vector<S> &init) {
int N = init.size();
root = N ? _assign_range(0, N, init) : new_tree();
}
Nptr _assign_range(int l, int r, const std::vector<S> &init) {
if (r - l == 1) {
Nptr t = _make_node(init[l]);
return update(t);
}
return merge(_assign_range(l, (l + r) / 2, init), _assign_range((l + r) / 2, r, init));
}
// データをvecへ書き出し
void dump(Nptr &t, std::vector<S> &vec) {
if (t == nullptr) return;
push(t);
dump(t->l, vec);
vec.push_back(t->val);
dump(t->r, vec);
}
// gc
void re_alloc(Nptr &root) {
std::vector<S> mem;
dump(root, mem);
d_ptr = 0;
assign(root, mem);
}
};
// Persistent lazy randomized binary search tree
// Verified: https://atcoder.jp/contests/arc030/tasks/arc030_4
// CAUTION: https://yosupo.hatenablog.com/entry/2015/10/29/222536
template <int LEN, class S, S (*op)(S, S), class F, S (*reversal)(S), S (*mapping)(F, S),
F (*composition)(F, F), F (*id)()>
struct persistent_lazy_rbst : lazy_rbst<LEN, S, op, F, reversal, mapping, composition, id> {
using RBST = lazy_rbst<LEN, S, op, F, reversal, mapping, composition, id>;
using Node = typename RBST::Node;
using Nptr = typename RBST::Nptr;
persistent_lazy_rbst() : RBST() {}
protected:
void _duplicate_node(Nptr &t) override {
if (t == nullptr) return;
if (RBST::d_ptr >= LEN) throw;
t = &(RBST::data[RBST::d_ptr++] = *t);
}
public:
void copy(Nptr &root, int l, int d, int target_l) { // [target_l, )に[l, l+d)の値を入れる
auto p1 = RBST::split(root, l);
auto p2 = RBST::split(p1.second, d);
root = RBST::merge(p1.first, RBST::merge(p2.first, p2.second));
auto p3 = RBST::split(root, target_l);
auto p4 = RBST::split(p3.second, d);
root = RBST::merge(p3.first, RBST::merge(p2.first, p4.second));
}
};
#line 3 "modint.hpp"
#include <iostream>
#include <set>
#line 6 "modint.hpp"
template <int md> struct ModInt {
static_assert(md > 1);
using lint = long long;
constexpr static int mod() { return md; }
static int get_primitive_root() {
static int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
std::set<int> fac;
int v = md - 1;
for (lint i = 2; i * i <= v; i++)
while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < md; g++) {
bool ok = true;
for (auto i : fac)
if (ModInt(g).pow((md - 1) / i) == 1) {
ok = false;
break;
}
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
int val_;
int val() const noexcept { return val_; }
constexpr ModInt() : val_(0) {}
constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
constexpr ModInt(lint v) { _setval(v % md + md); }
constexpr explicit operator bool() const { return val_ != 0; }
constexpr ModInt operator+(const ModInt &x) const {
return ModInt()._setval((lint)val_ + x.val_);
}
constexpr ModInt operator-(const ModInt &x) const {
return ModInt()._setval((lint)val_ - x.val_ + md);
}
constexpr ModInt operator*(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.val_ % md);
}
constexpr ModInt operator/(const ModInt &x) const {
return ModInt()._setval((lint)val_ * x.inv().val() % md);
}
constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
constexpr bool operator<(const ModInt &x) const {
return val_ < x.val_;
} // To use std::map<ModInt, T>
friend std::istream &operator>>(std::istream &is, ModInt &x) {
lint t;
return is >> t, x = ModInt(t), is;
}
constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
return os << x.val_;
}
constexpr ModInt pow(lint n) const {
ModInt ans = 1, tmp = *this;
while (n) {
if (n & 1) ans *= tmp;
tmp *= tmp, n >>= 1;
}
return ans;
}
static constexpr int cache_limit = std::min(md, 1 << 21);
static std::vector<ModInt> facs, facinvs, invs;
constexpr static void _precalculation(int N) {
const int l0 = facs.size();
if (N > md) N = md;
if (N <= l0) return;
facs.resize(N), facinvs.resize(N), invs.resize(N);
for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
facinvs[N - 1] = facs.back().pow(md - 2);
for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
}
constexpr ModInt inv() const {
if (this->val_ < cache_limit) {
if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
return invs[this->val_];
} else {
return this->pow(md - 2);
}
}
constexpr static ModInt fac(int n) {
assert(n >= 0);
if (n >= md) return ModInt(0);
while (n >= int(facs.size())) _precalculation(facs.size() * 2);
return facs[n];
}
constexpr static ModInt facinv(int n) {
assert(n >= 0);
if (n >= md) return ModInt(0);
while (n >= int(facs.size())) _precalculation(facs.size() * 2);
return facinvs[n];
}
constexpr static ModInt doublefac(int n) {
assert(n >= 0);
if (n >= md) return ModInt(0);
long long k = (n + 1) / 2;
return (n & 1) ? ModInt::fac(k * 2) / (ModInt(2).pow(k) * ModInt::fac(k))
: ModInt::fac(k) * ModInt(2).pow(k);
}
constexpr static ModInt nCr(int n, int r) {
assert(n >= 0);
if (r < 0 or n < r) return ModInt(0);
return ModInt::fac(n) * ModInt::facinv(r) * ModInt::facinv(n - r);
}
constexpr static ModInt nPr(int n, int r) {
assert(n >= 0);
if (r < 0 or n < r) return ModInt(0);
return ModInt::fac(n) * ModInt::facinv(n - r);
}
static ModInt binom(int n, int r) {
static long long bruteforce_times = 0;
if (r < 0 or n < r) return ModInt(0);
if (n <= bruteforce_times or n < (int)facs.size()) return ModInt::nCr(n, r);
r = std::min(r, n - r);
ModInt ret = ModInt::facinv(r);
for (int i = 0; i < r; ++i) ret *= n - i;
bruteforce_times += r;
return ret;
}
// Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
// Complexity: O(sum(ks))
template <class Vec> static ModInt multinomial(const Vec &ks) {
ModInt ret{1};
int sum = 0;
for (int k : ks) {
assert(k >= 0);
ret *= ModInt::facinv(k), sum += k;
}
return ret * ModInt::fac(sum);
}
template <class... Args> static ModInt multinomial(Args... args) {
int sum = (0 + ... + args);
ModInt result = (1 * ... * ModInt::facinv(args));
return ModInt::fac(sum) * result;
}
// Catalan number, C_n = binom(2n, n) / (n + 1) = # of Dyck words of length 2n
// C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
// https://oeis.org/A000108
// Complexity: O(n)
static ModInt catalan(int n) {
if (n < 0) return ModInt(0);
return ModInt::fac(n * 2) * ModInt::facinv(n + 1) * ModInt::facinv(n);
}
ModInt sqrt() const {
if (val_ == 0) return 0;
if (md == 2) return val_;
if (pow((md - 1) / 2) != 1) return 0;
ModInt b = 1;
while (b.pow((md - 1) / 2) == 1) b += 1;
int e = 0, m = md - 1;
while (m % 2 == 0) m >>= 1, e++;
ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
x *= (*this);
ModInt z = b.pow(m);
while (y != 1) {
int j = 0;
ModInt t = y;
while (t != 1) j++, t *= t;
z = z.pow(1LL << (e - j - 1));
x *= z, z *= z, y *= z;
e = j;
}
return ModInt(std::min(x.val_, md - x.val_));
}
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};
using ModInt998244353 = ModInt<998244353>;
// using mint = ModInt<998244353>;
// using mint = ModInt<1000000007>;
#line 4 "data_structure/test/lazy_rbst.test.cpp"
#include <algorithm>
#line 8 "data_structure/test/lazy_rbst.test.cpp"
using namespace std;
using mint = ModInt<998244353>;
struct S {
mint sum;
int sz;
};
using F = pair<bool, pair<mint, mint>>;
S op(S l, S r) { return S{l.sum + r.sum, l.sz + r.sz}; }
S mapping(F f, S x) {
if (!f.first) return x;
mint a = f.second.first, b = f.second.second;
return {x.sum * a + b * x.sz, x.sz};
}
S reversal(S x) { return x; }
F composition(F fnew, F gold) {
if (!fnew.first) return gold;
if (!gold.first) return fnew;
auto anew = fnew.second.first, bnew = fnew.second.second;
auto aold = gold.second.first, bold = gold.second.second;
return {true, {anew * aold, anew * bold + bnew}};
}
F id() { return {false, {1, 0}}; }
int main() {
cin.tie(nullptr), ios::sync_with_stdio(false);
int N, Q;
cin >> N >> Q;
vector<S> A(N);
for (auto &x : A) cin >> x.sum, x.sz = 1;
lazy_rbst<1000001, S, op, F, reversal, mapping, composition, id> rbst;
auto root = rbst.new_tree();
rbst.assign(root, A);
while (Q--) {
int tp;
cin >> tp;
if (tp == 0) {
int i, x;
cin >> i >> x;
rbst.insert(root, i, S{x, 1});
N++;
} else if (tp == 1) {
int i;
cin >> i;
rbst.erase(root, i);
N--;
} else if (tp == 2) {
int l, r;
cin >> l >> r;
rbst.reverse(root, l, r);
} else if (tp == 3) {
int l, r, b, c;
cin >> l >> r >> b >> c;
rbst.apply(root, l, r, {true, {b, c}});
} else if (tp == 4) {
int l, r;
cin >> l >> r;
cout << rbst.prod(root, l, r).sum << '\n';
}
}
}