This documentation is automatically generated by online-judge-tools/verification-helper
#include "number/dual_number.hpp"
二重数 DualNumber<T>
の実装.直感的には $x$ の一次の係数まで常に保持する形式的冪級数と等価.
総和を DP で求めさせる問題で頻出する
vector<T> dp0, dp1, dpnxt0, dpnxt1;
dpnxt1[inxt] += dp1[i] * a;
dpnxt1[inxt] += dp0[i] * b;
dpnxt0[inxt] += dp0[i] * a;
のような遷移について,T
上の二重数を導入すると
using TT = DualNumber<T>;
vector<TT> dp, dpnxt;
dpnxt[inxt] += dp[i] * TT(a, b);
のように書けて楽.
#pragma once
#include <type_traits>
namespace dual_number_ {
struct has_id_method_impl {
template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());
template <class T_> static auto check(...) -> std::false_type;
};
template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};
} // namespace dual_number_
// Dual number (二重数)
// Verified: https://atcoder.jp/contests/abc235/tasks/abc235_f
template <class T> struct DualNumber {
T a, b; // a + bx
template <typename T2, typename std::enable_if<dual_number_::has_id<T2>::value>::type * = nullptr>
static T2 _T_id() {
return T2::id();
}
template <typename T2, typename std::enable_if<!dual_number_::has_id<T2>::value>::type * = nullptr>
static T2 _T_id() {
return T2(1);
}
DualNumber(T x = T(), T y = T()) : a(x), b(y) {}
static DualNumber id() { return DualNumber(_T_id<T>(), T()); }
explicit operator bool() const { return a != T() or b != T(); }
DualNumber operator+(const DualNumber &x) const { return DualNumber(a + x.a, b + x.b); }
DualNumber operator-(const DualNumber &x) const { return DualNumber(a - x.a, b - x.b); }
DualNumber operator*(const DualNumber &x) const {
return DualNumber(a * x.a, b * x.a + a * x.b);
}
DualNumber operator/(const DualNumber &x) const {
T cinv = _T_id<T>() / x.a;
return DualNumber(a * cinv, (b * x.a - a * x.b) * cinv * cinv);
}
DualNumber operator-() const { return DualNumber(-a, -b); }
DualNumber &operator+=(const DualNumber &x) { return *this = *this + x; }
DualNumber &operator-=(const DualNumber &x) { return *this = *this - x; }
DualNumber &operator*=(const DualNumber &x) { return *this = *this * x; }
DualNumber &operator/=(const DualNumber &x) { return *this = *this / x; }
bool operator==(const DualNumber &x) const { return a == x.a and b == x.b; }
bool operator!=(const DualNumber &x) const { return !(*this == x); }
bool operator<(const DualNumber &x) const { return (a != x.a ? a < x.a : b < x.b); }
template <class OStream> friend OStream &operator<<(OStream &os, const DualNumber &x) {
return os << '{' << x.a << ',' << x.b << '}';
}
T eval(const T &x) const { return a + b * x; }
T root() const { return (-a) / b; } // Solve a + bx = 0 (b \neq 0 is assumed)
};
#line 2 "number/dual_number.hpp"
#include <type_traits>
namespace dual_number_ {
struct has_id_method_impl {
template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());
template <class T_> static auto check(...) -> std::false_type;
};
template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};
} // namespace dual_number_
// Dual number (二重数)
// Verified: https://atcoder.jp/contests/abc235/tasks/abc235_f
template <class T> struct DualNumber {
T a, b; // a + bx
template <typename T2, typename std::enable_if<dual_number_::has_id<T2>::value>::type * = nullptr>
static T2 _T_id() {
return T2::id();
}
template <typename T2, typename std::enable_if<!dual_number_::has_id<T2>::value>::type * = nullptr>
static T2 _T_id() {
return T2(1);
}
DualNumber(T x = T(), T y = T()) : a(x), b(y) {}
static DualNumber id() { return DualNumber(_T_id<T>(), T()); }
explicit operator bool() const { return a != T() or b != T(); }
DualNumber operator+(const DualNumber &x) const { return DualNumber(a + x.a, b + x.b); }
DualNumber operator-(const DualNumber &x) const { return DualNumber(a - x.a, b - x.b); }
DualNumber operator*(const DualNumber &x) const {
return DualNumber(a * x.a, b * x.a + a * x.b);
}
DualNumber operator/(const DualNumber &x) const {
T cinv = _T_id<T>() / x.a;
return DualNumber(a * cinv, (b * x.a - a * x.b) * cinv * cinv);
}
DualNumber operator-() const { return DualNumber(-a, -b); }
DualNumber &operator+=(const DualNumber &x) { return *this = *this + x; }
DualNumber &operator-=(const DualNumber &x) { return *this = *this - x; }
DualNumber &operator*=(const DualNumber &x) { return *this = *this * x; }
DualNumber &operator/=(const DualNumber &x) { return *this = *this / x; }
bool operator==(const DualNumber &x) const { return a == x.a and b == x.b; }
bool operator!=(const DualNumber &x) const { return !(*this == x); }
bool operator<(const DualNumber &x) const { return (a != x.a ? a < x.a : b < x.b); }
template <class OStream> friend OStream &operator<<(OStream &os, const DualNumber &x) {
return os << '{' << x.a << ',' << x.b << '}';
}
T eval(const T &x) const { return a + b * x; }
T root() const { return (-a) / b; } // Solve a + bx = 0 (b \neq 0 is assumed)
};