Thanks to visit codestin.com
Credit goes to hitonanode.github.io

cplib-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub hitonanode/cplib-cpp

:heavy_check_mark: segmenttree/test/point-set-range-composite.test.cpp

Depends on

Code

#include "../../modint.hpp"
#include "../point-update-range-get_nonrecursive.hpp"
#include <iostream>
#include <utility>
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite"
using mint = ModInt<998244353>;

template <typename T>
struct PointSetRangeComposite
    : public NonrecursiveSegmentTree<std::pair<T, T>, std::pair<T, T>, bool> {
    using T_NODE = std::pair<T, T>;
    using SegTree = NonrecursiveSegmentTree<T_NODE, T_NODE, bool>;
    T_NODE merge_data(const T_NODE &vl, const T_NODE &vr) override {
        return std::make_pair(vl.first * vr.first, vr.first * vl.second + vr.second);
    };
    T_NODE data2ret(const T_NODE &v, const bool &q) override { return v; }
    T_NODE merge_ret(const T_NODE &vl, const T_NODE &vr) override { return merge_data(vl, vr); };
    PointSetRangeComposite(const std::vector<T_NODE> &seq) : SegTree::NonrecursiveSegmentTree() {
        SegTree::initialize(seq, T_NODE(1, 0));
    };
};

int main() {
    std::cin.tie(nullptr), std::ios::sync_with_stdio(false);

    int N, Q;
    std::cin >> N >> Q;
    std::vector<std::pair<mint, mint>> A(N);
    for (auto &p : A) { std::cin >> p.first >> p.second; }
    PointSetRangeComposite<mint> s(A);
    while (Q--) {
        int q, l, r, x;
        std::cin >> q >> l >> r >> x;
        if (q) {
            auto ret = s.get(l, r);
            std::cout << ret.first * x + ret.second << '\n';
        } else {
            s.update(l, std::make_pair(r, x));
        }
    }
}
#line 2 "modint.hpp"
#include <cassert>
#include <iostream>
#include <set>
#include <vector>

template <int md> struct ModInt {
    static_assert(md > 1);
    using lint = long long;
    constexpr static int mod() { return md; }
    static int get_primitive_root() {
        static int primitive_root = 0;
        if (!primitive_root) {
            primitive_root = [&]() {
                std::set<int> fac;
                int v = md - 1;
                for (lint i = 2; i * i <= v; i++)
                    while (v % i == 0) fac.insert(i), v /= i;
                if (v > 1) fac.insert(v);
                for (int g = 1; g < md; g++) {
                    bool ok = true;
                    for (auto i : fac)
                        if (ModInt(g).pow((md - 1) / i) == 1) {
                            ok = false;
                            break;
                        }
                    if (ok) return g;
                }
                return -1;
            }();
        }
        return primitive_root;
    }
    int val_;
    int val() const noexcept { return val_; }
    constexpr ModInt() : val_(0) {}
    constexpr ModInt &_setval(lint v) { return val_ = (v >= md ? v - md : v), *this; }
    constexpr ModInt(lint v) { _setval(v % md + md); }
    constexpr explicit operator bool() const { return val_ != 0; }
    constexpr ModInt operator+(const ModInt &x) const {
        return ModInt()._setval((lint)val_ + x.val_);
    }
    constexpr ModInt operator-(const ModInt &x) const {
        return ModInt()._setval((lint)val_ - x.val_ + md);
    }
    constexpr ModInt operator*(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.val_ % md);
    }
    constexpr ModInt operator/(const ModInt &x) const {
        return ModInt()._setval((lint)val_ * x.inv().val() % md);
    }
    constexpr ModInt operator-() const { return ModInt()._setval(md - val_); }
    constexpr ModInt &operator+=(const ModInt &x) { return *this = *this + x; }
    constexpr ModInt &operator-=(const ModInt &x) { return *this = *this - x; }
    constexpr ModInt &operator*=(const ModInt &x) { return *this = *this * x; }
    constexpr ModInt &operator/=(const ModInt &x) { return *this = *this / x; }
    friend constexpr ModInt operator+(lint a, const ModInt &x) { return ModInt(a) + x; }
    friend constexpr ModInt operator-(lint a, const ModInt &x) { return ModInt(a) - x; }
    friend constexpr ModInt operator*(lint a, const ModInt &x) { return ModInt(a) * x; }
    friend constexpr ModInt operator/(lint a, const ModInt &x) { return ModInt(a) / x; }
    constexpr bool operator==(const ModInt &x) const { return val_ == x.val_; }
    constexpr bool operator!=(const ModInt &x) const { return val_ != x.val_; }
    constexpr bool operator<(const ModInt &x) const {
        return val_ < x.val_;
    } // To use std::map<ModInt, T>
    friend std::istream &operator>>(std::istream &is, ModInt &x) {
        lint t;
        return is >> t, x = ModInt(t), is;
    }
    constexpr friend std::ostream &operator<<(std::ostream &os, const ModInt &x) {
        return os << x.val_;
    }

    constexpr ModInt pow(lint n) const {
        ModInt ans = 1, tmp = *this;
        while (n) {
            if (n & 1) ans *= tmp;
            tmp *= tmp, n >>= 1;
        }
        return ans;
    }

    static constexpr int cache_limit = std::min(md, 1 << 21);
    static std::vector<ModInt> facs, facinvs, invs;

    constexpr static void _precalculation(int N) {
        const int l0 = facs.size();
        if (N > md) N = md;
        if (N <= l0) return;
        facs.resize(N), facinvs.resize(N), invs.resize(N);
        for (int i = l0; i < N; i++) facs[i] = facs[i - 1] * i;
        facinvs[N - 1] = facs.back().pow(md - 2);
        for (int i = N - 2; i >= l0; i--) facinvs[i] = facinvs[i + 1] * (i + 1);
        for (int i = N - 1; i >= l0; i--) invs[i] = facinvs[i] * facs[i - 1];
    }

    constexpr ModInt inv() const {
        if (this->val_ < cache_limit) {
            if (facs.empty()) facs = {1}, facinvs = {1}, invs = {0};
            while (this->val_ >= int(facs.size())) _precalculation(facs.size() * 2);
            return invs[this->val_];
        } else {
            return this->pow(md - 2);
        }
    }

    constexpr static ModInt fac(int n) {
        assert(n >= 0);
        if (n >= md) return ModInt(0);
        while (n >= int(facs.size())) _precalculation(facs.size() * 2);
        return facs[n];
    }

    constexpr static ModInt facinv(int n) {
        assert(n >= 0);
        if (n >= md) return ModInt(0);
        while (n >= int(facs.size())) _precalculation(facs.size() * 2);
        return facinvs[n];
    }

    constexpr static ModInt doublefac(int n) {
        assert(n >= 0);
        if (n >= md) return ModInt(0);
        long long k = (n + 1) / 2;
        return (n & 1) ? ModInt::fac(k * 2) / (ModInt(2).pow(k) * ModInt::fac(k))
                       : ModInt::fac(k) * ModInt(2).pow(k);
    }

    constexpr static ModInt nCr(int n, int r) {
        assert(n >= 0);
        if (r < 0 or n < r) return ModInt(0);
        return ModInt::fac(n) * ModInt::facinv(r) * ModInt::facinv(n - r);
    }

    constexpr static ModInt nPr(int n, int r) {
        assert(n >= 0);
        if (r < 0 or n < r) return ModInt(0);
        return ModInt::fac(n) * ModInt::facinv(n - r);
    }

    static ModInt binom(int n, int r) {
        static long long bruteforce_times = 0;

        if (r < 0 or n < r) return ModInt(0);
        if (n <= bruteforce_times or n < (int)facs.size()) return ModInt::nCr(n, r);

        r = std::min(r, n - r);

        ModInt ret = ModInt::facinv(r);
        for (int i = 0; i < r; ++i) ret *= n - i;
        bruteforce_times += r;

        return ret;
    }

    // Multinomial coefficient, (k_1 + k_2 + ... + k_m)! / (k_1! k_2! ... k_m!)
    // Complexity: O(sum(ks))
    template <class Vec> static ModInt multinomial(const Vec &ks) {
        ModInt ret{1};
        int sum = 0;
        for (int k : ks) {
            assert(k >= 0);
            ret *= ModInt::facinv(k), sum += k;
        }
        return ret * ModInt::fac(sum);
    }
    template <class... Args> static ModInt multinomial(Args... args) {
        int sum = (0 + ... + args);
        ModInt result = (1 * ... * ModInt::facinv(args));
        return ModInt::fac(sum) * result;
    }

    // Catalan number, C_n = binom(2n, n) / (n + 1) = # of Dyck words of length 2n
    // C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, ...
    // https://oeis.org/A000108
    // Complexity: O(n)
    static ModInt catalan(int n) {
        if (n < 0) return ModInt(0);
        return ModInt::fac(n * 2) * ModInt::facinv(n + 1) * ModInt::facinv(n);
    }

    ModInt sqrt() const {
        if (val_ == 0) return 0;
        if (md == 2) return val_;
        if (pow((md - 1) / 2) != 1) return 0;
        ModInt b = 1;
        while (b.pow((md - 1) / 2) == 1) b += 1;
        int e = 0, m = md - 1;
        while (m % 2 == 0) m >>= 1, e++;
        ModInt x = pow((m - 1) / 2), y = (*this) * x * x;
        x *= (*this);
        ModInt z = b.pow(m);
        while (y != 1) {
            int j = 0;
            ModInt t = y;
            while (t != 1) j++, t *= t;
            z = z.pow(1LL << (e - j - 1));
            x *= z, z *= z, y *= z;
            e = j;
        }
        return ModInt(std::min(x.val_, md - x.val_));
    }
};
template <int md> std::vector<ModInt<md>> ModInt<md>::facs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::facinvs = {1};
template <int md> std::vector<ModInt<md>> ModInt<md>::invs = {0};

using ModInt998244353 = ModInt<998244353>;
// using mint = ModInt<998244353>;
// using mint = ModInt<1000000007>;
#line 2 "segmenttree/point-update-range-get_nonrecursive.hpp"
#include <algorithm>
#line 4 "segmenttree/point-update-range-get_nonrecursive.hpp"
#include <functional>
#line 6 "segmenttree/point-update-range-get_nonrecursive.hpp"
#include <stack>
#line 8 "segmenttree/point-update-range-get_nonrecursive.hpp"

// CUT begin
// Nonrecursive Segment Tree (point-update, range-get)
// - Conditions for operations:
//   - merge_data: [TDATA, TDATA] -> TDATA, e(x, y) == e(y, x)
//   - data2ret: [TDATA, TQUERY] -> TRET
//   - merge_ret: [TRET, TRET] -> TRET, g(defaultRET, x) == x, g(x, y) = g(y, x)
//   - commutability f(e(x, y), q) == g(f(x, q), f(y, q))
template <typename TDATA, typename TRET, typename TQUERY> struct NonrecursiveSegmentTree {
    int N;
    TRET defaultRET;
    virtual TDATA merge_data(const TDATA &, const TDATA &) = 0;
    virtual TRET data2ret(const TDATA &, const TQUERY &) = 0;
    virtual TRET merge_ret(const TRET &, const TRET &) = 0;
    std::vector<TDATA> data;
    inline TDATA &at(int i) { return data[i]; }

    inline void _merge(int i) { at(i) = merge_data(at(i << 1), at((i << 1) + 1)); }
    void initialize(const std::vector<TDATA> &seq, TRET RET_ZERO) {
        N = seq.size();
        defaultRET = RET_ZERO;
        data = seq;
        data.insert(data.end(), seq.begin(), seq.end());
        for (int i = N - 1; i; i--) _merge(i);
    }
    NonrecursiveSegmentTree() = default;
    void update(int pos, const TDATA &x) {
        assert(pos >= 0 and pos < N);
        at(pos + N) = x;
        for (int i = pos + N; i > 1;) i >>= 1, _merge(i);
    }

    // [l, r), 0-indexed
    TRET get(int l, int r, TQUERY query = NULL) {
        assert(l >= 0 and r <= N);
        TRET retl = defaultRET, retr = defaultRET;
        l += N, r += N;
        while (l < r) {
            if (l & 1) retl = merge_ret(retl, data2ret(data[l++], query));
            if (r & 1) retr = merge_ret(data2ret(data[--r], query), retr);
            l >>= 1, r >>= 1;
        }
        return merge_ret(retl, retr);
    }

    // Calculate smallest r that satisfies condition(g(f(x_l, q), ..., f(x_{r - 1}, q)) == true
    // Assumption: Monotonicity of g(x_l, ..., x_r) about r (l: fixed)
    // Complexity: O(log N)
    int binary_search(int l, std::function<bool(TRET)> condition, TQUERY query = NULL) {
        std::stack<int> rs;
        l += N;
        int r = N * 2;
        TRET retl = defaultRET;
        if (condition(retl)) return l - N;
        while (l < r) {
            if (l & 1) {
                TRET ret_tmp = merge_ret(retl, data2ret(data[l], query));
                if (condition(ret_tmp)) {
                    while (l * 2 < N * 2) {
                        ret_tmp = merge_ret(retl, data2ret(data[l * 2], query));
                        if (condition(ret_tmp))
                            l *= 2;
                        else
                            retl = ret_tmp, l = l * 2 + 1;
                    }
                    return l - N;
                }
                l++;
                retl = ret_tmp;
            }
            if (r & 1) rs.push(--r);
            l >>= 1, r >>= 1;
        }
        while (!rs.empty()) {
            l = rs.top();
            rs.pop();
            TRET ret_tmp = merge_ret(retl, data2ret(data[l], query));
            if (condition(ret_tmp)) {
                while (l * 2 < N * 2) {
                    ret_tmp = merge_ret(retl, data2ret(data[l * 2], query));
                    if (condition(ret_tmp))
                        l *= 2;
                    else
                        retl = ret_tmp, l = l * 2 + 1;
                }
                return l - N;
            }
            retl = ret_tmp;
        }
        return N;
    }

    template <typename T1, typename T2, typename T3>
    friend std::ostream &operator<<(std::ostream &os, NonrecursiveSegmentTree<T1, T2, T3> s) {
        os << "[SegmentTree (len: " << s.N << ')';
        for (int i = 0; i < s.N; i++) os << s.at(i + s.N) << ',';
        os << "]";
        return os;
    }
};

// Range Minimum Query
// - get: return min(x_l, ..., x_{r - 1})
template <typename T> struct RangeMinimumQuery : public NonrecursiveSegmentTree<T, T, bool> {
    using SegTree = NonrecursiveSegmentTree<T, T, bool>;
    T merge_data(const T &vl, const T &vr) override { return std::min(vl, vr); };
    T data2ret(const T &v, const bool &q) override { return v; }
    T merge_ret(const T &vl, const T &vr) override { return std::min(vl, vr); };
    RangeMinimumQuery(const std::vector<T> &seq, T defaultmin)
        : SegTree::NonrecursiveSegmentTree() {
        SegTree::initialize(seq, defaultmin);
    };
};

template <typename T> struct PointUpdateRangeSum : public NonrecursiveSegmentTree<T, T, bool> {
    using SegTree = NonrecursiveSegmentTree<T, T, bool>;
    T merge_data(const T &vl, const T &vr) override { return vl + vr; };
    T data2ret(const T &v, const bool &q) override { return v; }
    T merge_ret(const T &vl, const T &vr) override { return vl + vr; };
    PointUpdateRangeSum(const std::vector<T> &seq, T zero) : SegTree::NonrecursiveSegmentTree() {
        SegTree::initialize(seq, zero);
    };
};

// Range Counting less than q Query
// - get: return (#{i | l <= i < r, x_i < q}, total sum of them).
template <typename T>
struct CountAndSumLessThan
    : public NonrecursiveSegmentTree<std::vector<std::pair<T, T>>, std::pair<int, T>, T> {
    using TDATA = std::vector<std::pair<T, T>>;
    using TRET = std::pair<int, T>;
    using TQUERY = T;
    TDATA merge_data(const TDATA &vl, const TDATA &vr) override {
        TDATA ret = vl;
        ret.insert(ret.end(), vr.begin(), vr.end());
        std::sort(ret.begin(), ret.end());
        if (ret.size()) {
            ret[0].second = ret[0].first;
            for (size_t i = 1; i < ret.size(); i++)
                ret[i].second = ret[i - 1].second + ret[i].first;
        }
        return ret;
    }
    TRET data2ret(const TDATA &vec, const TQUERY &q) override {
        int i = std::lower_bound(vec.begin(), vec.end(), std::make_pair(q, q)) - vec.begin();
        if (!i)
            return std::make_pair(0, 0);
        else
            return std::make_pair(i, vec[i - 1].second);
    }
    TRET merge_ret(const TRET &l, const TRET &r) override {
        return std::make_pair(l.first + r.first, l.second + r.second);
    }
    using SegTree = NonrecursiveSegmentTree<TDATA, TRET, TQUERY>;
    CountAndSumLessThan(const std::vector<T> &seq) : SegTree::NonrecursiveSegmentTree() {
        std::vector<TDATA> init;
        for (auto x : seq) init.emplace_back(TDATA{std::pair<T, T>(x, x)});
        SegTree::initialize(init, TRET(0, 0));
    }
};
#line 4 "segmenttree/test/point-set-range-composite.test.cpp"
#include <utility>
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite"
using mint = ModInt<998244353>;

template <typename T>
struct PointSetRangeComposite
    : public NonrecursiveSegmentTree<std::pair<T, T>, std::pair<T, T>, bool> {
    using T_NODE = std::pair<T, T>;
    using SegTree = NonrecursiveSegmentTree<T_NODE, T_NODE, bool>;
    T_NODE merge_data(const T_NODE &vl, const T_NODE &vr) override {
        return std::make_pair(vl.first * vr.first, vr.first * vl.second + vr.second);
    };
    T_NODE data2ret(const T_NODE &v, const bool &q) override { return v; }
    T_NODE merge_ret(const T_NODE &vl, const T_NODE &vr) override { return merge_data(vl, vr); };
    PointSetRangeComposite(const std::vector<T_NODE> &seq) : SegTree::NonrecursiveSegmentTree() {
        SegTree::initialize(seq, T_NODE(1, 0));
    };
};

int main() {
    std::cin.tie(nullptr), std::ios::sync_with_stdio(false);

    int N, Q;
    std::cin >> N >> Q;
    std::vector<std::pair<mint, mint>> A(N);
    for (auto &p : A) { std::cin >> p.first >> p.second; }
    PointSetRangeComposite<mint> s(A);
    while (Q--) {
        int q, l, r, x;
        std::cin >> q >> l >> r >> x;
        if (q) {
            auto ret = s.get(l, r);
            std::cout << ret.first * x + ret.second << '\n';
        } else {
            s.update(l, std::make_pair(r, x));
        }
    }
}
Back to top page