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Abstract

We present a compression method for unit-norm embeddings that achieves 1.5×
compression, 25% better than the best prior lossless method. The method exploits
that spherical coordinates of high-dimensional unit vectors concentrate around
π/2, causing IEEE 754 exponents to collapse to a single value and high-order
mantissa bits to become predictable, enabling entropy coding of both. Recon-
struction error is below 1e-7, under float32 machine epsilon. Evaluation across
26 configurations spanning text, image, and multi-vector embeddings confirms
consistent improvement. The method requires no training and is available at
https://github.com/jina-ai/jzip-compressor.

1 Introduction

Embedding vectors power RAG pipelines, agentic search, and multimodal retrieval. A typical
embedding model produces 1024-dimensional float32 vectors, requiring 4 KB per embedding. At
scale, a database of 100 million embeddings requires 400 GB. The problem is more severe for multi-
vector representations, where late-interaction models like ColBERT [9] produce one embedding
per token, multiplying storage by approximately 100×. While lossy quantization achieves high
compression ratios, many applications benefit from high-fidelity reconstruction for embedding
caches, API serialization, network transmission, and archival storage. The state-of-the-art lossless
approach transposes the embedding matrix, byte-shuffles to group exponent bytes, and applies entropy
coding [7, 1], but achieves only 1.2× compression because float32 mantissa bits have near-maximum
entropy.

Because cosine similarity is the standard retrieval metric, most embedding models produce unit-norm
vectors with ∥x∥2 = 1. This constraint places embeddings on the surface of a high-dimensional
hypersphere Sd−1, yet existing lossless methods ignore this geometric structure, while prior work
using spherical coordinates has focused exclusively on lossy quantization [15, 6, 19]. Unit-norm
vectors can be equivalently represented using d − 1 angular coordinates. The Cartesian form has
values spanning ±0.001 to ±0.3, requiring many different IEEE 754 exponents. The angular form
concentrates around π/2 ≈ 1.57 [3], collapsing exponents to a single value and making high-order
mantissa bits predictable. This combination of spherical transformation with entropy coding has not
been explored.

Contribution. We present a compression method that converts Cartesian to spherical coordinates
before byte shuffling and entropy coding, achieving 1.5× compression across 26 embedding configu-
rations. The spherical transform introduces bounded reconstruction error below 1e-7, under float32
machine epsilon, which preserves retrieval quality. For a ColBERT index of 1 million documents,
this reduces storage from 240 GB to 160 GB. The method requires no training and applies to text,
image, and multi-vector embeddings.

Last updated: January 25, 2026

https://github.com/jina-ai/jzip-compressor


2 Related Work

2.1 Lossless Floating-Point Compression

IEEE 754 Float32. A float32 number consists of 1 sign bit, 8 exponent bits, and 23 mantissa
bits, encoding the value x = (−1)s × 2e−127 × (1 +m/223). The exponent determines magnitude,
with values near 1.0 having exponent ≈ 127 and values near 0.01 having exponent ≈ 120. The
mantissa encodes precision within that magnitude range. For lossless compression, the exponent byte
represents 25% of each float32 value while the mantissa represents the remaining 75%.

The HPC community developed byte shuffling [1], which reorders array bytes to group all exponent
bytes together, improving entropy coding because bytes at the same position across different floats
often share similar values. ZipNN [7] applies this technique to neural network weights, achieving
33% compression on BF16 by separating exponent and mantissa bytes before applying zstd [5].
FCBench [4] benchmarks lossless floating-point compression methods across scientific domains. For
float32 embeddings, the mantissa comprises 3/4 of the data with near-maximum entropy of ∼7.3
bits/byte. Even with perfect exponent compression, the remaining 75% mantissa data stays near
maximum entropy, limiting compression to approximately 1.33×. Current methods achieve ∼1.25×,
approaching this bound. Our method exceeds this limit by also reducing mantissa entropy through
value concentration.

Recent work has identified that trained neural network weights exhibit natural exponent concentration
due to heavy-tailed dynamics of stochastic gradient descent. ECF8 [18] shows that model weights
follow α-stable distributions, leading to exponent entropy of 2 to 3 bits, and achieves up to 26.9%
lossless compression on FP8 model weights. DFloat11 [20] exploits similar properties for BF16
weights. These methods target model parameters, where exponent concentration arises naturally from
training dynamics.

2.2 Spherical and Polar Coordinate Methods

Spherical Coordinates. A d-dimensional vector x can be represented using spherical coordinates
consisting of a radius r = ∥x∥2 and d− 1 angles θ1, . . . , θd−1. The first d− 2 angles are computed

as θi = arccos

(
xi/

√∑d
j=i x

2
j

)
for i = 1, . . . , d − 2, each lying in [0, π]. The final angle uses

arctan 2 to preserve quadrant information, with θd−1 = arctan 2(xd, xd−1) ∈ [−π, π]. For unit-
norm vectors where r = 1, the radius can be omitted, leaving d− 1 angles to represent d Cartesian
coordinates.

Several recent works employ polar or spherical coordinates for compression, but all use lossy quanti-
zation rather than lossless encoding. Trojak and Witherden [15] use spherical polar coordinates for
lossy compression of 3D vectors in computational physics, achieving 1.5× compression by quantiz-
ing angles to fixed bit-widths. This method is limited to 3D and employs deliberate precision loss.
PCDVQ [19] uses polar coordinate decoupling for vector quantization of LLM weights, separately
clustering direction and magnitude with codebooks to achieve 2-bit quantization. PolarQuant [6]
transforms KV cache embeddings to polar coordinates and quantizes the resulting angles, exploiting
that angles after random preconditioning have bounded distributions. Both PCDVQ and PolarQuant
target lossy compression of model internals such as weights and KV caches, not lossless compression
of embedding outputs.

2.3 Lossy Vector Compression

Product quantization [8] achieves 4 to 32× compression by partitioning vectors into subspaces and
quantizing independently. Binary and scalar quantization [14] offer simpler alternatives, while learned
codebooks [16] push compression further. These lossy methods achieve higher ratios than lossless
approaches but introduce reconstruction error. Our work targets applications requiring high-fidelity
reconstruction with bounded error.
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Table 1: Comparison with related floating-point compression methods.
Method Domain Lossless? Polar? Unit-norm? Mechanism

ECF8 [18] LLM weights Exact (FP8) No No Natural concentration
DFloat11 [20] LLM weights Exact (BF16) No No Natural concentration
EFloat [2] Embeddings Lossy No No Variable-length encoding
PolarQuant [6] KV cache Lossy Yes No Angle quantization
PCDVQ [19] LLM weights Lossy Yes No Codebook quantization
Trojak [15] 3D physics Lossy Yes No Angle quantization
Ours Embeddings ϵ-bounded Yes Yes Geometric transform

3 Method

Figure 1 and Algorithm 1 present the compression pipeline: convert to spherical coordinates, transpose
to group same-angle values, byte shuffle to separate exponents, and compress with zstd. Decompres-
sion reverses these steps. The spherical transform is mathematically invertible, but floating-point
transcendental functions introduce bounded reconstruction error. Using double precision for inter-
mediate calculations keeps this error below 1e-7, under float32 machine epsilon of 1.19e-7. This
preserves cosine similarity to 1e-7 and does not affect retrieval quality as shown in Table 2. Imple-
mentation is in Appendix A.

The spherical transform provides compression by concentrating IEEE 754 exponents and high-order
mantissa bits. Unit-norm vectors in Rd lie on the hypersphere Sd−1, so d− 1 angles suffice instead
of d Cartesian coordinates. Cartesian coordinates of unit-norm embeddings scale as 1/

√
d, spanning

values in [0.001, 0.3] for typical dimensions and requiring 22 to 40 different exponents. The first
d − 2 spherical angles, by contrast, are bounded to [0, π] and concentrate around π/2 ≈ 1.57
in high dimensions [3]; Figure 2 shows this empirically for jina-embeddings-v4 embeddings.
This concentration collapses exponents to a single dominant value of 127 with probability >0.999
(Theorem 1), reducing exponent entropy from 2.6 to 0.03 bits/byte for jina-embeddings-v4, with
similar patterns across models validated in Appendix D.

Exponent compression alone would yield only∼1.1× in practice (the 1.33× theoretical limit assumes
zero exponent bits, but entropy coding has overhead and exponents retain ∼0.03 bits). The additional
gain comes from the high-order mantissa byte: when angles cluster around π/2 ≈ 1.5708, the IEEE
754 mantissa bits encoding the fractional part also become predictable. Empirically, the high-order
mantissa byte entropy drops from 8.0 to 4.5 bits, contributing ∼11% additional savings beyond
exponents. Together, exponent and mantissa concentration yield the observed 1.5× compression.

ECF8 [18] and DFloat11 [20] exploit natural exponent concentration in model weights arising from
training dynamics, whereas our method creates exponent concentration through a deterministic
geometric transformation, as summarized in Table 1.

Cosine similarity can also be computed directly from spherical angles without reconstructing Cartesian
coordinates. The SIMILARITY procedure in Algorithm 1 computes x · y from angles (θ1, . . . , θd−1)
and (ϕ1, . . . , ϕd−1) via a backward recurrence in O(d) operations, derived by expanding the Cartesian
dot product in spherical form and factoring the cumulative sine products (Appendix C). This allows
streaming similarity during decompression without materializing the full Cartesian vector.

4 Evaluation

4.1 Experimental Setup

Table 2 compares compression methods on jina-embeddings-v4 embeddings. Standard
compressors and scientific floating-point compressors [13, 12, 11] all achieve under 1.10×.
Trans+Shuffle+Zstd (the approach used by ZipNN [7]) achieves 1.20× by grouping exponent bytes
for better entropy coding and serves as our baseline for subsequent experiments, representing the
best lossless method. Although our method introduces bounded error, we compare against lossless
baselines because our error is below 1e-7, under float32 machine epsilon of 1.19e-7, making re-
constructed values indistinguishable at float32 precision. Mantissa truncation variants illustrate the
trade-off between compression ratio and reconstruction error.
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Figure 1: Compression pipeline. Cartesian coordinates span diverse magnitudes with 20 to 40
different exponents, shown in varied colors. The spherical transform produces angles concentrated
around π/2 ≈ 1.57, collapsing nearly all exponents to 127, shown in uniform color. Transpose groups
same-position angles across vectors, byte shuffle separates exponent bytes, and zstd compresses the
low-entropy exponent stream.
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Figure 2: IEEE 754 exponent distribution for jina-embeddings-v4 (2048d). (a) Cartesian coordi-
nates span 23 exponent values; (b) spherical angles concentrate around exponent 127 with 99.7%
frequency.

The spherical transform requires O(nd) operations using backward cumulative summation for partial
norms; our C implementation achieves over 1 GB/s for the transform alone. With zstd level 1, total
pipeline throughput reaches 487 MB/s encoding and 605 MB/s decoding while maintaining the same
compression ratio. See Appendix B.

4.2 Main Results

Table 3 presents results across 26 configurations: 20 text models on 7600 AG News samples, 3 image
models on CIFAR-10, and 3 multi-vector ColBERT models. All embeddings are unit-normalized.

Compression ranges from 1.47× to 1.59× across all 26 configurations, representing a 20 to 32%
improvement over baseline. Results are consistent across text, image, and multi-vector embeddings,
indicating that compression derives from the unit-norm constraint rather than modality-specific
patterns. For ColBERT indices with 50 to 100 embeddings per document, a 1M document collection
compresses from approximately 240 GB to 160 GB. Entropy analysis and ablation studies appear in
Appendix D and E.
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Algorithm 1 Spherical Compression and Direct Similarity

1: Compress(X ∈ Rn×d): // X is unit-norm
2: Θ← TOSPHERICAL(X) // Θ ∈ Rn×(d−1)

3: T← TRANSPOSE(Θ) // Group same-angle positions
4: B← BYTESHUFFLE(T) // Separate exponent/mantissa bytes
5: return ZSTD(B)
6:
7: Decompress(C): // Returns Θ ∈ Rn×(d−1)

8: B← BYTEUNSHUFFLE(ZSTD−1(C))
9: Θ← TRANSPOSE(B)

10:
11: Similarity(θ,ϕ) where θ,ϕ ∈ Θ: // Rows of Θ
12: R← cos(θd−1 − ϕd−1)
13: for k = d− 2, . . . , 1 do
14: R← cos θk cosϕk + sin θk sinϕk ·R
15: return R // = x · y

Table 2: Baseline comparison (jina-embeddings-v4, 7600 vectors, 2048d). Sizes in MB.
Method Size Ratio Max Err Mean Err Cos Max Err
Raw float32 59.38 1.00× 0 0 0
gzip -9 55.14 1.08× 0 0 0
brotli -11 54.52 1.09× 0 0 0
zstd -19 55.05 1.08× 0 0 0
npz 55.14 1.08× 0 0 0
fpzip 54.11 1.10× 0 0 0
zfp 58.99 1.01× 0 0 0
SZ3 55.03 1.08× 0 0 0
ZipNN (Baseline) 49.57 1.20× 0 0 0
Baseline+Truncate 5 bits 42.23 1.47× 9e-7 2e-8 2e-6
Baseline+Truncate 6 bits 40.30 1.55× 2e-6 5e-8 5e-6
Baseline+Truncate 7 bits 38.40 1.62× 4e-6 9e-8 1e-5

Spherical (Ours) 37.59 1.58× 9e-8 2e-8 2e-7

5 Conclusion

We presented a compression method for unit-norm embeddings achieving 1.5× compression by
exploiting the concentration of spherical angles around π/2 in high dimensions. Using double
precision for intermediate calculations, reconstruction error stays below 1e-7 (under float32 machine
epsilon) with 10× lower error than mantissa truncation at the same compression ratio. The method
applies to text, image, and multi-vector embeddings without training or codebooks, filling the gap
between lossless compression at 1.2× and lossy quantization at 4× or higher. Beyond storage, the
spherical representation enables similarity computation directly from compressed angles without full
Cartesian reconstruction, supporting streaming decompression, early termination in top-k retrieval,
and fused GPU kernels that avoid materializing full vectors.

5

https://huggingface.co/jinaai/jina-embeddings-v4


Table 3: Compression results across 26 embedding configurations. Sizes in MB.
Model Dim Raw Baseline Ours Ratio Impr.

Text Embeddings
MiniLM 384 11.13 9.37 7.43 1.50× +26.0%
E5-small 384 11.13 9.10 7.31 1.52× +24.5%
GTE-small 384 11.13 9.19 7.29 1.53× +26.0%
BGE-base 768 22.27 18.60 14.61 1.52× +27.3%
E5-base 768 22.27 18.19 14.31 1.56× +27.2%
GTE-base 768 22.27 18.33 14.30 1.56× +28.2%
MPNet 768 22.27 18.76 14.56 1.53× +28.9%
Nomic-v1.5 768 22.27 18.57 14.58 1.53× +27.4%
EmbedGemma-300m 768 22.27 18.72 14.82 1.50× +26.3%
jina-code-embeddings-0.5b 896 25.98 21.89 17.07 1.52× +28.2%
jina-embeddings-v3 1024 29.69 24.95 19.81 1.50× +26.0%
jina-clip-v2 1024 29.69 24.97 20.03 1.48× +24.6%
BGE-large 1024 29.69 24.85 19.36 1.53× +28.4%
E5-large 1024 29.69 24.32 18.94 1.57× +28.4%
mE5-large 1024 29.69 24.32 18.91 1.57× +28.6%
GTE-large 1024 29.69 24.34 18.85 1.58× +29.0%
Qwen3-Embed-0.6B 1024 29.69 24.94 19.52 1.52× +27.8%
BGE-M3 1024 29.69 24.91 19.38 1.53× +28.6%
jina-code-embeddings-1.5b 1536 44.53 37.48 28.40 1.57× +32.0%
jina-embeddings-v4 2048 39.06 32.44 24.61 1.59× +31.8%

Multimodal Image
jina-clip-v1 768 5.86 4.90 3.88 1.51× +26.5%
jina-clip-v2 1024 7.81 6.52 5.22 1.50× +24.9%
jina-embeddings-v4 2048 15.63 12.95 9.84 1.59× +31.6%

Multi-Vector ColBERT
jina-embeddings-v4 128 27.70 22.69 18.82 1.47× +20.5%
jina-colbert-v2 1024 243.22 202.96 160.48 1.52× +26.5%
BGE-M3 1024 239.89 197.87 154.13 1.56× +28.4%
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A Python Implementation

1 import numpy as np, zstandard as zstd
2

3 def compress(x, level=19): # x: (n, d) unit-norm float32
4 n, d = x.shape
5 xd = x.astype(np.float64) # Double precision for transforms
6 ang = np.zeros((n, d-1), np.float64)
7 for i in range(d-2):
8 r = np.linalg.norm(xd[:, i:], axis=1)
9 ang[:, i] = np.arccos(np.clip(xd[:, i] / r, -1, 1))

10 ang[:, -1] = np.arctan2(xd[:, -1], xd[:, -2])
11 ang = ang.astype(np.float32) # Store as float32
12 shuf = np.frombuffer(ang.T.tobytes(), np.uint8).reshape(-1, 4).T.tobytes()
13 return np.array([n, d], np.uint32).tobytes() + zstd.compress(shuf, level)
14

15 def decompress(blob):
16 n, d = np.frombuffer(blob[:8], np.uint32)
17 ang = np.frombuffer(zstd.decompress(blob[8:]), np.uint8).reshape(4, -1).T
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18 ang = np.frombuffer(ang.tobytes(), np.float32).reshape(d-1, n).T
19 ang = ang.astype(np.float64) # Double precision for inverse
20 x, s = np.zeros((n, d), np.float64), np.ones(n, np.float64)
21 for i in range(d-2):
22 x[:, i] = s * np.cos(ang[:, i])
23 s *= np.sin(ang[:, i])
24 x[:, -2], x[:, -1] = s * np.cos(ang[:, -1]), s * np.sin(ang[:, -1])
25 return x.astype(np.float32)

B Compression Speed

The reference Python implementation achieves 21 MB/s encoding due to an O(nd2) loop for partial
norm computation. Our C implementation reduces this to O(nd) by precomputing partial squared
norms via backward cumulative summation:

r2i =

d−1∑
j=i

x2
j = r2i+1 + x2

i , r2d−1 = x2
d−1 (1)

This eliminates redundant computation and achieves over 1000 MB/s for the spherical transform, a
50× speedup over the Python reference, with double-precision accumulation preserving numerical
precision.

Table 4 shows throughput across zstd compression levels. The compression ratio remains nearly
constant at 1.50–1.52× regardless of zstd level because the spherical transform already concentrates
exponents into a low-entropy distribution. Higher zstd levels provide negligible benefit while
reducing encoding speed by 100×. We recommend level 1 for most applications: it achieves 487
MB/s encoding with the same 1.52× compression ratio as level 19.

Table 4: Throughput vs. zstd level (768d, 100 MB, single-threaded CPU). Compression ratio is
constant because the spherical transform already minimizes exponent entropy.

Level Size (MB) Ratio Enc (MB/s) Dec (MB/s)
1 65.7 1.52× 487 605
3 65.8 1.52× 400 609
5 66.1 1.51× 285 600
7 66.2 1.51× 258 583
9 66.3 1.51× 218 587

11 66.4 1.51× 143 581
13 66.4 1.51× 56 573
15 66.3 1.51× 44 557
17 65.7 1.52× 10 620
19 66.6 1.50× 7 555
21 66.5 1.50× 5 564

C Formal Analysis

We analyze why spherical coordinates enable better compression. For x uniformly distributed on
Sd−1, the k-th polar angle has marginal density p(θk) ∝ sind−k−1(θk) for θk ∈ [0, π] [3, 17]. For
large d−k, this concentrates around π/2 with variance 1/(d−k−1), approximatingN (π/2, 1/(d−
k − 1)).

Theorem 1 (Exponent Concentration). For the k-th polar angle with d − k ≥ 64, the IEEE 754
exponent byte equals 127 with probability P > 0.999.
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Proof. IEEE 754 exponent 127 corresponds to values in [1, 2), which contains π/2 ≈ 1.5708. The
polar angle θk follows approximately N (π/2, σ2

k) with σk = 1/
√
d− k − 1. Thus:

P (θk ∈ [1, 2)) = Φ

(
2− π/2

σk

)
− Φ

(
1− π/2

σk

)
= Φ

(
0.43
√
d−k−1

)
− Φ

(
− 0.57

√
d−k−1

)
. (2)

For d− k ≥ 64, the first argument exceeds 3.4 and the second is below −4.5, giving P > 0.999.

For d ≥ 64, most polar angles share the same IEEE 754 exponent byte (value 127), reducing exponent
entropy from ∼2.5 bits/byte (Cartesian) to <0.1 bits/byte (spherical), as validated in Table 5.

Corollary 2 (Reconstruction Error Bound). For unit-norm x ∈ Rd with d ≥ 64, the spherical
transform followed by float32 storage and inverse transform produces x′ satisfying ∥x− x′∥∞ <
1.19× 10−7 (float32 machine epsilon).

Proof. By Theorem 1, angles concentrate near π/2 where sin ≈ 1 and cot ≈ 0. The inverse
transform computes xk = sk cos θk with sk =

∏
j<k sin θj . Since each sin θj ≈ 1, the cumulative

product sk remains stable and per-angle rounding errors do not accumulate significantly. Empirical
validation across d ∈ [64, 2048] confirms maximum error below 7× 10−8 for d ≥ 768.

Proposition 3 (Direct Spherical Similarity). For x,y ∈ Sd−1 with spherical angles (θ1, . . . , θd−1)
and (ϕ1, . . . , ϕd−1), the dot product x · y = R1 where:

Rd−1 = cos(θd−1 − ϕd−1) (3)
Rk = cos θk cosϕk + sin θk sinϕk ·Rk+1,

k = d−2, . . . , 1 (4)

Proof. Define sk =
∏k−1

j=1 sin θj and tk =
∏k−1

j=1 sinϕj with s1 = t1 = 1. The Cartesian coordinates
are xk = sk cos θk, yk = tk cosϕk for k = 1, . . . , d − 2, and xd−1 = sd−1 cos θd−1, xd =
sd−1 sin θd−1 (similarly for y). The dot product expands as:

x · y =

d−2∑
k=1

sktk cos θk cosϕk

+ sd−1td−1 cos(θd−1 − ϕd−1) (5)

Let Sk = sktk =
∏k−1

j=1 sin θj sinϕj , so S1 = 1 and Sk+1 = Sk sin θk sinϕk. By induction,∑d−2
i=k Si cos θi cosϕi + Sd−1Rd−1 = SkRk, giving x · y = S1R1 = R1. This justifies the

SIMILARITY procedure in Algorithm 1.

D Entropy Analysis

Table 5 compares the byte-level entropy of Cartesian versus spherical representations across 11
embedding models spanning 384 to 1024 dimensions.

The measurements confirm Theorem 1: Cartesian coordinates span multiple orders of magnitude
requiring 23 to 41 unique exponents with 2.36 to 2.65 bits/byte entropy, while spherical angles use
only 9 to 15 unique exponents with 0.04 to 0.13 bits/byte entropy. The exponent entropy reduction of
∼2.5 bits/byte matches the predicted concentration around value 127.

The exponent entropy reduction from 2.53 to 0.07 bits/byte accounts for most of the compression gain.
Exponent bytes comprise 25% of float32 data, saving 0.25× 2.46 ≈ 0.61 bits/byte. The observed
total entropy reduction of 0.84 bits/byte exceeds this because byte shuffling also improves mantissa
compression when exponents are concentrated.
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Table 5: Entropy comparison between Cartesian and Spherical representations in bits/byte.
Total Entropy Cartesian Exponent Spherical Exponent

Model Dim Cartesian Spherical Entropy Unique Entropy Unique

MiniLM 384 7.35 6.58 2.61 41 0.10 13
E5-small 384 7.34 6.58 2.51 23 0.10 9
GTE-small 384 7.37 6.55 2.61 26 0.13 11
MPNet 768 7.38 6.50 2.65 33 0.06 12
BGE-base 768 7.37 6.51 2.54 27 0.06 14
E5-base 768 7.35 6.51 2.36 25 0.05 12
GTE-base 768 7.37 6.51 2.60 25 0.08 15
Nomic-v1.5 768 7.37 6.51 2.55 26 0.05 9
BGE-large 1024 7.37 6.47 2.54 28 0.05 11
E5-large 1024 7.36 6.48 2.40 24 0.04 14
GTE-large 1024 7.37 6.48 2.48 26 0.05 11

Average — 7.36 6.52 2.53 28 0.07 12
Reduction — 0.84 bits/byte 2.46 bits/byte —

E Ablation Studies

E.1 Matryoshka Dimension Ablation

Modern embedding models support Matryoshka representations [10], where embeddings can be
truncated to lower dimensions while preserving semantic quality. Table 6 tests how compression
varies with dimension for the same model at different truncation levels, isolating the effect of
dimensionality.

Table 6: Matryoshka ablation: Same model at different truncation dimensions (2000 vectors). Sizes
in KB.

Model Dims Raw Baseline Ours Ratio Impr.

jina-embeddings-v3 64 500 425 360 1.39× +18.1%
jina-embeddings-v3 128 1000 848 703 1.42× +20.7%
jina-embeddings-v3 256 2000 1689 1379 1.45× +22.5%
jina-embeddings-v3 512 4000 3377 2730 1.47× +23.7%
jina-embeddings-v3 768 6000 5066 4029 1.49× +25.7%
jina-embeddings-v3 1024 8000 6753 5344 1.50× +26.4%

jina-clip-v2 64 500 423 358 1.40× +18.2%
jina-clip-v2 128 1000 846 703 1.42× +20.4%
jina-clip-v2 256 2000 1687 1383 1.45× +22.0%
jina-clip-v2 512 4000 3373 2711 1.48× +24.4%
jina-clip-v2 768 6000 5058 4027 1.49× +25.6%
jina-clip-v2 1024 8000 6740 5364 1.49× +25.7%

The improvement increases with dimension: from 18% at 64d to 26% at 1024d. Higher dimensions
have d− 1 angles versus d Cartesian coordinates, so the fraction of data benefiting from exponent
concentration grows toward unity as (d− 1)/d→ 1. The angle concentration phenomenon [3] also
strengthens with dimension, reducing entropy further. Text and multimodal models behave similarly
across all tested dimensions.

E.2 Scale and Chunk Ablation

Table 7 evaluates how compression varies with batch size and chunk granularity. The transpose and
byte-shuffle operations operate across vectors within each compressed unit, so larger batches provide
more context for entropy coding. We test two related scenarios: (1) varying total batch size N with
full-matrix compression, and (2) fixed N = 10,000 with varying chunk sizes for random access.

Compression improves with scale: single-vector compression achieves 1.35×, rising to 1.50× at
N ≥ 100 and plateauing at 1.52× for large batches. Chunking and scale are equivalent: compressing
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Table 7: Scale and chunking ablation (768d). Top: varying batch size with full-matrix compression.
Bottom: fixed N = 10,000 with varying chunk size for random access.

Configuration N Raw (KB) Ours (KB) Ratio Overhead Latency
Scale (full-matrix compression)
N=1 (single vector) 1 3 2 1.35× – –
N=10 10 30 23 1.32× – –
N=100 100 300 202 1.49× – –
N=1,000 1,000 3,000 2,003 1.50× – –
N=10,000 10,000 30,000 19,701 1.52× – –
N=100,000 100,000 300,000 197,250 1.52× – –

Chunking for random access (N=10,000 total)
Chunk=1 (per-vector) 10,000 30,000 22,295 1.35× +13.2% 0.01 ms
Chunk=10 10,000 30,000 21,423 1.40× +8.7% 0.04 ms
Chunk=100 10,000 30,000 20,200 1.49× +2.5% 0.30 ms
Chunk=1,000 10,000 30,000 20,052 1.50× +1.8% 2.66 ms
Chunk=10,000 (full) 10,000 30,000 19,701 1.52× 0% 14.8 ms

N = 1 as a full matrix yields the same 1.35× ratio as chunking 10,000 vectors into single-vector
chunks, since both lack cross-vector context for entropy coding. Chunk sizes of 100 to 1,000
achieve practical random access with 1.8 to 2.5% overhead. For a database of 1 million embeddings
with chunk size 1,000, retrieving an arbitrary vector requires decompressing at most 1,000 vectors
(2.66 ms), with storage overhead under 2%.

The compression loss at small chunks reflects the entropy coder’s need for context to build accurate
statistical models. An alternative would use a pre-trained arithmetic coder with fixed probability
tables from the known angle distributions (Theorem 1), potentially eliminating context dependency.
We leave this for future work.

E.3 Geometric Distribution Analysis

Table 8 tests whether compression depends on how vectors are distributed on the sphere, comparing
uniform, clustered (von Mises-Fisher with varying κ), sparse, orthogonal, and real embeddings.

Table 8: Compression across geometric distributions (2000 vectors, 768d). vMF = von Mises-Fisher;
κ = concentration parameter.

Distribution Avg Cos-Sim Baseline Spherical Impr.
Uniform on sphere 0.000 1.19× 1.50× +20.9%
vMF clustered (κ=50, 5 clusters) 0.001 1.18× 1.50× +20.9%
vMF moderate (κ=10) 0.000 1.19× 1.50× +20.9%
vMF concentrated (κ=100) 0.016 1.18× 1.50× +20.9%
vMF tight (κ=1000) 0.472 1.18× 1.50× +21.0%
Orthogonal vectors 0.000 1.18× 1.50× +20.9%
Sparse (10% nonzero) 0.000 5.83× 7.22× +19.3%

BGE-base (real) 0.048 1.19× 1.52× +21.7%

The improvement holds at 20 to 21% regardless of distribution. Uniform random points, tightly
clustered points (κ=1000, average cosine similarity 0.47), orthogonal vectors, and real embeddings
all yield nearly identical compression ratios, confirming that the gain derives from the bounded-angle
property of unit-norm vectors, not from inter-vector structure. Sparse vectors already compress well
with the baseline due to zero values, but spherical still adds 19%.

E.4 Reduced Precision Formats

We evaluate the spherical transform on BF16, FP16, FP8, and Int8 embeddings. Table 9 compares
compression methods across precision formats using 10,000 BGE-base embeddings (768 dimensions).
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Table 9: Compression across precision formats (BGE-base, 768d, 10k vectors). Sizes in MB. BF16-
as-f32 stores BF16 values in float32 containers with zeroed lower mantissa bits. All other formats
use their actual byte width: 4 bytes for float32, 2 bytes for BF16/FP16, 1 byte for FP8/Int8.

Format Method Original Compressed Ratio Max Error Cosine Error

Float32 Baseline 30.72 25.27 1.22× 0 1.8e-7
Float32 Spherical 30.72 19.94 1.54× 6.7e-8 1.2e-7

BF16-as-f32 Baseline 30.72 9.90 3.10× 2.0e-3 2.4e-6
BF16-as-f32 Spherical 30.72 19.97 1.54× 2.0e-3 2.4e-6

BF16 Baseline 15.36 9.91 1.55× 9.8e-4 2.0e-6
BF16 Spherical 15.36 19.96 0.77× 9.8e-4 2.0e-6

FP16 Baseline 15.36 12.74 1.21× 1.2e-4 1.2e-7
FP16 Spherical 15.36 19.96 0.77× 1.2e-4 1.8e-7

FP8-E4M3 Baseline 7.68 5.42 1.42× 1.6e-2 5.6e-4
FP8-E4M3 Spherical 7.68 19.86 0.39× 1.6e-2 5.6e-4

FP8-E5M2 Baseline 7.68 5.07 1.51× 3.1e-2 2.0e-3
FP8-E5M2 Spherical 7.68 19.84 0.39× 3.1e-2 2.0e-3

Int8 Baseline 7.68 5.49 1.40× 1.3e-3 2.3e-4
Int8 Spherical 7.68 19.78 0.39× 1.3e-3 2.3e-4

The spherical transform benefits only float32 embeddings. For all reduced precision formats, baseline
outperforms spherical because arccos and arctan2 produce float32 outputs regardless of input precision.
When BF16 values are stored in float32 containers, the 16 zero mantissa bits compress well with
baseline at 3.10×, but spherical destroys this zero-bit pattern. For two-byte formats like BF16 and
FP16, baseline compresses 15.36 MB to 10 to 13 MB, while spherical expands to 20 MB at 0.77× by
outputting four-byte values. For one-byte formats, 7.68 MB becomes 20 MB at 0.39×. For reduced
precision embeddings, apply baseline directly to the raw bytes.

12


	Introduction
	Related Work
	Lossless Floating-Point Compression
	Spherical and Polar Coordinate Methods
	Lossy Vector Compression

	Method
	Evaluation
	Experimental Setup
	Main Results

	Conclusion
	Python Implementation
	Compression Speed
	Formal Analysis
	Entropy Analysis
	Ablation Studies
	Matryoshka Dimension Ablation
	Scale and Chunk Ablation
	Geometric Distribution Analysis
	Reduced Precision Formats


