31#include "llvm/Config/llvm-config.h"
95 cl::desc(
"Print addresses of instructions when dumping"));
99 cl::desc(
"Pretty print debug locations of instructions when dumping"));
103 cl::desc(
"Pretty print perf data (branch weights, etc) when dumping"));
122 return VAM->getValue();
135 for (
const Value *
Op :
C->operands())
142 unsigned ID = OM.size() + 1;
149 auto OrderConstantValue = [&OM](
const Value *V) {
154 auto OrderConstantFromMetadata = [&](
Metadata *MD) {
156 OrderConstantValue(VAM->getValue());
158 for (
const auto *VAM : AL->getArgs())
159 OrderConstantValue(VAM->getValue());
164 if (
G.hasInitializer())
180 for (
const Use &U :
F.operands())
186 if (
F.isDeclaration())
199 OrderConstantFromMetadata(DVR.getRawLocation());
200 if (DVR.isDbgAssign())
201 OrderConstantFromMetadata(DVR.getRawAddress());
204 for (
const Value *
Op :
I.operands()) {
217static std::vector<unsigned>
220 using Entry = std::pair<const Use *, unsigned>;
224 if (OM.lookup(U.getUser()))
225 List.
push_back(std::make_pair(&U, List.size()));
236 ID = OM.lookup(BA->getBasicBlock());
237 llvm::sort(List, [&](
const Entry &L,
const Entry &R) {
238 const Use *LU = L.first;
239 const Use *RU = R.first;
243 auto LID = OM.lookup(LU->getUser());
244 auto RID = OM.lookup(RU->getUser());
264 return LU->getOperandNo() < RU->getOperandNo();
265 return LU->getOperandNo() > RU->getOperandNo();
273 std::vector<unsigned> Shuffle(List.size());
274 for (
size_t I = 0,
E = List.size();
I !=
E; ++
I)
275 Shuffle[
I] = List[
I].second;
282 for (
const auto &Pair : OM) {
283 const Value *V = Pair.first;
284 if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
287 std::vector<unsigned> Shuffle =
294 F =
I->getFunction();
299 ULOM[
F][V] = std::move(Shuffle);
306 return MA->getParent() ? MA->getParent()->getParent() :
nullptr;
309 return BB->getParent() ? BB->getParent()->getParent() :
nullptr;
312 const Function *M =
I->getParent() ?
I->getParent()->getParent() :
nullptr;
313 return M ? M->getParent() :
nullptr;
317 return GV->getParent();
342 default: Out <<
"cc" << cc;
break;
365 Out <<
"aarch64_sve_vector_pcs";
368 Out <<
"aarch64_sme_preservemost_from_x0";
371 Out <<
"aarch64_sme_preservemost_from_x1";
374 Out <<
"aarch64_sme_preservemost_from_x2";
402 Out <<
"amdgpu_cs_chain";
405 Out <<
"amdgpu_cs_chain_preserve";
410 Out <<
"amdgpu_gfx_whole_wave";
414 Out <<
"riscv_vector_cc";
416#define CC_VLS_CASE(ABI_VLEN) \
417 case CallingConv::RISCV_VLSCall_##ABI_VLEN: \
418 Out << "riscv_vls_cc(" #ABI_VLEN ")"; \
434 Out <<
"cheriot_compartmentcallcc";
437 Out <<
"cheriot_compartmentcalleecc";
440 Out <<
"cheriot_librarycallcc";
454 assert(!Name.empty() &&
"Cannot get empty name!");
457 bool NeedsQuotes = isdigit(
static_cast<unsigned char>(Name[0]));
459 for (
unsigned char C : Name) {
464 if (!isalnum(
C) &&
C !=
'-' &&
C !=
'.' &&
C !=
'_') {
518 Out << Mask.size() <<
" x i32> ";
519 if (
all_of(Mask, [](
int Elt) {
return Elt == 0; })) {
520 Out <<
"zeroinitializer";
526 for (
int Elt : Mask) {
541 TypePrinting(
const Module *M =
nullptr) : DeferredM(
M) {}
543 TypePrinting(
const TypePrinting &) =
delete;
544 TypePrinting &operator=(
const TypePrinting &) =
delete;
547 TypeFinder &getNamedTypes();
550 std::vector<StructType *> &getNumberedTypes();
556 void printStructBody(StructType *Ty, raw_ostream &OS);
559 void incorporateTypes();
564 TypeFinder NamedTypes;
567 DenseMap<StructType *, unsigned> Type2Number;
569 std::vector<StructType *> NumberedTypes;
579std::vector<StructType *> &TypePrinting::getNumberedTypes() {
585 if (NumberedTypes.size() == Type2Number.size())
586 return NumberedTypes;
588 NumberedTypes.resize(Type2Number.size());
589 for (
const auto &
P : Type2Number) {
590 assert(
P.second < NumberedTypes.size() &&
"Didn't get a dense numbering?");
591 assert(!NumberedTypes[
P.second] &&
"Didn't get a unique numbering?");
592 NumberedTypes[
P.second] =
P.first;
594 return NumberedTypes;
597bool TypePrinting::empty() {
599 return NamedTypes.
empty() && Type2Number.empty();
602void TypePrinting::incorporateTypes() {
606 NamedTypes.
run(*DeferredM,
false);
611 unsigned NextNumber = 0;
613 std::vector<StructType *>::iterator NextToUse = NamedTypes.
begin();
614 for (StructType *STy : NamedTypes) {
616 if (STy->isLiteral())
619 if (STy->getName().empty())
620 Type2Number[STy] = NextNumber++;
625 NamedTypes.erase(NextToUse, NamedTypes.end());
630void TypePrinting::print(
Type *Ty, raw_ostream &OS) {
632 case Type::VoidTyID: OS <<
"void";
return;
633 case Type::HalfTyID: OS <<
"half";
return;
634 case Type::BFloatTyID: OS <<
"bfloat";
return;
635 case Type::FloatTyID: OS <<
"float";
return;
636 case Type::DoubleTyID: OS <<
"double";
return;
637 case Type::X86_FP80TyID: OS <<
"x86_fp80";
return;
638 case Type::FP128TyID: OS <<
"fp128";
return;
639 case Type::PPC_FP128TyID: OS <<
"ppc_fp128";
return;
640 case Type::LabelTyID: OS <<
"label";
return;
641 case Type::MetadataTyID:
644 case Type::X86_AMXTyID: OS <<
"x86_amx";
return;
645 case Type::TokenTyID: OS <<
"token";
return;
646 case Type::IntegerTyID:
647 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
650 case Type::FunctionTyID: {
652 print(FTy->getReturnType(), OS);
655 for (
Type *Ty : FTy->params()) {
664 case Type::StructTyID: {
668 return printStructBody(STy, OS);
674 const auto I = Type2Number.find(STy);
675 if (
I != Type2Number.end())
676 OS <<
'%' <<
I->second;
678 OS <<
"%\"type " << STy <<
'\"';
681 case Type::PointerTyID: {
688 case Type::ArrayTyID: {
690 OS <<
'[' << ATy->getNumElements() <<
" x ";
691 print(ATy->getElementType(), OS);
695 case Type::FixedVectorTyID:
696 case Type::ScalableVectorTyID: {
698 ElementCount
EC = PTy->getElementCount();
702 OS <<
EC.getKnownMinValue() <<
" x ";
703 print(PTy->getElementType(), OS);
707 case Type::TypedPointerTyID: {
713 case Type::TargetExtTyID:
720 Inner->print(OS,
false,
true);
723 OS <<
", " << IntParam;
730void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
774 const Function* TheFunction =
nullptr;
775 bool FunctionProcessed =
false;
776 bool ShouldInitializeAllMetadata;
781 ProcessFunctionHookFn;
796 unsigned mdnNext = 0;
804 unsigned ModulePathNext = 0;
808 unsigned GUIDNext = 0;
812 unsigned TypeIdNext = 0;
817 unsigned TypeIdCompatibleVtableNext = 0;
826 bool ShouldInitializeAllMetadata =
false);
834 bool ShouldInitializeAllMetadata =
false);
851 void createMetadataSlot(
const MDNode *
N)
override;
855 int getLocalSlot(
const Value *V);
857 int getMetadataSlot(
const MDNode *
N)
override;
862 int getTypeIdCompatibleVtableSlot(
StringRef Id);
868 FunctionProcessed =
false;
876 void purgeFunction();
883 unsigned mdn_size()
const {
return mdnMap.size(); }
891 unsigned as_size()
const {
return asMap.size(); }
907 void CreateMetadataSlot(
const MDNode *
N);
910 void CreateFunctionSlot(
const Value *V);
915 inline void CreateModulePathSlot(
StringRef Path);
918 void CreateTypeIdCompatibleVtableSlot(
StringRef Id);
922 void processModule();
930 void processGlobalObjectMetadata(
const GlobalObject &GO);
933 void processFunctionMetadata(
const Function &
F);
939 void processDbgRecordMetadata(
const DbgRecord &DVR);
946 : M(M), F(F), Machine(&Machine) {}
949 bool ShouldInitializeAllMetadata)
950 : ShouldCreateStorage(M),
951 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
956 if (!ShouldCreateStorage)
959 ShouldCreateStorage =
false;
961 std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
962 Machine = MachineStorage.get();
963 if (ProcessModuleHookFn)
964 Machine->setProcessHook(ProcessModuleHookFn);
965 if (ProcessFunctionHookFn)
966 Machine->setProcessHook(ProcessFunctionHookFn);
979 Machine->purgeFunction();
980 Machine->incorporateFunction(&F);
985 assert(F &&
"No function incorporated");
986 return Machine->getLocalSlot(V);
992 ProcessModuleHookFn = Fn;
998 ProcessFunctionHookFn = Fn;
1028#define ST_DEBUG(X) dbgs() << X
1036 : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1041 : TheModule(
F ?
F->
getParent() : nullptr), TheFunction(
F),
1042 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
1045 : TheModule(nullptr), ShouldInitializeAllMetadata(
false), TheIndex(Index) {}
1050 TheModule =
nullptr;
1053 if (TheFunction && !FunctionProcessed)
1060 int NumSlots = processIndex();
1067void SlotTracker::processModule() {
1068 ST_DEBUG(
"begin processModule!\n");
1073 CreateModuleSlot(&Var);
1074 processGlobalObjectMetadata(Var);
1075 auto Attrs = Var.getAttributes();
1076 if (Attrs.hasAttributes())
1077 CreateAttributeSetSlot(Attrs);
1082 CreateModuleSlot(&
A);
1085 for (
const GlobalIFunc &
I : TheModule->ifuncs()) {
1087 CreateModuleSlot(&
I);
1088 processGlobalObjectMetadata(
I);
1092 for (
const NamedMDNode &NMD : TheModule->named_metadata()) {
1093 for (
const MDNode *
N : NMD.operands())
1094 CreateMetadataSlot(
N);
1097 for (
const Function &
F : *TheModule) {
1100 CreateModuleSlot(&
F);
1102 if (ShouldInitializeAllMetadata)
1103 processFunctionMetadata(
F);
1107 AttributeSet FnAttrs =
F.getAttributes().getFnAttrs();
1109 CreateAttributeSetSlot(FnAttrs);
1112 if (ProcessModuleHookFn)
1113 ProcessModuleHookFn(
this, TheModule, ShouldInitializeAllMetadata);
1119void SlotTracker::processFunction() {
1120 ST_DEBUG(
"begin processFunction!\n");
1124 if (!ShouldInitializeAllMetadata)
1125 processFunctionMetadata(*TheFunction);
1129 AE = TheFunction->arg_end(); AI != AE; ++AI)
1131 CreateFunctionSlot(&*AI);
1133 ST_DEBUG(
"Inserting Instructions:\n");
1136 for (
auto &BB : *TheFunction) {
1138 CreateFunctionSlot(&BB);
1140 for (
auto &
I : BB) {
1141 if (!
I.getType()->isVoidTy() && !
I.hasName())
1142 CreateFunctionSlot(&
I);
1149 if (
Attrs.hasAttributes())
1150 CreateAttributeSetSlot(Attrs);
1155 if (ProcessFunctionHookFn)
1156 ProcessFunctionHookFn(
this, TheFunction, ShouldInitializeAllMetadata);
1158 FunctionProcessed =
true;
1160 ST_DEBUG(
"end processFunction!\n");
1164int SlotTracker::processIndex() {
1171 std::vector<StringRef> ModulePaths;
1172 for (
auto &[ModPath,
_] : TheIndex->modulePaths())
1173 ModulePaths.push_back(ModPath);
1175 for (
auto &ModPath : ModulePaths)
1176 CreateModulePathSlot(ModPath);
1179 GUIDNext = ModulePathNext;
1181 for (
auto &GlobalList : *TheIndex)
1182 CreateGUIDSlot(GlobalList.first);
1185 TypeIdCompatibleVtableNext = GUIDNext;
1186 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap())
1187 CreateTypeIdCompatibleVtableSlot(TId.first);
1190 TypeIdNext = TypeIdCompatibleVtableNext;
1191 for (
const auto &TID : TheIndex->typeIds())
1192 CreateTypeIdSlot(TID.second.first);
1198void SlotTracker::processGlobalObjectMetadata(
const GlobalObject &GO) {
1201 for (
auto &MD : MDs)
1202 CreateMetadataSlot(MD.second);
1205void SlotTracker::processFunctionMetadata(
const Function &
F) {
1206 processGlobalObjectMetadata(
F);
1207 for (
auto &BB :
F) {
1208 for (
auto &
I : BB) {
1209 for (
const DbgRecord &DR :
I.getDbgRecordRange())
1210 processDbgRecordMetadata(DR);
1211 processInstructionMetadata(
I);
1216void SlotTracker::processDbgRecordMetadata(
const DbgRecord &DR) {
1227 CreateMetadataSlot(
Empty);
1228 if (DVR->getRawVariable())
1229 CreateMetadataSlot(DVR->getRawVariable());
1230 if (DVR->isDbgAssign()) {
1231 if (
auto *AssignID = DVR->getRawAssignID())
1234 CreateMetadataSlot(
Empty);
1237 CreateMetadataSlot(DLR->getRawLabel());
1245void SlotTracker::processInstructionMetadata(
const Instruction &
I) {
1248 if (Function *
F = CI->getCalledFunction())
1249 if (
F->isIntrinsic())
1250 for (
auto &
Op :
I.operands())
1253 CreateMetadataSlot(
N);
1257 I.getAllMetadata(MDs);
1258 for (
auto &MD : MDs)
1259 CreateMetadataSlot(MD.second);
1266 ST_DEBUG(
"begin purgeFunction!\n");
1268 TheFunction =
nullptr;
1269 FunctionProcessed =
false;
1280 return MI == mMap.end() ? -1 : (int)
MI->second;
1286 ProcessModuleHookFn = Fn;
1292 ProcessFunctionHookFn = Fn;
1305 return MI == mdnMap.end() ? -1 : (int)
MI->second;
1316 return FI == fMap.end() ? -1 : (int)FI->second;
1325 return AI == asMap.end() ? -1 : (int)AI->second;
1333 auto I = ModulePathMap.find(Path);
1334 return I == ModulePathMap.end() ? -1 : (int)
I->second;
1343 return I == GUIDMap.end() ? -1 : (int)
I->second;
1351 auto I = TypeIdMap.find(Id);
1352 return I == TypeIdMap.end() ? -1 : (int)
I->second;
1360 auto I = TypeIdCompatibleVtableMap.find(Id);
1361 return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)
I->second;
1365void SlotTracker::CreateModuleSlot(
const GlobalValue *V) {
1366 assert(V &&
"Can't insert a null Value into SlotTracker!");
1367 assert(!V->getType()->isVoidTy() &&
"Doesn't need a slot!");
1368 assert(!V->hasName() &&
"Doesn't need a slot!");
1370 unsigned DestSlot = mNext++;
1373 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1383void SlotTracker::CreateFunctionSlot(
const Value *V) {
1384 assert(!V->getType()->isVoidTy() && !V->hasName() &&
"Doesn't need a slot!");
1386 unsigned DestSlot = fNext++;
1390 ST_DEBUG(
" Inserting value [" << V->getType() <<
"] = " << V <<
" slot=" <<
1391 DestSlot <<
" [o]\n");
1395void SlotTracker::CreateMetadataSlot(
const MDNode *
N) {
1396 assert(
N &&
"Can't insert a null Value into SlotTracker!");
1402 unsigned DestSlot = mdnNext;
1403 if (!mdnMap.insert(std::make_pair(
N, DestSlot)).second)
1408 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i)
1410 CreateMetadataSlot(
Op);
1413void SlotTracker::CreateAttributeSetSlot(
AttributeSet AS) {
1416 if (asMap.try_emplace(AS, asNext).second)
1421void SlotTracker::CreateModulePathSlot(
StringRef Path) {
1422 ModulePathMap[
Path] = ModulePathNext++;
1427 GUIDMap[
GUID] = GUIDNext++;
1431void SlotTracker::CreateTypeIdSlot(
StringRef Id) {
1432 TypeIdMap[
Id] = TypeIdNext++;
1436void SlotTracker::CreateTypeIdCompatibleVtableSlot(
StringRef Id) {
1437 TypeIdCompatibleVtableMap[
Id] = TypeIdCompatibleVtableNext++;
1442struct AsmWriterContext {
1443 TypePrinting *TypePrinter =
nullptr;
1444 SlotTracker *
Machine =
nullptr;
1447 AsmWriterContext(TypePrinting *TP, SlotTracker *ST,
const Module *M =
nullptr)
1450 static AsmWriterContext &getEmpty() {
1451 static AsmWriterContext EmptyCtx(
nullptr,
nullptr);
1457 virtual void onWriteMetadataAsOperand(
const Metadata *) {}
1459 virtual ~AsmWriterContext() =
default;
1468 AsmWriterContext &WriterCtx,
1469 bool PrintType =
false);
1472 AsmWriterContext &WriterCtx,
1473 bool FromValue =
false);
1477 Out << FPO->getFastMathFlags();
1480 if (OBO->hasNoUnsignedWrap())
1482 if (OBO->hasNoSignedWrap())
1488 if (PDI->isDisjoint())
1491 if (
GEP->isInBounds())
1493 else if (
GEP->hasNoUnsignedSignedWrap())
1495 if (
GEP->hasNoUnsignedWrap())
1498 Out <<
" inrange(" <<
InRange->getLower() <<
", " <<
InRange->getUpper()
1502 if (NNI->hasNonNeg())
1505 if (TI->hasNoUnsignedWrap())
1507 if (TI->hasNoSignedWrap())
1510 if (ICmp->hasSameSign())
1526 bool isNaN = APF.
isNaN();
1528 if (!isInf && !isNaN) {
1537 ((StrVal[0] ==
'-' || StrVal[0] ==
'+') &&
isDigit(StrVal[1]))) &&
1538 "[-+]?[0-9] regex does not match!");
1550 static_assert(
sizeof(double) ==
sizeof(
uint64_t),
1551 "assuming that double is 64 bits!");
1609 AsmWriterContext &WriterCtx) {
1611 Type *Ty = CI->getType();
1613 if (Ty->isVectorTy()) {
1615 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1619 if (Ty->getScalarType()->isIntegerTy(1))
1620 Out << (CI->getZExtValue() ?
"true" :
"false");
1622 Out << CI->getValue();
1624 if (Ty->isVectorTy())
1631 Type *Ty = CFP->getType();
1633 if (Ty->isVectorTy()) {
1635 WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1641 if (Ty->isVectorTy())
1648 Out <<
"zeroinitializer";
1653 Out <<
"blockaddress(";
1662 Out <<
"dso_local_equivalent ";
1677 unsigned NumOpsToWrite = 2;
1678 if (!CPA->getOperand(2)->isNullValue())
1680 if (!CPA->getOperand(3)->isNullValue())
1684 for (
unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1696 for (
const Value *
Op : CA->operands()) {
1707 if (CA->isString()) {
1716 for (
uint64_t i = 0, e = CA->getNumElements(); i != e; ++i) {
1726 if (CS->getType()->isPacked())
1729 if (CS->getNumOperands() != 0) {
1732 for (
const Value *
Op : CS->operands()) {
1739 if (CS->getType()->isPacked())
1763 for (
unsigned i = 0, e = CVVTy->getNumElements(); i != e; ++i) {
1798 if (CE->getOpcode() == Instruction::ShuffleVector) {
1799 if (
auto *SplatVal = CE->getSplatValue()) {
1809 Out << CE->getOpcodeName();
1814 WriterCtx.TypePrinter->print(
GEP->getSourceElementType(), Out);
1819 for (
const Value *
Op : CE->operands()) {
1826 WriterCtx.TypePrinter->print(CE->getType(), Out);
1829 if (CE->getOpcode() == Instruction::ShuffleVector)
1836 Out <<
"<placeholder or erroneous Constant>";
1840 AsmWriterContext &WriterCtx) {
1848 Value *V = MDV->getValue();
1852 WriterCtx.onWriteMetadataAsOperand(MD);
1861struct MDFieldPrinter {
1864 AsmWriterContext &WriterCtx;
1866 explicit MDFieldPrinter(raw_ostream &Out)
1867 : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1868 MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1869 : Out(Out), WriterCtx(Ctx) {}
1871 void printTag(
const DINode *
N);
1872 void printMacinfoType(
const DIMacroNode *
N);
1873 void printChecksum(
const DIFile::ChecksumInfo<StringRef> &
N);
1874 void printString(StringRef Name, StringRef
Value,
1875 bool ShouldSkipEmpty =
true);
1876 void printMetadata(StringRef Name,
const Metadata *MD,
1877 bool ShouldSkipNull =
true);
1878 void printMetadataOrInt(StringRef Name,
const Metadata *MD,
bool IsUnsigned,
1879 bool ShouldSkipZero =
true);
1880 template <
class IntTy>
1881 void printInt(StringRef Name, IntTy
Int,
bool ShouldSkipZero =
true);
1882 void printAPInt(StringRef Name,
const APInt &
Int,
bool IsUnsigned,
1883 bool ShouldSkipZero);
1884 void printBool(StringRef Name,
bool Value,
1885 std::optional<bool>
Default = std::nullopt);
1888 template <
class IntTy,
class Stringifier>
1889 void printDwarfEnum(StringRef Name, IntTy
Value, Stringifier
toString,
1890 bool ShouldSkipZero =
true);
1892 void printNameTableKind(StringRef Name,
1899void MDFieldPrinter::printTag(
const DINode *
N) {
1900 Out <<
FS <<
"tag: ";
1908void MDFieldPrinter::printMacinfoType(
const DIMacroNode *
N) {
1909 Out <<
FS <<
"type: ";
1914 Out <<
N->getMacinfoType();
1917void MDFieldPrinter::printChecksum(
1920 printString(
"checksum", Checksum.
Value,
false);
1924 bool ShouldSkipEmpty) {
1925 if (ShouldSkipEmpty &&
Value.empty())
1928 Out <<
FS <<
Name <<
": \"";
1934 AsmWriterContext &WriterCtx) {
1940 WriterCtx.onWriteMetadataAsOperand(MD);
1944 bool ShouldSkipNull) {
1945 if (ShouldSkipNull && !MD)
1948 Out <<
FS <<
Name <<
": ";
1953 bool IsUnsigned,
bool ShouldSkipZero) {
1960 printInt(Name, CV->getZExtValue(), ShouldSkipZero);
1962 printInt(Name, CV->getSExtValue(), ShouldSkipZero);
1964 printMetadata(Name, MD);
1967template <
class IntTy>
1968void MDFieldPrinter::printInt(
StringRef Name, IntTy
Int,
bool ShouldSkipZero) {
1969 if (ShouldSkipZero && !
Int)
1976 bool IsUnsigned,
bool ShouldSkipZero) {
1977 if (ShouldSkipZero &&
Int.isZero())
1980 Out <<
FS <<
Name <<
": ";
1981 Int.print(Out, !IsUnsigned);
1985 std::optional<bool>
Default) {
1988 Out <<
FS <<
Name <<
": " << (
Value ?
"true" :
"false");
1995 Out <<
FS <<
Name <<
": ";
2001 for (
auto F : SplitFlags) {
2003 assert(!StringF.empty() &&
"Expected valid flag");
2004 Out << FlagsFS << StringF;
2006 if (Extra || SplitFlags.empty())
2007 Out << FlagsFS << Extra;
2010void MDFieldPrinter::printDISPFlags(
StringRef Name,
2014 Out <<
FS <<
Name <<
": ";
2025 for (
auto F : SplitFlags) {
2027 assert(!StringF.empty() &&
"Expected valid flag");
2028 Out << FlagsFS << StringF;
2030 if (Extra || SplitFlags.empty())
2031 Out << FlagsFS << Extra;
2034void MDFieldPrinter::printEmissionKind(
StringRef Name,
2039void MDFieldPrinter::printNameTableKind(
StringRef Name,
2046void MDFieldPrinter::printFixedPointKind(
StringRef Name,
2051template <
class IntTy,
class Stringifier>
2053 Stringifier
toString,
bool ShouldSkipZero) {
2054 if (ShouldSkipZero && !
Value)
2057 Out <<
FS <<
Name <<
": ";
2066 AsmWriterContext &WriterCtx) {
2067 Out <<
"!GenericDINode(";
2068 MDFieldPrinter
Printer(Out, WriterCtx);
2070 Printer.printString(
"header",
N->getHeader());
2071 if (
N->getNumDwarfOperands()) {
2072 Out <<
Printer.FS <<
"operands: {";
2074 for (
auto &
I :
N->dwarf_operands()) {
2084 AsmWriterContext &WriterCtx) {
2085 Out <<
"!DILocation(";
2086 MDFieldPrinter
Printer(Out, WriterCtx);
2088 Printer.printInt(
"line",
DL->getLine(),
false);
2089 Printer.printInt(
"column",
DL->getColumn());
2090 Printer.printMetadata(
"scope",
DL->getRawScope(),
false);
2091 Printer.printMetadata(
"inlinedAt",
DL->getRawInlinedAt());
2092 Printer.printBool(
"isImplicitCode",
DL->isImplicitCode(),
2094 Printer.printInt(
"atomGroup",
DL->getAtomGroup());
2095 Printer.printInt<
unsigned>(
"atomRank",
DL->getAtomRank());
2100 AsmWriterContext &WriterCtx) {
2101 Out <<
"!DIAssignID()";
2102 MDFieldPrinter
Printer(Out, WriterCtx);
2106 AsmWriterContext &WriterCtx) {
2107 Out <<
"!DISubrange(";
2108 MDFieldPrinter
Printer(Out, WriterCtx);
2110 Printer.printMetadataOrInt(
"count",
N->getRawCountNode(),
2116 Printer.printMetadataOrInt(
"lowerBound",
N->getRawLowerBound(),
2119 Printer.printMetadataOrInt(
"upperBound",
N->getRawUpperBound(),
2122 Printer.printMetadataOrInt(
"stride",
N->getRawStride(),
2130 AsmWriterContext &WriterCtx) {
2131 Out <<
"!DIGenericSubrange(";
2132 MDFieldPrinter
Printer(Out, WriterCtx);
2134 auto GetConstant = [&](
Metadata *Bound) -> std::optional<int64_t> {
2137 return std::nullopt;
2138 if (BE->isConstant() &&
2140 *BE->isConstant()) {
2141 return static_cast<int64_t
>(BE->getElement(1));
2143 return std::nullopt;
2146 auto *
Count =
N->getRawCountNode();
2147 if (
auto ConstantCount = GetConstant(
Count))
2148 Printer.printInt(
"count", *ConstantCount,
2153 auto *LBound =
N->getRawLowerBound();
2154 if (
auto ConstantLBound = GetConstant(LBound))
2155 Printer.printInt(
"lowerBound", *ConstantLBound,
2158 Printer.printMetadata(
"lowerBound", LBound,
true);
2160 auto *UBound =
N->getRawUpperBound();
2161 if (
auto ConstantUBound = GetConstant(UBound))
2162 Printer.printInt(
"upperBound", *ConstantUBound,
2165 Printer.printMetadata(
"upperBound", UBound,
true);
2167 auto *Stride =
N->getRawStride();
2168 if (
auto ConstantStride = GetConstant(Stride))
2169 Printer.printInt(
"stride", *ConstantStride,
2172 Printer.printMetadata(
"stride", Stride,
true);
2178 AsmWriterContext &) {
2179 Out <<
"!DIEnumerator(";
2181 Printer.printString(
"name",
N->getName(),
false);
2182 Printer.printAPInt(
"value",
N->getValue(),
N->isUnsigned(),
2184 if (
N->isUnsigned())
2185 Printer.printBool(
"isUnsigned",
true);
2190 AsmWriterContext &WriterCtx) {
2191 Out <<
"!DIBasicType(";
2192 MDFieldPrinter
Printer(Out, WriterCtx);
2193 if (
N->getTag() != dwarf::DW_TAG_base_type)
2195 Printer.printString(
"name",
N->getName());
2196 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2197 Printer.printInt(
"align",
N->getAlignInBits());
2198 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2200 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2201 Printer.printDIFlags(
"flags",
N->getFlags());
2206 AsmWriterContext &WriterCtx) {
2207 Out <<
"!DIFixedPointType(";
2208 MDFieldPrinter
Printer(Out, WriterCtx);
2209 if (
N->getTag() != dwarf::DW_TAG_base_type)
2211 Printer.printString(
"name",
N->getName());
2212 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2213 Printer.printInt(
"align",
N->getAlignInBits());
2214 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2216 Printer.printDIFlags(
"flags",
N->getFlags());
2217 Printer.printFixedPointKind(
"kind",
N->getKind());
2218 if (
N->isRational()) {
2219 bool IsUnsigned = !
N->isSigned();
2220 Printer.printAPInt(
"numerator",
N->getNumerator(), IsUnsigned,
false);
2221 Printer.printAPInt(
"denominator",
N->getDenominator(), IsUnsigned,
false);
2223 Printer.printInt(
"factor",
N->getFactor());
2229 AsmWriterContext &WriterCtx) {
2230 Out <<
"!DIStringType(";
2231 MDFieldPrinter
Printer(Out, WriterCtx);
2232 if (
N->getTag() != dwarf::DW_TAG_string_type)
2234 Printer.printString(
"name",
N->getName());
2235 Printer.printMetadata(
"stringLength",
N->getRawStringLength());
2236 Printer.printMetadata(
"stringLengthExpression",
N->getRawStringLengthExp());
2237 Printer.printMetadata(
"stringLocationExpression",
2238 N->getRawStringLocationExp());
2239 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2240 Printer.printInt(
"align",
N->getAlignInBits());
2241 Printer.printDwarfEnum(
"encoding",
N->getEncoding(),
2247 AsmWriterContext &WriterCtx) {
2248 Out <<
"!DIDerivedType(";
2249 MDFieldPrinter
Printer(Out, WriterCtx);
2251 Printer.printString(
"name",
N->getName());
2252 Printer.printMetadata(
"scope",
N->getRawScope());
2253 Printer.printMetadata(
"file",
N->getRawFile());
2254 Printer.printInt(
"line",
N->getLine());
2255 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2257 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2258 Printer.printInt(
"align",
N->getAlignInBits());
2259 Printer.printMetadataOrInt(
"offset",
N->getRawOffsetInBits(),
true);
2260 Printer.printDIFlags(
"flags",
N->getFlags());
2261 Printer.printMetadata(
"extraData",
N->getRawExtraData());
2262 if (
const auto &DWARFAddressSpace =
N->getDWARFAddressSpace())
2263 Printer.printInt(
"dwarfAddressSpace", *DWARFAddressSpace,
2265 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2266 if (
auto PtrAuthData =
N->getPtrAuthData()) {
2267 Printer.printInt(
"ptrAuthKey", PtrAuthData->key());
2268 Printer.printBool(
"ptrAuthIsAddressDiscriminated",
2269 PtrAuthData->isAddressDiscriminated());
2270 Printer.printInt(
"ptrAuthExtraDiscriminator",
2271 PtrAuthData->extraDiscriminator());
2272 Printer.printBool(
"ptrAuthIsaPointer", PtrAuthData->isaPointer());
2273 Printer.printBool(
"ptrAuthAuthenticatesNullValues",
2274 PtrAuthData->authenticatesNullValues());
2280 AsmWriterContext &WriterCtx) {
2281 Out <<
"!DISubrangeType(";
2282 MDFieldPrinter
Printer(Out, WriterCtx);
2283 Printer.printString(
"name",
N->getName());
2284 Printer.printMetadata(
"scope",
N->getRawScope());
2285 Printer.printMetadata(
"file",
N->getRawFile());
2286 Printer.printInt(
"line",
N->getLine());
2287 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2288 Printer.printInt(
"align",
N->getAlignInBits());
2289 Printer.printDIFlags(
"flags",
N->getFlags());
2290 Printer.printMetadata(
"baseType",
N->getRawBaseType(),
2292 Printer.printMetadata(
"lowerBound",
N->getRawLowerBound());
2293 Printer.printMetadata(
"upperBound",
N->getRawUpperBound());
2294 Printer.printMetadata(
"stride",
N->getRawStride());
2295 Printer.printMetadata(
"bias",
N->getRawBias());
2300 AsmWriterContext &WriterCtx) {
2301 Out <<
"!DICompositeType(";
2302 MDFieldPrinter
Printer(Out, WriterCtx);
2304 Printer.printString(
"name",
N->getName());
2305 Printer.printMetadata(
"scope",
N->getRawScope());
2306 Printer.printMetadata(
"file",
N->getRawFile());
2307 Printer.printInt(
"line",
N->getLine());
2308 Printer.printMetadata(
"baseType",
N->getRawBaseType());
2309 Printer.printMetadataOrInt(
"size",
N->getRawSizeInBits(),
true);
2310 Printer.printInt(
"align",
N->getAlignInBits());
2311 Printer.printMetadataOrInt(
"offset",
N->getRawOffsetInBits(),
true);
2312 Printer.printInt(
"num_extra_inhabitants",
N->getNumExtraInhabitants());
2313 Printer.printDIFlags(
"flags",
N->getFlags());
2314 Printer.printMetadata(
"elements",
N->getRawElements());
2315 Printer.printDwarfEnum(
"runtimeLang",
N->getRuntimeLang(),
2317 Printer.printMetadata(
"vtableHolder",
N->getRawVTableHolder());
2318 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2319 Printer.printString(
"identifier",
N->getIdentifier());
2320 Printer.printMetadata(
"discriminator",
N->getRawDiscriminator());
2321 Printer.printMetadata(
"dataLocation",
N->getRawDataLocation());
2322 Printer.printMetadata(
"associated",
N->getRawAssociated());
2323 Printer.printMetadata(
"allocated",
N->getRawAllocated());
2324 if (
auto *RankConst =
N->getRankConst())
2325 Printer.printInt(
"rank", RankConst->getSExtValue(),
2328 Printer.printMetadata(
"rank",
N->getRawRank(),
true);
2329 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2330 if (
auto *Specification =
N->getRawSpecification())
2331 Printer.printMetadata(
"specification", Specification);
2333 if (
auto EnumKind =
N->getEnumKind())
2337 Printer.printMetadata(
"bitStride",
N->getRawBitStride());
2342 AsmWriterContext &WriterCtx) {
2343 Out <<
"!DISubroutineType(";
2344 MDFieldPrinter
Printer(Out, WriterCtx);
2345 Printer.printDIFlags(
"flags",
N->getFlags());
2347 Printer.printMetadata(
"types",
N->getRawTypeArray(),
2355 Printer.printString(
"filename",
N->getFilename(),
2357 Printer.printString(
"directory",
N->getDirectory(),
2360 if (
N->getChecksum())
2361 Printer.printChecksum(*
N->getChecksum());
2363 Printer.printString(
"source", *
N->getSource(),
2369 AsmWriterContext &WriterCtx) {
2370 Out <<
"!DICompileUnit(";
2371 MDFieldPrinter
Printer(Out, WriterCtx);
2372 Printer.printDwarfEnum(
"language",
N->getSourceLanguage(),
2374 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2375 Printer.printString(
"producer",
N->getProducer());
2376 Printer.printBool(
"isOptimized",
N->isOptimized());
2377 Printer.printString(
"flags",
N->getFlags());
2378 Printer.printInt(
"runtimeVersion",
N->getRuntimeVersion(),
2380 Printer.printString(
"splitDebugFilename",
N->getSplitDebugFilename());
2381 Printer.printEmissionKind(
"emissionKind",
N->getEmissionKind());
2382 Printer.printMetadata(
"enums",
N->getRawEnumTypes());
2383 Printer.printMetadata(
"retainedTypes",
N->getRawRetainedTypes());
2384 Printer.printMetadata(
"globals",
N->getRawGlobalVariables());
2385 Printer.printMetadata(
"imports",
N->getRawImportedEntities());
2386 Printer.printMetadata(
"macros",
N->getRawMacros());
2387 Printer.printInt(
"dwoId",
N->getDWOId());
2388 Printer.printBool(
"splitDebugInlining",
N->getSplitDebugInlining(),
true);
2389 Printer.printBool(
"debugInfoForProfiling",
N->getDebugInfoForProfiling(),
2391 Printer.printNameTableKind(
"nameTableKind",
N->getNameTableKind());
2392 Printer.printBool(
"rangesBaseAddress",
N->getRangesBaseAddress(),
false);
2393 Printer.printString(
"sysroot",
N->getSysRoot());
2394 Printer.printString(
"sdk",
N->getSDK());
2399 AsmWriterContext &WriterCtx) {
2400 Out <<
"!DISubprogram(";
2401 MDFieldPrinter
Printer(Out, WriterCtx);
2402 Printer.printString(
"name",
N->getName());
2403 Printer.printString(
"linkageName",
N->getLinkageName());
2404 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2405 Printer.printMetadata(
"file",
N->getRawFile());
2406 Printer.printInt(
"line",
N->getLine());
2407 Printer.printMetadata(
"type",
N->getRawType());
2408 Printer.printInt(
"scopeLine",
N->getScopeLine());
2409 Printer.printMetadata(
"containingType",
N->getRawContainingType());
2410 if (
N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2411 N->getVirtualIndex() != 0)
2412 Printer.printInt(
"virtualIndex",
N->getVirtualIndex(),
false);
2413 Printer.printInt(
"thisAdjustment",
N->getThisAdjustment());
2414 Printer.printDIFlags(
"flags",
N->getFlags());
2415 Printer.printDISPFlags(
"spFlags",
N->getSPFlags());
2416 Printer.printMetadata(
"unit",
N->getRawUnit());
2417 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2418 Printer.printMetadata(
"declaration",
N->getRawDeclaration());
2419 Printer.printMetadata(
"retainedNodes",
N->getRawRetainedNodes());
2420 Printer.printMetadata(
"thrownTypes",
N->getRawThrownTypes());
2421 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2422 Printer.printString(
"targetFuncName",
N->getTargetFuncName());
2423 Printer.printBool(
"keyInstructions",
N->getKeyInstructionsEnabled(),
false);
2428 AsmWriterContext &WriterCtx) {
2429 Out <<
"!DILexicalBlock(";
2430 MDFieldPrinter
Printer(Out, WriterCtx);
2431 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2432 Printer.printMetadata(
"file",
N->getRawFile());
2433 Printer.printInt(
"line",
N->getLine());
2434 Printer.printInt(
"column",
N->getColumn());
2440 AsmWriterContext &WriterCtx) {
2441 Out <<
"!DILexicalBlockFile(";
2442 MDFieldPrinter
Printer(Out, WriterCtx);
2443 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2444 Printer.printMetadata(
"file",
N->getRawFile());
2445 Printer.printInt(
"discriminator",
N->getDiscriminator(),
2451 AsmWriterContext &WriterCtx) {
2452 Out <<
"!DINamespace(";
2453 MDFieldPrinter
Printer(Out, WriterCtx);
2454 Printer.printString(
"name",
N->getName());
2455 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2456 Printer.printBool(
"exportSymbols",
N->getExportSymbols(),
false);
2461 AsmWriterContext &WriterCtx) {
2462 Out <<
"!DICommonBlock(";
2463 MDFieldPrinter
Printer(Out, WriterCtx);
2464 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2465 Printer.printMetadata(
"declaration",
N->getRawDecl(),
false);
2466 Printer.printString(
"name",
N->getName());
2467 Printer.printMetadata(
"file",
N->getRawFile());
2468 Printer.printInt(
"line",
N->getLineNo());
2473 AsmWriterContext &WriterCtx) {
2475 MDFieldPrinter
Printer(Out, WriterCtx);
2477 Printer.printInt(
"line",
N->getLine());
2478 Printer.printString(
"name",
N->getName());
2479 Printer.printString(
"value",
N->getValue());
2484 AsmWriterContext &WriterCtx) {
2485 Out <<
"!DIMacroFile(";
2486 MDFieldPrinter
Printer(Out, WriterCtx);
2487 Printer.printInt(
"line",
N->getLine());
2488 Printer.printMetadata(
"file",
N->getRawFile(),
false);
2489 Printer.printMetadata(
"nodes",
N->getRawElements());
2494 AsmWriterContext &WriterCtx) {
2495 Out <<
"!DIModule(";
2496 MDFieldPrinter
Printer(Out, WriterCtx);
2497 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2498 Printer.printString(
"name",
N->getName());
2499 Printer.printString(
"configMacros",
N->getConfigurationMacros());
2500 Printer.printString(
"includePath",
N->getIncludePath());
2501 Printer.printString(
"apinotes",
N->getAPINotesFile());
2502 Printer.printMetadata(
"file",
N->getRawFile());
2503 Printer.printInt(
"line",
N->getLineNo());
2504 Printer.printBool(
"isDecl",
N->getIsDecl(),
false);
2510 AsmWriterContext &WriterCtx) {
2511 Out <<
"!DITemplateTypeParameter(";
2512 MDFieldPrinter
Printer(Out, WriterCtx);
2513 Printer.printString(
"name",
N->getName());
2514 Printer.printMetadata(
"type",
N->getRawType(),
false);
2515 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2521 AsmWriterContext &WriterCtx) {
2522 Out <<
"!DITemplateValueParameter(";
2523 MDFieldPrinter
Printer(Out, WriterCtx);
2524 if (
N->getTag() != dwarf::DW_TAG_template_value_parameter)
2526 Printer.printString(
"name",
N->getName());
2527 Printer.printMetadata(
"type",
N->getRawType());
2528 Printer.printBool(
"defaulted",
N->isDefault(),
false);
2529 Printer.printMetadata(
"value",
N->getValue(),
false);
2534 AsmWriterContext &WriterCtx) {
2535 Out <<
"!DIGlobalVariable(";
2536 MDFieldPrinter
Printer(Out, WriterCtx);
2537 Printer.printString(
"name",
N->getName());
2538 Printer.printString(
"linkageName",
N->getLinkageName());
2539 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2540 Printer.printMetadata(
"file",
N->getRawFile());
2541 Printer.printInt(
"line",
N->getLine());
2542 Printer.printMetadata(
"type",
N->getRawType());
2543 Printer.printBool(
"isLocal",
N->isLocalToUnit());
2544 Printer.printBool(
"isDefinition",
N->isDefinition());
2545 Printer.printMetadata(
"declaration",
N->getRawStaticDataMemberDeclaration());
2546 Printer.printMetadata(
"templateParams",
N->getRawTemplateParams());
2547 Printer.printInt(
"align",
N->getAlignInBits());
2548 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2553 AsmWriterContext &WriterCtx) {
2554 Out <<
"!DILocalVariable(";
2555 MDFieldPrinter
Printer(Out, WriterCtx);
2556 Printer.printString(
"name",
N->getName());
2557 Printer.printInt(
"arg",
N->getArg());
2558 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2559 Printer.printMetadata(
"file",
N->getRawFile());
2560 Printer.printInt(
"line",
N->getLine());
2561 Printer.printMetadata(
"type",
N->getRawType());
2562 Printer.printDIFlags(
"flags",
N->getFlags());
2563 Printer.printInt(
"align",
N->getAlignInBits());
2564 Printer.printMetadata(
"annotations",
N->getRawAnnotations());
2569 AsmWriterContext &WriterCtx) {
2571 MDFieldPrinter
Printer(Out, WriterCtx);
2572 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2573 Printer.printString(
"name",
N->getName());
2574 Printer.printMetadata(
"file",
N->getRawFile());
2575 Printer.printInt(
"line",
N->getLine());
2576 Printer.printInt(
"column",
N->getColumn());
2577 Printer.printBool(
"isArtificial",
N->isArtificial(),
false);
2578 if (
N->getCoroSuspendIdx())
2579 Printer.printInt(
"coroSuspendIdx", *
N->getCoroSuspendIdx(),
2585 AsmWriterContext &WriterCtx) {
2586 Out <<
"!DIExpression(";
2591 assert(!OpStr.empty() &&
"Expected valid opcode");
2595 Out << FS <<
Op.getArg(0);
2598 for (
unsigned A = 0, AE =
Op.getNumArgs();
A != AE; ++
A)
2599 Out << FS <<
Op.getArg(
A);
2603 for (
const auto &
I :
N->getElements())
2610 AsmWriterContext &WriterCtx,
2611 bool FromValue =
false) {
2613 "Unexpected DIArgList metadata outside of value argument");
2614 Out <<
"!DIArgList(";
2616 MDFieldPrinter
Printer(Out, WriterCtx);
2617 for (
const Metadata *Arg :
N->getArgs()) {
2626 AsmWriterContext &WriterCtx) {
2627 Out <<
"!DIGlobalVariableExpression(";
2628 MDFieldPrinter
Printer(Out, WriterCtx);
2629 Printer.printMetadata(
"var",
N->getVariable());
2630 Printer.printMetadata(
"expr",
N->getExpression());
2635 AsmWriterContext &WriterCtx) {
2636 Out <<
"!DIObjCProperty(";
2637 MDFieldPrinter
Printer(Out, WriterCtx);
2638 Printer.printString(
"name",
N->getName());
2639 Printer.printMetadata(
"file",
N->getRawFile());
2640 Printer.printInt(
"line",
N->getLine());
2641 Printer.printString(
"setter",
N->getSetterName());
2642 Printer.printString(
"getter",
N->getGetterName());
2643 Printer.printInt(
"attributes",
N->getAttributes());
2644 Printer.printMetadata(
"type",
N->getRawType());
2649 AsmWriterContext &WriterCtx) {
2650 Out <<
"!DIImportedEntity(";
2651 MDFieldPrinter
Printer(Out, WriterCtx);
2653 Printer.printString(
"name",
N->getName());
2654 Printer.printMetadata(
"scope",
N->getRawScope(),
false);
2655 Printer.printMetadata(
"entity",
N->getRawEntity());
2656 Printer.printMetadata(
"file",
N->getRawFile());
2657 Printer.printInt(
"line",
N->getLine());
2658 Printer.printMetadata(
"elements",
N->getRawElements());
2663 AsmWriterContext &Ctx) {
2664 if (
Node->isDistinct())
2666 else if (
Node->isTemporary())
2667 Out <<
"<temporary!> ";
2669 switch (
Node->getMetadataID()) {
2672#define HANDLE_MDNODE_LEAF(CLASS) \
2673 case Metadata::CLASS##Kind: \
2674 write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2676#include "llvm/IR/Metadata.def"
2683 AsmWriterContext &WriterCtx,
2686 WriterCtx.TypePrinter->print(V->getType(), Out);
2697 assert(WriterCtx.TypePrinter &&
"Constants require TypePrinting!");
2704 if (IA->hasSideEffects())
2705 Out <<
"sideeffect ";
2706 if (IA->isAlignStack())
2707 Out <<
"alignstack ";
2710 Out <<
"inteldialect ";
2729 auto *
Machine = WriterCtx.Machine;
2733 Slot =
Machine->getGlobalSlot(GV);
2736 Slot =
Machine->getLocalSlot(V);
2743 Slot =
Machine->getLocalSlot(V);
2750 Slot =
Machine->getGlobalSlot(GV);
2753 Slot =
Machine->getLocalSlot(V);
2762 Out << Prefix << Slot;
2768 AsmWriterContext &WriterCtx,
2782 std::unique_ptr<SlotTracker> MachineStorage;
2784 if (!WriterCtx.Machine) {
2785 MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2786 WriterCtx.Machine = MachineStorage.get();
2796 Out <<
"<" <<
N <<
">";
2810 assert(WriterCtx.TypePrinter &&
"TypePrinter required for metadata values");
2812 "Unexpected function-local metadata outside of value argument");
2819class AssemblyWriter {
2820 formatted_raw_ostream &Out;
2821 const Module *TheModule =
nullptr;
2822 const ModuleSummaryIndex *TheIndex =
nullptr;
2823 std::unique_ptr<SlotTracker> SlotTrackerStorage;
2825 TypePrinting TypePrinter;
2826 AssemblyAnnotationWriter *AnnotationWriter =
nullptr;
2827 SetVector<const Comdat *> Comdats;
2829 bool ShouldPreserveUseListOrder;
2834 DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2838 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
const Module *M,
2839 AssemblyAnnotationWriter *AAW,
bool IsForDebug,
2840 bool ShouldPreserveUseListOrder =
false);
2842 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2843 const ModuleSummaryIndex *Index,
bool IsForDebug);
2846 return AsmWriterContext(&TypePrinter, &
Machine, TheModule);
2849 void printMDNodeBody(
const MDNode *MD);
2850 void printNamedMDNode(
const NamedMDNode *NMD);
2852 void printModule(
const Module *M);
2854 void writeOperand(
const Value *
Op,
bool PrintType);
2855 void writeParamOperand(
const Value *Operand, AttributeSet Attrs);
2856 void writeOperandBundles(
const CallBase *
Call);
2857 void writeSyncScope(
const LLVMContext &
Context,
2859 void writeAtomic(
const LLVMContext &
Context,
2862 void writeAtomicCmpXchg(
const LLVMContext &
Context,
2867 void writeAllMDNodes();
2868 void writeMDNode(
unsigned Slot,
const MDNode *Node);
2869 void writeAttribute(
const Attribute &Attr,
bool InAttrGroup =
false);
2870 void writeAttributeSet(
const AttributeSet &AttrSet,
bool InAttrGroup =
false);
2871 void writeAllAttributeGroups();
2873 void printTypeIdentities();
2874 void printGlobal(
const GlobalVariable *GV);
2875 void printAlias(
const GlobalAlias *GA);
2876 void printIFunc(
const GlobalIFunc *GI);
2877 void printComdat(
const Comdat *
C);
2878 void printFunction(
const Function *
F);
2879 void printArgument(
const Argument *FA, AttributeSet Attrs);
2880 void printBasicBlock(
const BasicBlock *BB);
2881 void printInstructionLine(
const Instruction &
I);
2882 void printInstruction(
const Instruction &
I);
2883 void printDbgMarker(
const DbgMarker &DPI);
2884 void printDbgVariableRecord(
const DbgVariableRecord &DVR);
2885 void printDbgLabelRecord(
const DbgLabelRecord &DLR);
2886 void printDbgRecord(
const DbgRecord &DR);
2887 void printDbgRecordLine(
const DbgRecord &DR);
2889 void printUseListOrder(
const Value *V, ArrayRef<unsigned> Shuffle);
2890 void printUseLists(
const Function *
F);
2892 void printModuleSummaryIndex();
2893 void printSummaryInfo(
unsigned Slot,
const ValueInfo &VI);
2894 void printSummary(
const GlobalValueSummary &Summary);
2895 void printAliasSummary(
const AliasSummary *AS);
2896 void printGlobalVarSummary(
const GlobalVarSummary *GS);
2897 void printFunctionSummary(
const FunctionSummary *FS);
2898 void printTypeIdSummary(
const TypeIdSummary &TIS);
2900 void printTypeTestResolution(
const TypeTestResolution &TTRes);
2901 void printArgs(ArrayRef<uint64_t> Args);
2902 void printWPDRes(
const WholeProgramDevirtResolution &WPDRes);
2903 void printTypeIdInfo(
const FunctionSummary::TypeIdInfo &TIDInfo);
2904 void printVFuncId(
const FunctionSummary::VFuncId VFId);
2912 void printMetadataAttachments(
2913 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2914 StringRef Separator);
2918 void printInfoComment(
const Value &V);
2922 void printGCRelocateComment(
const GCRelocateInst &Relocate);
2929 bool IsForDebug,
bool ShouldPreserveUseListOrder)
2930 : Out(
o), TheModule(
M),
Machine(Mac), TypePrinter(
M), AnnotationWriter(AAW),
2931 IsForDebug(IsForDebug),
2932 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2935 for (
const GlobalObject &GO : TheModule->global_objects())
2942 : Out(
o), TheIndex(Index),
Machine(Mac), TypePrinter(nullptr),
2943 IsForDebug(IsForDebug), ShouldPreserveUseListOrder(
false) {}
2945void AssemblyWriter::writeOperand(
const Value *Operand,
bool PrintType) {
2947 Out <<
"<null operand!>";
2954void AssemblyWriter::writeSyncScope(
const LLVMContext &
Context,
2962 Context.getSyncScopeNames(SSNs);
2964 Out <<
" syncscope(\"";
2972void AssemblyWriter::writeAtomic(
const LLVMContext &
Context,
2975 if (Ordering == AtomicOrdering::NotAtomic)
2978 writeSyncScope(
Context, SSID);
2982void AssemblyWriter::writeAtomicCmpXchg(
const LLVMContext &
Context,
2986 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2987 FailureOrdering != AtomicOrdering::NotAtomic);
2989 writeSyncScope(
Context, SSID);
2994void AssemblyWriter::writeParamOperand(
const Value *Operand,
2995 AttributeSet Attrs) {
2997 Out <<
"<null operand!>";
3002 TypePrinter.print(Operand->
getType(), Out);
3004 if (
Attrs.hasAttributes()) {
3006 writeAttributeSet(Attrs);
3014void AssemblyWriter::writeOperandBundles(
const CallBase *
Call) {
3030 ListSeparator InnerLS;
3032 for (
const auto &Input : BU.
Inputs) {
3034 if (Input ==
nullptr)
3035 Out <<
"<null operand bundle!>";
3046void AssemblyWriter::printModule(
const Module *M) {
3049 if (ShouldPreserveUseListOrder)
3052 if (!
M->getModuleIdentifier().empty() &&
3055 M->getModuleIdentifier().find(
'\n') == std::string::npos)
3056 Out <<
"; ModuleID = '" <<
M->getModuleIdentifier() <<
"'\n";
3058 if (!
M->getSourceFileName().empty()) {
3059 Out <<
"source_filename = \"";
3064 const std::string &
DL =
M->getDataLayoutStr();
3066 Out <<
"target datalayout = \"" <<
DL <<
"\"\n";
3067 if (!
M->getTargetTriple().empty())
3068 Out <<
"target triple = \"" <<
M->getTargetTriple().str() <<
"\"\n";
3070 if (!
M->getModuleInlineAsm().empty()) {
3074 StringRef
Asm =
M->getModuleInlineAsm();
3077 std::tie(Front, Asm) =
Asm.split(
'\n');
3081 Out <<
"module asm \"";
3084 }
while (!
Asm.empty());
3087 printTypeIdentities();
3090 if (!Comdats.empty())
3092 for (
const Comdat *
C : Comdats) {
3094 if (
C != Comdats.back())
3099 if (!
M->global_empty()) Out <<
'\n';
3100 for (
const GlobalVariable &GV :
M->globals()) {
3101 printGlobal(&GV); Out <<
'\n';
3105 if (!
M->alias_empty()) Out <<
"\n";
3106 for (
const GlobalAlias &GA :
M->aliases())
3110 if (!
M->ifunc_empty()) Out <<
"\n";
3111 for (
const GlobalIFunc &GI :
M->ifuncs())
3115 for (
const Function &
F : *M) {
3121 printUseLists(
nullptr);
3126 writeAllAttributeGroups();
3130 if (!
M->named_metadata_empty()) Out <<
'\n';
3132 for (
const NamedMDNode &Node :
M->named_metadata())
3133 printNamedMDNode(&Node);
3142void AssemblyWriter::printModuleSummaryIndex() {
3144 int NumSlots =
Machine.initializeIndexIfNeeded();
3150 std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3151 std::string RegularLTOModuleName =
3153 moduleVec.resize(TheIndex->modulePaths().size());
3154 for (
auto &[ModPath, ModHash] : TheIndex->modulePaths())
3155 moduleVec[
Machine.getModulePathSlot(ModPath)] = std::make_pair(
3158 ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3161 for (
auto &ModPair : moduleVec) {
3162 Out <<
"^" << i++ <<
" = module: (";
3165 Out <<
"\", hash: (";
3167 for (
auto Hash : ModPair.second)
3174 for (
auto &GlobalList : *TheIndex) {
3175 auto GUID = GlobalList.first;
3176 for (
auto &Summary : GlobalList.second.SummaryList)
3181 for (
auto &GlobalList : *TheIndex) {
3182 auto GUID = GlobalList.first;
3183 auto VI = TheIndex->getValueInfo(GlobalList);
3184 printSummaryInfo(
Machine.getGUIDSlot(GUID), VI);
3188 for (
const auto &TID : TheIndex->typeIds()) {
3189 Out <<
"^" <<
Machine.getTypeIdSlot(TID.second.first)
3190 <<
" = typeid: (name: \"" << TID.second.first <<
"\"";
3191 printTypeIdSummary(TID.second.second);
3192 Out <<
") ; guid = " << TID.first <<
"\n";
3196 for (
auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3198 Out <<
"^" <<
Machine.getTypeIdCompatibleVtableSlot(TId.first)
3199 <<
" = typeidCompatibleVTable: (name: \"" << TId.first <<
"\"";
3200 printTypeIdCompatibleVtableSummary(TId.second);
3201 Out <<
") ; guid = " <<
GUID <<
"\n";
3205 if (TheIndex->getFlags()) {
3206 Out <<
"^" << NumSlots <<
" = flags: " << TheIndex->getFlags() <<
"\n";
3210 Out <<
"^" << NumSlots <<
" = blockcount: " << TheIndex->getBlockCount()
3220 return "singleImpl";
3222 return "branchFunnel";
3233 return "uniformRetVal";
3235 return "uniqueRetVal";
3237 return "virtualConstProp";
3260void AssemblyWriter::printTypeTestResolution(
const TypeTestResolution &TTRes) {
3267 Out <<
", alignLog2: " << TTRes.
AlignLog2;
3269 Out <<
", sizeM1: " << TTRes.
SizeM1;
3272 Out <<
", bitMask: " << (unsigned)TTRes.
BitMask;
3279void AssemblyWriter::printTypeIdSummary(
const TypeIdSummary &TIS) {
3280 Out <<
", summary: (";
3281 printTypeTestResolution(TIS.
TTRes);
3282 if (!TIS.
WPDRes.empty()) {
3283 Out <<
", wpdResolutions: (";
3285 for (
auto &WPDRes : TIS.
WPDRes) {
3287 Out <<
"(offset: " << WPDRes.first <<
", ";
3288 printWPDRes(WPDRes.second);
3296void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3298 Out <<
", summary: (";
3300 for (
auto &
P : TI) {
3302 Out <<
"(offset: " <<
P.AddressPointOffset <<
", ";
3303 Out <<
"^" <<
Machine.getGUIDSlot(
P.VTableVI.getGUID());
3309void AssemblyWriter::printArgs(ArrayRef<uint64_t> Args) {
3313void AssemblyWriter::printWPDRes(
const WholeProgramDevirtResolution &WPDRes) {
3314 Out <<
"wpdRes: (kind: ";
3321 Out <<
", resByArg: (";
3323 for (
auto &ResByArg : WPDRes.
ResByArg) {
3325 printArgs(ResByArg.first);
3326 Out <<
", byArg: (kind: ";
3328 if (ResByArg.second.TheKind ==
3330 ResByArg.second.TheKind ==
3332 Out <<
", info: " << ResByArg.second.Info;
3336 if (ResByArg.second.Byte || ResByArg.second.Bit)
3337 Out <<
", byte: " << ResByArg.second.Byte
3338 <<
", bit: " << ResByArg.second.Bit;
3359void AssemblyWriter::printAliasSummary(
const AliasSummary *AS) {
3360 Out <<
", aliasee: ";
3370void AssemblyWriter::printGlobalVarSummary(
const GlobalVarSummary *GS) {
3371 auto VTableFuncs =
GS->vTableFuncs();
3372 Out <<
", varFlags: (readonly: " <<
GS->VarFlags.MaybeReadOnly <<
", "
3373 <<
"writeonly: " <<
GS->VarFlags.MaybeWriteOnly <<
", "
3374 <<
"constant: " <<
GS->VarFlags.Constant;
3375 if (!VTableFuncs.empty())
3377 <<
"vcall_visibility: " <<
GS->VarFlags.VCallVisibility;
3380 if (!VTableFuncs.empty()) {
3381 Out <<
", vTableFuncs: (";
3383 for (
auto &
P : VTableFuncs) {
3385 Out <<
"(virtFunc: ^" <<
Machine.getGUIDSlot(
P.FuncVI.getGUID())
3386 <<
", offset: " <<
P.VTableOffset;
3404 return "linkonce_odr";
3414 return "extern_weak";
3416 return "available_externally";
3445 return "definition";
3447 return "declaration";
3452void AssemblyWriter::printFunctionSummary(
const FunctionSummary *FS) {
3453 Out <<
", insts: " <<
FS->instCount();
3454 if (
FS->fflags().anyFlagSet())
3455 Out <<
", " <<
FS->fflags();
3457 if (!
FS->calls().empty()) {
3458 Out <<
", calls: (";
3460 for (
auto &
Call :
FS->calls()) {
3462 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.first.getGUID());
3463 if (
Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3465 else if (
Call.second.RelBlockFreq)
3466 Out <<
", relbf: " <<
Call.second.RelBlockFreq;
3469 if (
Call.second.HasTailCall)
3476 if (
const auto *TIdInfo =
FS->getTypeIdInfo())
3477 printTypeIdInfo(*TIdInfo);
3481 auto AllocTypeName = [](uint8_t
Type) ->
const char * {
3483 case (uint8_t)AllocationType::None:
3485 case (uint8_t)AllocationType::NotCold:
3487 case (uint8_t)AllocationType::Cold:
3489 case (uint8_t)AllocationType::Hot:
3495 if (!
FS->allocs().empty()) {
3496 Out <<
", allocs: (";
3498 for (
auto &AI :
FS->allocs()) {
3500 Out <<
"(versions: (";
3502 for (
auto V : AI.Versions) {
3504 Out << AllocTypeName(V);
3506 Out <<
"), memProf: (";
3507 ListSeparator MIBFS;
3508 for (
auto &MIB : AI.MIBs) {
3510 Out <<
"(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3511 Out <<
", stackIds: (";
3512 ListSeparator SIDFS;
3513 for (
auto Id : MIB.StackIdIndices) {
3515 Out << TheIndex->getStackIdAtIndex(Id);
3524 if (!
FS->callsites().empty()) {
3525 Out <<
", callsites: (";
3527 for (
auto &CI :
FS->callsites()) {
3530 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(CI.Callee.getGUID());
3532 Out <<
"(callee: null";
3533 Out <<
", clones: (";
3535 for (
auto V : CI.Clones) {
3539 Out <<
"), stackIds: (";
3540 ListSeparator SIDFS;
3541 for (
auto Id : CI.StackIdIndices) {
3543 Out << TheIndex->getStackIdAtIndex(Id);
3550 auto PrintRange = [&](
const ConstantRange &
Range) {
3554 if (!
FS->paramAccesses().empty()) {
3555 Out <<
", params: (";
3557 for (
auto &PS :
FS->paramAccesses()) {
3559 Out <<
"(param: " << PS.ParamNo;
3560 Out <<
", offset: ";
3562 if (!PS.Calls.empty()) {
3563 Out <<
", calls: (";
3565 for (
auto &
Call : PS.Calls) {
3567 Out <<
"(callee: ^" <<
Machine.getGUIDSlot(
Call.Callee.getGUID());
3568 Out <<
", param: " <<
Call.ParamNo;
3569 Out <<
", offset: ";
3570 PrintRange(
Call.Offsets);
3581void AssemblyWriter::printTypeIdInfo(
3582 const FunctionSummary::TypeIdInfo &TIDInfo) {
3583 Out <<
", typeIdInfo: (";
3584 ListSeparator TIDFS;
3587 Out <<
"typeTests: (";
3590 auto TidIter = TheIndex->typeIds().equal_range(GUID);
3591 if (TidIter.first == TidIter.second) {
3597 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3599 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3617 "typeTestAssumeConstVCalls");
3622 "typeCheckedLoadConstVCalls");
3627void AssemblyWriter::printVFuncId(
const FunctionSummary::VFuncId VFId) {
3628 auto TidIter = TheIndex->typeIds().equal_range(VFId.
GUID);
3629 if (TidIter.first == TidIter.second) {
3630 Out <<
"vFuncId: (";
3631 Out <<
"guid: " << VFId.
GUID;
3632 Out <<
", offset: " << VFId.
Offset;
3638 for (
const auto &[GUID, TypeIdPair] :
make_range(TidIter)) {
3640 Out <<
"vFuncId: (";
3641 auto Slot =
Machine.getTypeIdSlot(TypeIdPair.first);
3644 Out <<
", offset: " << VFId.
Offset;
3649void AssemblyWriter::printNonConstVCalls(
3651 Out <<
Tag <<
": (";
3653 for (
auto &VFuncId : VCallList) {
3655 printVFuncId(VFuncId);
3660void AssemblyWriter::printConstVCalls(
3662 Out <<
Tag <<
": (";
3664 for (
auto &ConstVCall : VCallList) {
3667 printVFuncId(ConstVCall.VFunc);
3668 if (!ConstVCall.Args.empty()) {
3670 printArgs(ConstVCall.Args);
3677void AssemblyWriter::printSummary(
const GlobalValueSummary &Summary) {
3678 GlobalValueSummary::GVFlags GVFlags =
Summary.flags();
3681 Out <<
"(module: ^" <<
Machine.getModulePathSlot(
Summary.modulePath())
3684 Out <<
", visibility: "
3687 Out <<
", live: " << GVFlags.
Live;
3688 Out <<
", dsoLocal: " << GVFlags.
DSOLocal;
3690 Out <<
", importType: "
3701 auto RefList =
Summary.refs();
3702 if (!RefList.empty()) {
3705 for (
auto &
Ref : RefList) {
3707 if (
Ref.isReadOnly())
3709 else if (
Ref.isWriteOnly())
3710 Out <<
"writeonly ";
3711 Out <<
"^" <<
Machine.getGUIDSlot(
Ref.getGUID());
3719void AssemblyWriter::printSummaryInfo(
unsigned Slot,
const ValueInfo &VI) {
3720 Out <<
"^" <<
Slot <<
" = gv: (";
3721 if (
VI.hasName() && !
VI.name().empty())
3722 Out <<
"name: \"" <<
VI.name() <<
"\"";
3724 Out <<
"guid: " <<
VI.getGUID();
3725 if (!
VI.getSummaryList().empty()) {
3726 Out <<
", summaries: (";
3728 for (
auto &Summary :
VI.getSummaryList()) {
3730 printSummary(*Summary);
3735 if (
VI.hasName() && !
VI.name().empty())
3736 Out <<
" ; guid = " <<
VI.getGUID();
3743 Out <<
"<empty name> ";
3745 unsigned char FirstC =
static_cast<unsigned char>(Name[0]);
3746 if (isalpha(FirstC) || FirstC ==
'-' || FirstC ==
'$' || FirstC ==
'.' ||
3751 for (
unsigned i = 1, e = Name.size(); i != e; ++i) {
3752 unsigned char C = Name[i];
3753 if (isalnum(
C) ||
C ==
'-' ||
C ==
'$' ||
C ==
'.' ||
C ==
'_')
3761void AssemblyWriter::printNamedMDNode(
const NamedMDNode *NMD) {
3796 Out <<
"dso_local ";
3814 Out <<
"thread_local ";
3817 Out <<
"thread_local(localdynamic) ";
3820 Out <<
"thread_local(initialexec) ";
3823 Out <<
"thread_local(localexec) ";
3833 return "local_unnamed_addr";
3835 return "unnamed_addr";
3858void AssemblyWriter::printGlobal(
const GlobalVariable *GV) {
3860 Out <<
"; Materializable\n";
3881 Out << (GV->
isConstant() ?
"constant " :
"global ");
3890 Out <<
", section \"";
3895 Out <<
", partition \"";
3900 Out <<
", code_model \"";
3925 Out <<
", no_sanitize_address";
3927 Out <<
", no_sanitize_hwaddress";
3929 Out <<
", sanitize_memtag";
3931 Out <<
", sanitize_address_dyninit";
3936 Out <<
", align " <<
A->value();
3940 printMetadataAttachments(MDs,
", ");
3943 if (
Attrs.hasAttributes())
3944 Out <<
" #" <<
Machine.getAttributeGroupSlot(Attrs);
3946 printInfoComment(*GV);
3949void AssemblyWriter::printAlias(
const GlobalAlias *GA) {
3951 Out <<
"; Materializable\n";
3971 if (
const Constant *Aliasee = GA->
getAliasee()) {
3974 TypePrinter.print(GA->
getType(), Out);
3975 Out <<
" <<NULL ALIASEE>>";
3979 Out <<
", partition \"";
3984 printInfoComment(*GA);
3988void AssemblyWriter::printIFunc(
const GlobalIFunc *GI) {
3990 Out <<
"; Materializable\n";
4005 if (
const Constant *Resolver = GI->
getResolver()) {
4008 TypePrinter.print(GI->
getType(), Out);
4009 Out <<
" <<NULL RESOLVER>>";
4013 Out <<
", partition \"";
4020 printMetadataAttachments(MDs,
", ");
4023 printInfoComment(*GI);
4027void AssemblyWriter::printComdat(
const Comdat *
C) {
4031void AssemblyWriter::printTypeIdentities() {
4032 if (TypePrinter.empty())
4038 auto &NumberedTypes = TypePrinter.getNumberedTypes();
4039 for (
unsigned I = 0,
E = NumberedTypes.size();
I !=
E; ++
I) {
4040 Out <<
'%' <<
I <<
" = type ";
4044 TypePrinter.printStructBody(NumberedTypes[
I], Out);
4048 auto &NamedTypes = TypePrinter.getNamedTypes();
4049 for (StructType *NamedType : NamedTypes) {
4055 TypePrinter.printStructBody(NamedType, Out);
4061void AssemblyWriter::printFunction(
const Function *
F) {
4064 if (
F->isMaterializable())
4065 Out <<
"; Materializable\n";
4067 const AttributeList &
Attrs =
F->getAttributes();
4068 if (
Attrs.hasFnAttrs()) {
4069 AttributeSet AS =
Attrs.getFnAttrs();
4070 std::string AttrStr;
4073 if (!Attr.isStringAttribute()) {
4074 if (!AttrStr.empty()) AttrStr +=
' ';
4075 AttrStr += Attr.getAsString();
4079 if (!AttrStr.empty())
4080 Out <<
"; Function Attrs: " << AttrStr <<
'\n';
4084 Out <<
"; Unknown intrinsic\n";
4088 if (
F->isDeclaration()) {
4091 F->getAllMetadata(MDs);
4092 printMetadataAttachments(MDs,
" ");
4103 if (
F->getCallingConv() != CallingConv::C) {
4108 FunctionType *FT =
F->getFunctionType();
4109 if (
Attrs.hasRetAttrs())
4110 Out <<
Attrs.getAsString(AttributeList::ReturnIndex) <<
' ';
4111 TypePrinter.print(
F->getReturnType(), Out);
4118 if (
F->isDeclaration() && !IsForDebug) {
4121 for (
unsigned I = 0,
E = FT->getNumParams();
I !=
E; ++
I) {
4124 TypePrinter.print(FT->getParamType(
I), Out);
4126 AttributeSet ArgAttrs =
Attrs.getParamAttrs(
I);
4129 writeAttributeSet(ArgAttrs);
4135 for (
const Argument &Arg :
F->args()) {
4137 printArgument(&Arg,
Attrs.getParamAttrs(Arg.getArgNo()));
4142 if (FT->isVarArg()) {
4143 if (FT->getNumParams()) Out <<
", ";
4154 if (
F->getAddressSpace() != 0 || !
Mod ||
4155 Mod->getDataLayout().getProgramAddressSpace() != 0)
4156 Out <<
" addrspace(" <<
F->getAddressSpace() <<
")";
4157 if (
Attrs.hasFnAttrs())
4158 Out <<
" #" <<
Machine.getAttributeGroupSlot(
Attrs.getFnAttrs());
4159 if (
F->hasSection()) {
4160 Out <<
" section \"";
4164 if (
F->hasPartition()) {
4165 Out <<
" partition \"";
4170 if (MaybeAlign
A =
F->getAlign())
4171 Out <<
" align " <<
A->value();
4173 Out <<
" gc \"" <<
F->getGC() <<
'"';
4174 if (
F->hasPrefixData()) {
4176 writeOperand(
F->getPrefixData(),
true);
4178 if (
F->hasPrologueData()) {
4179 Out <<
" prologue ";
4180 writeOperand(
F->getPrologueData(),
true);
4182 if (
F->hasPersonalityFn()) {
4183 Out <<
" personality ";
4184 writeOperand(
F->getPersonalityFn(),
true);
4188 if (
auto *MDProf =
F->getMetadata(LLVMContext::MD_prof)) {
4190 MDProf->print(Out, TheModule,
true);
4194 if (
F->isDeclaration()) {
4198 F->getAllMetadata(MDs);
4199 printMetadataAttachments(MDs,
" ");
4203 for (
const BasicBlock &BB : *
F)
4204 printBasicBlock(&BB);
4217void AssemblyWriter::printArgument(
const Argument *Arg, AttributeSet Attrs) {
4219 TypePrinter.print(Arg->
getType(), Out);
4222 if (
Attrs.hasAttributes()) {
4224 writeAttributeSet(Attrs);
4233 assert(Slot != -1 &&
"expect argument in function here");
4234 Out <<
" %" <<
Slot;
4239void AssemblyWriter::printBasicBlock(
const BasicBlock *BB) {
4245 }
else if (!IsEntryBlock) {
4254 if (!IsEntryBlock) {
4259 Out <<
" No predecessors!";
4265 writeOperand(Pred,
false);
4275 for (
const Instruction &
I : *BB) {
4276 for (
const DbgRecord &DR :
I.getDbgRecordRange())
4277 printDbgRecordLine(DR);
4278 printInstructionLine(
I);
4285void AssemblyWriter::printInstructionLine(
const Instruction &
I) {
4286 printInstruction(
I);
4292void AssemblyWriter::printGCRelocateComment(
const GCRelocateInst &Relocate) {
4302void AssemblyWriter::printInfoComment(
const Value &V) {
4304 printGCRelocateComment(*Relocate);
4306 if (AnnotationWriter) {
4312 if (
I->getDebugLoc()) {
4314 I->getDebugLoc().print(Out);
4320 if (
auto *MD =
I->getMetadata(LLVMContext::MD_prof)) {
4322 MD->print(Out, TheModule,
true);
4334 if (Operand ==
nullptr) {
4335 Out <<
" <cannot get addrspace!>";
4339 bool PrintAddrSpace = CallAddrSpace != 0;
4340 if (!PrintAddrSpace) {
4345 if (!
Mod ||
Mod->getDataLayout().getProgramAddressSpace() != 0)
4346 PrintAddrSpace =
true;
4349 Out <<
" addrspace(" << CallAddrSpace <<
")";
4353void AssemblyWriter::printInstruction(
const Instruction &
I) {
4363 }
else if (!
I.getType()->isVoidTy()) {
4365 int SlotNum =
Machine.getLocalSlot(&
I);
4367 Out <<
"<badref> = ";
4369 Out <<
'%' << SlotNum <<
" = ";
4373 if (CI->isMustTailCall())
4375 else if (CI->isTailCall())
4377 else if (CI->isNoTailCall())
4382 Out <<
I.getOpcodeName();
4404 Out <<
' ' << CI->getPredicate();
4411 const Value *Operand =
I.getNumOperands() ?
I.getOperand(0) :
nullptr;
4417 writeOperand(BI.getCondition(),
true);
4419 writeOperand(BI.getSuccessor(0),
true);
4421 writeOperand(BI.getSuccessor(1),
true);
4427 writeOperand(
SI.getCondition(),
true);
4429 writeOperand(
SI.getDefaultDest(),
true);
4431 for (
auto Case :
SI.cases()) {
4433 writeOperand(Case.getCaseValue(),
true);
4435 writeOperand(Case.getCaseSuccessor(),
true);
4441 writeOperand(Operand,
true);
4445 for (
unsigned i = 1, e =
I.getNumOperands(); i != e; ++i) {
4447 writeOperand(
I.getOperand(i),
true);
4452 TypePrinter.print(
I.getType(), Out);
4456 for (
const auto &[V,
Block] :
4457 zip_equal(PN->incoming_values(), PN->blocks())) {
4459 writeOperand(V,
false);
4461 writeOperand(
Block,
false);
4466 writeOperand(
I.getOperand(0),
true);
4471 writeOperand(
I.getOperand(0),
true); Out <<
", ";
4472 writeOperand(
I.getOperand(1),
true);
4477 TypePrinter.print(
I.getType(), Out);
4478 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4481 if (LPI->isCleanup())
4484 for (
unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4485 if (i != 0 || LPI->isCleanup()) Out <<
"\n";
4486 if (LPI->isCatch(i))
4491 writeOperand(LPI->getClause(i),
true);
4495 writeOperand(CatchSwitch->getParentPad(),
false);
4498 for (
const BasicBlock *PadBB : CatchSwitch->handlers()) {
4500 writeOperand(PadBB,
true);
4503 if (
const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4504 writeOperand(UnwindDest,
true);
4509 writeOperand(FPI->getParentPad(),
false);
4512 for (
const Value *
Op : FPI->arg_operands()) {
4514 writeOperand(
Op,
true);
4521 writeOperand(CRI->getOperand(0),
false);
4524 writeOperand(CRI->getOperand(1),
true);
4527 writeOperand(CRI->getOperand(0),
false);
4530 if (CRI->hasUnwindDest())
4531 writeOperand(CRI->getOperand(1),
true);
4536 if (CI->getCallingConv() != CallingConv::C) {
4541 Operand = CI->getCalledOperand();
4542 FunctionType *FTy = CI->getFunctionType();
4543 Type *RetTy = FTy->getReturnType();
4544 const AttributeList &PAL = CI->getAttributes();
4546 if (PAL.hasRetAttrs())
4547 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4556 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4558 writeOperand(Operand,
false);
4561 for (
unsigned op = 0, Eop = CI->arg_size();
op < Eop; ++
op) {
4563 writeParamOperand(CI->getArgOperand(
op), PAL.getParamAttrs(
op));
4568 if (CI->isMustTailCall() && CI->getParent() &&
4569 CI->getParent()->getParent() &&
4570 CI->getParent()->getParent()->isVarArg()) {
4571 if (CI->arg_size() > 0)
4577 if (PAL.hasFnAttrs())
4578 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4580 writeOperandBundles(CI);
4582 Operand =
II->getCalledOperand();
4583 FunctionType *FTy =
II->getFunctionType();
4584 Type *RetTy = FTy->getReturnType();
4585 const AttributeList &PAL =
II->getAttributes();
4588 if (
II->getCallingConv() != CallingConv::C) {
4593 if (PAL.hasRetAttrs())
4594 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4604 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4606 writeOperand(Operand,
false);
4609 for (
unsigned op = 0, Eop =
II->arg_size();
op < Eop; ++
op) {
4611 writeParamOperand(
II->getArgOperand(
op), PAL.getParamAttrs(
op));
4615 if (PAL.hasFnAttrs())
4616 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4618 writeOperandBundles(
II);
4621 writeOperand(
II->getNormalDest(),
true);
4623 writeOperand(
II->getUnwindDest(),
true);
4625 Operand = CBI->getCalledOperand();
4626 FunctionType *FTy = CBI->getFunctionType();
4627 Type *RetTy = FTy->getReturnType();
4628 const AttributeList &PAL = CBI->getAttributes();
4631 if (CBI->getCallingConv() != CallingConv::C) {
4636 if (PAL.hasRetAttrs())
4637 Out <<
' ' << PAL.getAsString(AttributeList::ReturnIndex);
4644 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4646 writeOperand(Operand,
false);
4648 ListSeparator ArgLS;
4649 for (
unsigned op = 0, Eop = CBI->arg_size();
op < Eop; ++
op) {
4651 writeParamOperand(CBI->getArgOperand(
op), PAL.getParamAttrs(
op));
4655 if (PAL.hasFnAttrs())
4656 Out <<
" #" <<
Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4658 writeOperandBundles(CBI);
4661 writeOperand(CBI->getDefaultDest(),
true);
4663 ListSeparator DestLS;
4664 for (
const BasicBlock *Dest : CBI->getIndirectDests()) {
4666 writeOperand(Dest,
true);
4671 if (AI->isUsedWithInAlloca())
4673 if (AI->isSwiftError())
4674 Out <<
"swifterror ";
4675 TypePrinter.print(AI->getAllocatedType(), Out);
4681 if (!AI->getArraySize() || AI->isArrayAllocation() ||
4682 !AI->getArraySize()->getType()->isIntegerTy(32)) {
4684 writeOperand(AI->getArraySize(),
true);
4686 if (MaybeAlign
A = AI->getAlign()) {
4687 Out <<
", align " <<
A->value();
4690 unsigned AddrSpace = AI->getAddressSpace();
4692 Out <<
", addrspace(" << AddrSpace <<
')';
4696 writeOperand(Operand,
true);
4699 TypePrinter.print(
I.getType(), Out);
4703 writeOperand(Operand,
true);
4706 TypePrinter.print(
I.getType(), Out);
4707 }
else if (Operand) {
4710 TypePrinter.print(
GEP->getSourceElementType(), Out);
4714 TypePrinter.print(LI->getType(), Out);
4721 bool PrintAllTypes =
false;
4729 PrintAllTypes =
true;
4731 for (
unsigned i = 1,
E =
I.getNumOperands(); i !=
E; ++i) {
4732 Operand =
I.getOperand(i);
4735 if (Operand && Operand->
getType() != TheType) {
4736 PrintAllTypes =
true;
4742 if (!PrintAllTypes) {
4744 TypePrinter.print(TheType, Out);
4749 for (
const Value *
Op :
I.operands()) {
4751 writeOperand(
Op, PrintAllTypes);
4758 writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4759 if (MaybeAlign
A = LI->getAlign())
4760 Out <<
", align " <<
A->value();
4763 writeAtomic(
SI->getContext(),
SI->getOrdering(),
SI->getSyncScopeID());
4764 if (MaybeAlign
A =
SI->getAlign())
4765 Out <<
", align " <<
A->value();
4767 writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4768 CXI->getFailureOrdering(), CXI->getSyncScopeID());
4769 Out <<
", align " << CXI->getAlign().value();
4771 writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4772 RMWI->getSyncScopeID());
4773 Out <<
", align " << RMWI->getAlign().value();
4775 writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4783 printMetadataAttachments(InstMD,
", ");
4786 printInfoComment(
I);
4789void AssemblyWriter::printDbgMarker(
const DbgMarker &Marker) {
4793 printDbgRecord(DPR);
4797 Out <<
" DbgMarker -> { ";
4802void AssemblyWriter::printDbgRecord(
const DbgRecord &DR) {
4804 printDbgVariableRecord(*DVR);
4806 printDbgLabelRecord(*DLR);
4811void AssemblyWriter::printDbgVariableRecord(
const DbgVariableRecord &DVR) {
4815 case DbgVariableRecord::LocationType::Value:
4818 case DbgVariableRecord::LocationType::Declare:
4821 case DbgVariableRecord::LocationType::Assign:
4826 "Tried to print a DbgVariableRecord with an invalid LocationType!");
4857void AssemblyWriter::printDbgRecordLine(
const DbgRecord &DR) {
4864void AssemblyWriter::printDbgLabelRecord(
const DbgLabelRecord &Label) {
4866 Out <<
"#dbg_label(";
4873void AssemblyWriter::printMetadataAttachments(
4874 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4875 StringRef Separator) {
4879 if (MDNames.empty())
4880 MDs[0].second->getContext().getMDKindNames(MDNames);
4883 for (
const auto &
I : MDs) {
4884 unsigned Kind =
I.first;
4886 if (Kind < MDNames.size()) {
4890 Out <<
"!<unknown kind #" <<
Kind <<
">";
4896void AssemblyWriter::writeMDNode(
unsigned Slot,
const MDNode *Node) {
4897 Out <<
'!' <<
Slot <<
" = ";
4898 printMDNodeBody(Node);
4902void AssemblyWriter::writeAllMDNodes() {
4908 for (
unsigned i = 0, e = Nodes.
size(); i != e; ++i) {
4909 writeMDNode(i, Nodes[i]);
4913void AssemblyWriter::printMDNodeBody(
const MDNode *Node) {
4918void AssemblyWriter::writeAttribute(
const Attribute &Attr,
bool InAttrGroup) {
4924 Out << Attribute::getNameFromAttrKind(Attr.
getKindAsEnum());
4927 TypePrinter.print(Ty, Out);
4932void AssemblyWriter::writeAttributeSet(
const AttributeSet &AttrSet,
4934 ListSeparator
LS(
" ");
4935 for (
const auto &Attr : AttrSet) {
4937 writeAttribute(Attr, InAttrGroup);
4941void AssemblyWriter::writeAllAttributeGroups() {
4942 std::vector<std::pair<AttributeSet, unsigned>> asVec;
4943 asVec.resize(
Machine.as_size());
4946 asVec[
I.second] =
I;
4948 for (
const auto &
I : asVec)
4949 Out <<
"attributes #" <<
I.second <<
" = { "
4950 <<
I.first.getAsString(
true) <<
" }\n";
4953void AssemblyWriter::printUseListOrder(
const Value *V,
4954 ArrayRef<unsigned> Shuffle) {
4959 Out <<
"uselistorder";
4962 writeOperand(BB->getParent(),
false);
4964 writeOperand(BB,
false);
4967 writeOperand(V,
true);
4970 assert(Shuffle.
size() >= 2 &&
"Shuffle too small");
4974void AssemblyWriter::printUseLists(
const Function *
F) {
4975 auto It = UseListOrders.find(
F);
4976 if (It == UseListOrders.end())
4979 Out <<
"\n; uselistorder directives\n";
4980 for (
const auto &Pair : It->second)
4981 printUseListOrder(Pair.first, Pair.second);
4989 bool ShouldPreserveUseListOrder,
4990 bool IsForDebug)
const {
4993 AssemblyWriter W(OS, SlotTable, this->
getParent(), AAW,
4995 ShouldPreserveUseListOrder);
4996 W.printFunction(
this);
5000 bool ShouldPreserveUseListOrder,
5001 bool IsForDebug)
const {
5004 AssemblyWriter W(OS, SlotTable, this->
getModule(), AAW,
5006 ShouldPreserveUseListOrder);
5007 W.printBasicBlock(
this);
5011 bool ShouldPreserveUseListOrder,
bool IsForDebug)
const {
5014 AssemblyWriter W(OS, SlotTable,
this, AAW, IsForDebug,
5015 ShouldPreserveUseListOrder);
5016 W.printModule(
this);
5022 AssemblyWriter W(OS, SlotTable,
getParent(),
nullptr, IsForDebug);
5023 W.printNamedMDNode(
this);
5027 bool IsForDebug)
const {
5028 std::optional<SlotTracker> LocalST;
5034 SlotTable = &*LocalST;
5038 AssemblyWriter W(OS, *SlotTable,
getParent(),
nullptr, IsForDebug);
5039 W.printNamedMDNode(
this);
5044 ROS <<
" = comdat ";
5051 ROS <<
"exactmatch";
5057 ROS <<
"nodeduplicate";
5069 TP.print(
const_cast<Type*
>(
this), OS);
5078 TP.printStructBody(STy, OS);
5084 if (
Function *
F = CI->getCalledFunction())
5085 if (
F->isIntrinsic())
5086 for (
auto &
Op :
I.operands())
5096 print(ROS, MST, IsForDebug);
5102 print(ROS, MST, IsForDebug);
5106 bool IsForDebug)
const {
5114 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5115 W.printDbgMarker(*
this);
5121 print(ROS, MST, IsForDebug);
5125 bool IsForDebug)
const {
5131 ?
Marker->getParent()->getParent()
5135 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5136 W.printDbgVariableRecord(*
this);
5140 bool IsForDebug)
const {
5146 Marker->getParent() ?
Marker->getParent()->getParent() :
nullptr;
5150 AssemblyWriter W(OS, SlotTable,
getModuleFromDPI(
this),
nullptr, IsForDebug);
5151 W.printDbgLabelRecord(*
this);
5155 bool ShouldInitializeAllMetadata =
false;
5159 ShouldInitializeAllMetadata =
true;
5162 print(ROS, MST, IsForDebug);
5166 bool IsForDebug)
const {
5171 auto IncorporateFunction = [&](
const Function *
F) {
5177 IncorporateFunction(
I->getParent() ?
I->getParent()->getParent() :
nullptr);
5179 W.printInstruction(*
I);
5181 IncorporateFunction(BB->getParent());
5182 AssemblyWriter W(OS, SlotTable,
getModuleFromVal(BB),
nullptr, IsForDebug);
5183 W.printBasicBlock(BB);
5185 AssemblyWriter W(OS, SlotTable, GV->
getParent(),
nullptr, IsForDebug);
5199 TypePrinting TypePrinter;
5200 TypePrinter.print(
C->getType(), OS);
5202 AsmWriterContext WriterCtx(&TypePrinter, MST.
getMachine());
5218 AsmWriterContext WriterCtx(
nullptr,
Machine, M);
5227 TypePrinting TypePrinter(MST.
getModule());
5258 AsmWriterContext &WriterCtx) {
5271struct MDTreeAsmWriterContext :
public AsmWriterContext {
5274 using EntryTy = std::pair<unsigned, std::string>;
5278 SmallPtrSet<const Metadata *, 4> Visited;
5280 raw_ostream &MainOS;
5282 MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST,
const Module *M,
5283 raw_ostream &OS,
const Metadata *InitMD)
5284 : AsmWriterContext(TP,
ST,
M),
Level(0
U), Visited({InitMD}), MainOS(OS) {}
5286 void onWriteMetadataAsOperand(
const Metadata *MD)
override {
5287 if (!Visited.
insert(MD).second)
5291 raw_string_ostream
SS(Str);
5296 unsigned InsertIdx = Buffer.
size() - 1;
5299 Buffer[InsertIdx].second = std::move(
SS.str());
5303 ~MDTreeAsmWriterContext() {
5304 for (
const auto &Entry : Buffer) {
5306 unsigned NumIndent =
Entry.first * 2U;
5315 bool OnlyAsOperand,
bool PrintAsTree =
false) {
5318 TypePrinting TypePrinter(M);
5320 std::unique_ptr<AsmWriterContext> WriterCtx;
5321 if (PrintAsTree && !OnlyAsOperand)
5322 WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5326 std::make_unique<AsmWriterContext>(&TypePrinter, MST.
getMachine(), M);
5355 const Module *M,
bool )
const {
5374 AssemblyWriter W(OS, SlotTable,
this, IsForDebug);
5375 W.printModuleSummaryIndex();
5379 unsigned UB)
const {
5385 if (
I.second >= LB &&
I.second < UB)
5386 L.push_back(std::make_pair(
I.second,
I.first));
5389#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static void writeDIMacro(raw_ostream &Out, const DIMacro *N, AsmWriterContext &WriterCtx)
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD, AsmWriterContext &WriterCtx)
static void writeDIGlobalVariableExpression(raw_ostream &Out, const DIGlobalVariableExpression *N, AsmWriterContext &WriterCtx)
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N, AsmWriterContext &WriterCtx)
static void writeDIFixedPointType(raw_ostream &Out, const DIFixedPointType *N, AsmWriterContext &WriterCtx)
static void printDSOLocation(const GlobalValue &GV, formatted_raw_ostream &Out)
static const char * getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K)
static void writeDISubrangeType(raw_ostream &Out, const DISubrangeType *N, AsmWriterContext &WriterCtx)
static void writeAPFloatInternal(raw_ostream &Out, const APFloat &APF)
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD, ModuleSlotTracker &MST, const Module *M, bool OnlyAsOperand, bool PrintAsTree=false)
static void writeDIStringType(raw_ostream &Out, const DIStringType *N, AsmWriterContext &WriterCtx)
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT)
static std::vector< unsigned > predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM)
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N, AsmWriterContext &WriterCtx)
static void orderValue(const Value *V, OrderMap &OM)
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N, AsmWriterContext &WriterCtx)
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA)
static const char * getWholeProgDevirtResByArgKindName(WholeProgramDevirtResolution::ByArg::Kind K)
static void writeMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, AsmWriterContext &Ctx)
static void writeDIModule(raw_ostream &Out, const DIModule *N, AsmWriterContext &WriterCtx)
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &)
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N, AsmWriterContext &WriterCtx)
static void writeOptimizationInfo(raw_ostream &Out, const User *U)
static bool isReferencingMDNode(const Instruction &I)
#define CC_VLS_CASE(ABI_VLEN)
static void writeDILabel(raw_ostream &Out, const DILabel *N, AsmWriterContext &WriterCtx)
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N, AsmWriterContext &WriterCtx)
static void printMetadataIdentifier(StringRef Name, formatted_raw_ostream &Out)
static void printShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef< int > Mask)
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromDPI(const DbgMarker *Marker)
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType, ModuleSlotTracker &MST)
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N, AsmWriterContext &WriterCtx)
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N, AsmWriterContext &WriterCtx)
static const char * getSummaryKindName(GlobalValueSummary::SummaryKind SK)
static OrderMap orderModule(const Module *M)
static const char * getVisibilityName(GlobalValue::VisibilityTypes Vis)
static void printCallingConv(unsigned cc, raw_ostream &Out)
static cl::opt< bool > PrintInstDebugLocs("print-inst-debug-locs", cl::Hidden, cl::desc("Pretty print debug locations of instructions when dumping"))
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD, AsmWriterContext &WriterCtx)
Recursive version of printMetadataImpl.
static SlotTracker * createSlotTracker(const Value *V)
static void writeDILocation(raw_ostream &Out, const DILocation *DL, AsmWriterContext &WriterCtx)
static void writeDINamespace(raw_ostream &Out, const DINamespace *N, AsmWriterContext &WriterCtx)
DenseMap< const Function *, MapVector< const Value *, std::vector< unsigned > > > UseListOrderMap
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N, AsmWriterContext &WriterCtx)
static UseListOrderMap predictUseListOrder(const Module *M)
static void printThreadLocalModel(GlobalVariable::ThreadLocalMode TLM, formatted_raw_ostream &Out)
static std::string getLinkageName(GlobalValue::LinkageTypes LT)
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N, AsmWriterContext &WriterCtx)
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N, AsmWriterContext &WriterCtx)
static const char * getTTResKindName(TypeTestResolution::Kind K)
static void writeDITemplateTypeParameter(raw_ostream &Out, const DITemplateTypeParameter *N, AsmWriterContext &WriterCtx)
static const char * getImportTypeName(GlobalValueSummary::ImportKind IK)
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N, AsmWriterContext &WriterCtx)
static const Module * getModuleFromVal(const Value *V)
static void printLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix)
Turn the specified name into an 'LLVM name', which is either prefixed with % (if the string only cont...
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I, raw_ostream &Out)
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N, AsmWriterContext &WriterCtx)
static void writeDISubrange(raw_ostream &Out, const DISubrange *N, AsmWriterContext &WriterCtx)
static void writeDILexicalBlockFile(raw_ostream &Out, const DILexicalBlockFile *N, AsmWriterContext &WriterCtx)
static void writeConstantInternal(raw_ostream &Out, const Constant *CV, AsmWriterContext &WriterCtx)
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N, AsmWriterContext &)
static void writeAsOperandInternal(raw_ostream &Out, const Value *V, AsmWriterContext &WriterCtx, bool PrintType=false)
static void printVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out)
static cl::opt< bool > PrintProfData("print-prof-data", cl::Hidden, cl::desc("Pretty print perf data (branch weights, etc) when dumping"))
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node, AsmWriterContext &WriterCtx)
static void writeDIExpression(raw_ostream &Out, const DIExpression *N, AsmWriterContext &WriterCtx)
static cl::opt< bool > PrintInstAddrs("print-inst-addrs", cl::Hidden, cl::desc("Print addresses of instructions when dumping"))
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL, AsmWriterContext &WriterCtx)
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N, AsmWriterContext &WriterCtx)
static void maybePrintComdat(formatted_raw_ostream &Out, const GlobalObject &GO)
static void printDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT, formatted_raw_ostream &Out)
static bool printWithoutType(const Value &V, raw_ostream &O, SlotTracker *Machine, const Module *M)
Print without a type, skipping the TypePrinting object.
static void writeDIArgList(raw_ostream &Out, const DIArgList *N, AsmWriterContext &WriterCtx, bool FromValue=false)
static void writeDITemplateValueParameter(raw_ostream &Out, const DITemplateValueParameter *N, AsmWriterContext &WriterCtx)
static const Value * skipMetadataWrapper(const Value *V)
Look for a value that might be wrapped as metadata, e.g.
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N, AsmWriterContext &WriterCtx)
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil pretty DXIL Metadata Pretty Printer
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
GlobalValue::SanitizerMetadata SanitizerMetadata
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file contains an interface for creating legacy passes to print out IR in various granularities.
Module.h This file contains the declarations for the Module class.
This defines the Use class.
Machine Check Debug Module
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
ModuleSummaryIndex.h This file contains the declarations the classes that hold the module index and s...
static bool processFunction(Function &F, NVPTXTargetMachine &TM)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
Function const char TargetMachine * Machine
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
static StringRef getName(Value *V)
This file provides utility classes that use RAII to save and restore values.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
static UseListOrderStack predictUseListOrder(const Module &M)
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
const fltSemantics & getSemantics() const
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Abstract interface of slot tracker storage.
virtual ~AbstractSlotTrackerStorage()
const GlobalValueSummary & getAliasee() const
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
virtual void emitBasicBlockStartAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
virtual void emitBasicBlockEndAnnot(const BasicBlock *, formatted_raw_ostream &)
emitBasicBlockEndAnnot - This may be implemented to emit a string right after the basic block.
virtual void emitFunctionAnnot(const Function *, formatted_raw_ostream &)
emitFunctionAnnot - This may be implemented to emit a string right before the start of a function.
virtual void emitInstructionAnnot(const Instruction *, formatted_raw_ostream &)
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
virtual void printInfoComment(const Value &, formatted_raw_ostream &)
printInfoComment - This may be implemented to emit a comment to the right of an instruction or global...
virtual ~AssemblyAnnotationWriter()
static LLVM_ABI StringRef getOperationName(BinOp Op)
This class holds the attributes for a particular argument, parameter, function, or return value.
bool hasAttributes() const
Return true if attributes exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
The Attribute is converted to a string of equivalent mnemonic.
LLVM_ABI Attribute::AttrKind getKindAsEnum() const
Return the attribute's kind as an enum (Attribute::AttrKind).
LLVM_ABI bool isTypeAttribute() const
Return true if the attribute is a type attribute.
LLVM_ABI Type * getValueAsType() const
Return the attribute's value as a Type.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
AttributeList getAttributes() const
Return the attributes for this call.
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
LLVM_ABI void dump() const
@ Largest
The linker will choose the largest COMDAT.
@ SameSize
The data referenced by the COMDAT must be the same size.
@ Any
The linker may choose any COMDAT.
@ NoDeduplicate
No deduplication is performed.
@ ExactMatch
The data referenced by the COMDAT must be the same.
SelectionKind getSelectionKind() const
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
static LLVM_ABI const char * nameTableKindString(DebugNameTableKind PK)
static LLVM_ABI const char * emissionKindString(DebugEmissionKind EK)
A lightweight wrapper around an expression operand.
static LLVM_ABI const char * fixedPointKindString(FixedPointKind)
A pair of DIGlobalVariable and DIExpression.
An imported module (C++ using directive or similar).
Macro Info DWARF-like metadata node.
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Tagged DWARF-like metadata node.
static LLVM_ABI DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static LLVM_ABI StringRef getFlagString(DIFlags Flag)
String type, Fortran CHARACTER(n)
Subprogram description. Uses SubclassData1.
static LLVM_ABI DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static LLVM_ABI StringRef getFlagString(DISPFlags Flag)
DISPFlags
Debug info subprogram flags.
Type array for a subprogram.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Per-instruction record of debug-info.
LLVM_ABI void dump() const
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on DbgMarker.
LLVM_ABI const BasicBlock * getParent() const
simple_ilist< DbgRecord > StoredDbgRecords
List of DbgRecords, the non-instruction equivalent of llvm.dbg.
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
LLVM_ABI void dump() const
DbgMarker * Marker
Marker that this DbgRecord is linked into.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
Metadata * getRawAssignID() const
MDNode * getRawVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the function to an output stream with an optional AssemblyAnnotationWriter.
const Function & getFunction() const
const Argument * const_arg_iterator
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Generic tagged DWARF-like metadata node.
const Constant * getAliasee() const
const Constant * getResolver() const
StringRef getSection() const
Get the custom section of this global if it has one.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
const Comdat * getComdat() const
bool hasSection() const
Check if this global has a custom object file section.
SummaryKind
Sububclass discriminator (for dyn_cast<> et al.)
bool hasPartition() const
static LLVM_ABI GUID getGUIDAssumingExternalLinkage(StringRef GlobalName)
Return a 64-bit global unique ID constructed from the name of a global symbol.
LLVM_ABI const SanitizerMetadata & getSanitizerMetadata() const
bool hasExternalLinkage() const
VisibilityTypes getVisibility() const
bool isImplicitDSOLocal() const
LinkageTypes getLinkage() const
uint64_t GUID
Declare a type to represent a global unique identifier for a global value.
ThreadLocalMode getThreadLocalMode() const
DLLStorageClassTypes
Storage classes of global values for PE targets.
@ DLLExportStorageClass
Function to be accessible from DLL.
@ DLLImportStorageClass
Function to be imported from DLL.
bool hasSanitizerMetadata() const
LLVM_ABI StringRef getPartition() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
@ DefaultVisibility
The GV is visible.
@ HiddenVisibility
The GV is hidden.
@ ProtectedVisibility
The GV is protected.
LLVM_ABI bool isMaterializable() const
If this function's Module is being lazily streamed in functions from disk or some other source,...
UnnamedAddr getUnnamedAddr() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ CommonLinkage
Tentative definitions.
@ InternalLinkage
Rename collisions when linking (static functions).
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
@ WeakODRLinkage
Same, but only replaced by something equivalent.
@ ExternalLinkage
Externally visible function.
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
@ AppendingLinkage
Special purpose, only applies to global arrays.
@ AvailableExternallyLinkage
Available for inspection, not emission.
@ ExternalWeakLinkage
ExternalWeak linkage description.
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
DLLStorageClassTypes getDLLStorageClass() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isExternallyInitialized() const
bool hasInitializer() const
Definitions have initializers, declarations don't.
AttributeSet getAttributes() const
Return the attribute set for this global.
std::optional< CodeModel::Model > getCodeModel() const
Get the custom code model of this global if it has one.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
A helper class to return the specified delimiter string after the first invocation of operator String...
LLVM_ABI void printTree(raw_ostream &OS, const Module *M=nullptr) const
Print in tree shape.
LLVM_ABI void dumpTree() const
User-friendly dump in tree shape.
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
const Module * getModule() const
ModuleSlotTracker(SlotTracker &Machine, const Module *M, const Function *F=nullptr)
Wrap a preinitialized SlotTracker.
virtual ~ModuleSlotTracker()
Destructor to clean up storage.
std::vector< std::pair< unsigned, const MDNode * > > MachineMDNodeListType
int getLocalSlot(const Value *V)
Return the slot number of the specified local value.
void collectMDNodes(MachineMDNodeListType &L, unsigned LB, unsigned UB) const
SlotTracker * getMachine()
Lazily creates a slot tracker.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
void incorporateFunction(const Function &F)
Incorporate the given function.
Class to hold module path string table and global value map, and encapsulate methods for operating on...
static constexpr const char * getRegularLTOModuleName()
LLVM_ABI void dump() const
Dump to stderr (for debugging).
LLVM_ABI void print(raw_ostream &OS, bool IsForDebug=false) const
Print to an output stream.
A Module instance is used to store all the information related to an LLVM module.
iterator_range< alias_iterator > aliases()
iterator_range< global_iterator > globals()
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the module to an output stream with an optional AssemblyAnnotationWriter.
void dump() const
Dump the module to stderr (for debugging).
LLVM_ABI void dump() const
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
iterator_range< op_iterator > operands()
unsigned getAddressSpace() const
Return the address space of the Pointer type.
This class provides computation of slot numbers for LLVM Assembly writing.
DenseMap< const Value *, unsigned > ValueMap
ValueMap - A mapping of Values to slot numbers.
int getMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
int getTypeIdCompatibleVtableSlot(StringRef Id)
int getModulePathSlot(StringRef Path)
unsigned mdn_size() const
SlotTracker(const SlotTracker &)=delete
void purgeFunction()
After calling incorporateFunction, use this method to remove the most recently incorporated function ...
int getTypeIdSlot(StringRef Id)
void initializeIfNeeded()
These functions do the actual initialization.
int getGlobalSlot(const GlobalValue *V)
getGlobalSlot - Get the slot number of a global value.
const Function * getFunction() const
unsigned getNextMetadataSlot() override
DenseMap< GlobalValue::GUID, unsigned >::iterator guid_iterator
GUID map iterators.
void incorporateFunction(const Function *F)
If you'd like to deal with a function instead of just a module, use this method to get its data into ...
int getLocalSlot(const Value *V)
Return the slot number of the specified value in it's type plane.
int getAttributeGroupSlot(AttributeSet AS)
SlotTracker(const Module *M, bool ShouldInitializeAllMetadata=false)
Construct from a module.
void createMetadataSlot(const MDNode *N) override
getMetadataSlot - Get the slot number of a MDNode.
void setProcessHook(std::function< void(AbstractSlotTrackerStorage *, const Module *, bool)>)
DenseMap< const MDNode *, unsigned >::iterator mdn_iterator
MDNode map iterators.
SlotTracker & operator=(const SlotTracker &)=delete
int getGUIDSlot(GlobalValue::GUID GUID)
int initializeIndexIfNeeded()
DenseMap< AttributeSet, unsigned >::iterator as_iterator
AttributeSet map iterators.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
ArrayRef< Type * > elements() const
unsigned getNumElements() const
Random access to the elements.
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
bool isOpaque() const
Return true if this is a type with an identity that has no body specified yet.
LLVM_ABI StringRef getName() const
Return the name for this struct type if it has an identity.
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
ArrayRef< unsigned > int_params() const
Return the integer parameters for this particular target extension type.
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
void run(const Module &M, bool onlyNamed)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI StringRef getTargetExtName() const
Type(LLVMContext &C, TypeID tid)
LLVM_ABI void dump() const
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
TypeID getTypeID() const
Return the type id for the type.
Type * getElementType() const
unsigned getAddressSpace() const
Return the address space of the Pointer type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
iterator_range< user_iterator > users()
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
LLVM_ABI StringRef EnumKindString(unsigned EnumKind)
LLVM_ABI StringRef LanguageString(unsigned Language)
LLVM_ABI StringRef AttributeEncodingString(unsigned Encoding)
LLVM_ABI StringRef ConventionString(unsigned Convention)
LLVM_ABI StringRef MacinfoString(unsigned Encoding)
LLVM_ABI StringRef OperationEncodingString(unsigned Encoding)
LLVM_ABI StringRef TagString(unsigned Tag)
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AArch64_VectorCall
Used between AArch64 Advanced SIMD functions.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
@ RISCV_VectorCall
Calling convention used for RISC-V V-extension.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AVR_SIGNAL
Used for AVR signal routines.
@ Swift
Calling convention for Swift.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CHERIoT_CompartmentCall
Calling convention used for CHERIoT when crossing a protection boundary.
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ AVR_INTR
Used for AVR interrupt routines.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ DUMMY_HHVM
Placeholders for HHVM calling conventions (deprecated, removed).
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ CHERIoT_CompartmentCallee
Calling convention used for the callee of CHERIoT_CompartmentCall.
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2
Preserve X2-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ CHERIoT_LibraryCall
Calling convention used for CHERIoT for cross-library calls to a stateless compartment.
@ CXX_FAST_TLS
Used for access functions.
@ X86_INTR
x86 hardware interrupt context.
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0
Preserve X0-X13, X19-X29, SP, Z0-Z31, P0-P15.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1
Preserve X1-X15, X19-X29, SP, Z0-Z31, P0-P15.
@ X86_ThisCall
Similar to X86_StdCall.
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ X86_StdCall
stdcall is mostly used by the Win32 API.
@ SPIR_FUNC
Used for SPIR non-kernel device functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ MSP430_INTR
Used for MSP430 interrupt routines.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ PreserveNone
Used for runtime calls that preserves none general registers.
@ AMDGPU_ES
Used for AMDPAL shader stage before geometry shader if geometry is in use.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ GRAAL
Used by GraalVM. Two additional registers are reserved.
@ AMDGPU_LS
Used for AMDPAL vertex shader if tessellation is in use.
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
@ M68k_RTD
Used for M68k rtd-based CC (similar to X86's stdcall).
@ C
The default llvm calling convention, compatible with C.
@ X86_FastCall
'fast' analog of X86_StdCall.
@ System
Synchronized with respect to all concurrently executing threads.
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
InterleavedRange< Range > interleaved(const Range &R, StringRef Separator=", ", StringRef Prefix="", StringRef Suffix="")
Output range R as a sequence of interleaved elements.
const char * getHotnessName(CalleeInfo::HotnessType HT)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI void printEscapedString(StringRef Name, raw_ostream &Out)
Print each character of the specified string, escaping it if it is not printable or if it is an escap...
const char * toIRString(AtomicOrdering ao)
String used by LLVM IR to represent atomic ordering.
auto dyn_cast_or_null(const Y &Val)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
char hexdigit(unsigned X, bool LowerCase=false)
hexdigit - Return the hexadecimal character for the given number X (which should be less than 16).
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
FunctionAddr VTableAddr Count
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
FormattedNumber format_hex_no_prefix(uint64_t N, unsigned Width, bool Upper=false)
format_hex_no_prefix - Output N as a fixed width hexadecimal.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Ref
The access may reference the value stored in memory.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto predecessors(const MachineBasicBlock *BB)
bool pred_empty(const BasicBlock *BB)
std::vector< TypeIdOffsetVtableInfo > TypeIdCompatibleVtableInfo
List of vtable definitions decorated by a particular type identifier, and their corresponding offsets...
@ Default
The result values are uniform if and only if all operands are uniform.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name)
Print out a name of an LLVM value without any prefixes.
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmNearestTiesToEven
static LLVM_ABI const fltSemantics & PPCDoubleDouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & x87DoubleExtended() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
A single checksum, represented by a Kind and a Value (a string).
T Value
The string value of the checksum.
StringRef getKindAsString() const
std::vector< ConstVCall > TypeCheckedLoadConstVCalls
std::vector< VFuncId > TypeCheckedLoadVCalls
std::vector< ConstVCall > TypeTestAssumeConstVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
std::vector< GlobalValue::GUID > TypeTests
List of type identifiers used by this function in llvm.type.test intrinsics referenced by something o...
std::vector< VFuncId > TypeTestAssumeVCalls
List of virtual calls made by this function using (respectively) llvm.assume(llvm....
unsigned DSOLocal
Indicates that the linker resolved the symbol to a definition from within the same linkage unit.
unsigned CanAutoHide
In the per-module summary, indicates that the global value is linkonce_odr and global unnamed addr (s...
unsigned ImportType
This field is written by the ThinLTO indexing step to postlink combined summary.
unsigned NotEligibleToImport
Indicate if the global value cannot be imported (e.g.
unsigned Linkage
The linkage type of the associated global value.
unsigned Visibility
Indicates the visibility.
unsigned Live
In per-module summary, indicate that the global value must be considered a live root for index-based ...
StringRef getTagName() const
Return the tag of this operand bundle as a string.
A utility class that uses RAII to save and restore the value of a variable.
std::map< uint64_t, WholeProgramDevirtResolution > WPDRes
Mapping from byte offset to whole-program devirt resolution for that (typeid, byte offset) pair.
Kind
Specifies which kind of type check we should emit for this byte array.
@ Unknown
Unknown (analysis not performed, don't lower)
@ Single
Single element (last example in "Short Inline Bit Vectors")
@ Inline
Inlined bit vector ("Short Inline Bit Vectors")
@ Unsat
Unsatisfiable type (i.e. no global has this type metadata)
@ AllOnes
All-ones bit vector ("Eliminating Bit Vector Checks for All-Ones Bit Vectors")
@ ByteArray
Test a byte array (first example)
unsigned SizeM1BitWidth
Range of size-1 expressed as a bit width.
enum llvm::TypeTestResolution::Kind TheKind
@ UniformRetVal
Uniform return value optimization.
@ VirtualConstProp
Virtual constant propagation.
@ UniqueRetVal
Unique return value optimization.
@ Indir
Just do a regular virtual call.
enum llvm::WholeProgramDevirtResolution::Kind TheKind
std::map< std::vector< uint64_t >, ByArg > ResByArg
Resolutions for calls with all constant integer arguments (excluding the first argument,...
std::string SingleImplName
@ SingleImpl
Single implementation devirtualization.
@ Indir
Just do a regular virtual call.
@ BranchFunnel
When retpoline mitigation is enabled, use a branch funnel that is defined in the merged module.
Function object to check whether the second component of a container supported by std::get (like std:...