Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
IR2Vec.cpp
Go to the documentation of this file.
1//===- IR2Vec.cpp - Implementation of IR2Vec -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM
4// Exceptions. See the LICENSE file for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the IR2Vec algorithm.
11///
12//===----------------------------------------------------------------------===//
13
15
17#include "llvm/ADT/Sequence.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/PassManager.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/Errc.h"
25#include "llvm/Support/Error.h"
27#include "llvm/Support/Format.h"
29
30using namespace llvm;
31using namespace ir2vec;
32
33#define DEBUG_TYPE "ir2vec"
34
35STATISTIC(VocabMissCounter,
36 "Number of lookups to entities not present in the vocabulary");
37
38namespace llvm {
39namespace ir2vec {
41
42// FIXME: Use a default vocab when not specified
44 VocabFile("ir2vec-vocab-path", cl::Optional,
45 cl::desc("Path to the vocabulary file for IR2Vec"), cl::init(""),
47cl::opt<float> OpcWeight("ir2vec-opc-weight", cl::Optional, cl::init(1.0),
48 cl::desc("Weight for opcode embeddings"),
50cl::opt<float> TypeWeight("ir2vec-type-weight", cl::Optional, cl::init(0.5),
51 cl::desc("Weight for type embeddings"),
53cl::opt<float> ArgWeight("ir2vec-arg-weight", cl::Optional, cl::init(0.2),
54 cl::desc("Weight for argument embeddings"),
57 "ir2vec-kind", cl::Optional,
59 "Generate symbolic embeddings"),
61 "Generate flow-aware embeddings")),
62 cl::init(IR2VecKind::Symbolic), cl::desc("IR2Vec embedding kind"),
64
65} // namespace ir2vec
66} // namespace llvm
67
69
70// ==----------------------------------------------------------------------===//
71// Local helper functions
72//===----------------------------------------------------------------------===//
73namespace llvm::json {
74inline bool fromJSON(const llvm::json::Value &E, Embedding &Out,
76 std::vector<double> TempOut;
77 if (!llvm::json::fromJSON(E, TempOut, P))
78 return false;
79 Out = Embedding(std::move(TempOut));
80 return true;
81}
82} // namespace llvm::json
83
84// ==----------------------------------------------------------------------===//
85// Embedding
86//===----------------------------------------------------------------------===//
88 assert(this->size() == RHS.size() && "Vectors must have the same dimension");
89 std::transform(this->begin(), this->end(), RHS.begin(), this->begin(),
90 std::plus<double>());
91 return *this;
92}
93
95 Embedding Result(*this);
96 Result += RHS;
97 return Result;
98}
99
101 assert(this->size() == RHS.size() && "Vectors must have the same dimension");
102 std::transform(this->begin(), this->end(), RHS.begin(), this->begin(),
103 std::minus<double>());
104 return *this;
105}
106
108 Embedding Result(*this);
109 Result -= RHS;
110 return Result;
111}
112
114 std::transform(this->begin(), this->end(), this->begin(),
115 [Factor](double Elem) { return Elem * Factor; });
116 return *this;
117}
118
119Embedding Embedding::operator*(double Factor) const {
120 Embedding Result(*this);
121 Result *= Factor;
122 return Result;
123}
124
125Embedding &Embedding::scaleAndAdd(const Embedding &Src, float Factor) {
126 assert(this->size() == Src.size() && "Vectors must have the same dimension");
127 for (size_t Itr = 0; Itr < this->size(); ++Itr)
128 (*this)[Itr] += Src[Itr] * Factor;
129 return *this;
130}
131
133 double Tolerance) const {
134 assert(this->size() == RHS.size() && "Vectors must have the same dimension");
135 for (size_t Itr = 0; Itr < this->size(); ++Itr)
136 if (std::abs((*this)[Itr] - RHS[Itr]) > Tolerance) {
137 LLVM_DEBUG(errs() << "Embedding mismatch at index " << Itr << ": "
138 << (*this)[Itr] << " vs " << RHS[Itr]
139 << "; Tolerance: " << Tolerance << "\n");
140 return false;
141 }
142 return true;
143}
144
146 OS << " [";
147 for (const auto &Elem : Data)
148 OS << " " << format("%.2f", Elem) << " ";
149 OS << "]\n";
150}
151
152// ==----------------------------------------------------------------------===//
153// Embedder and its subclasses
154//===----------------------------------------------------------------------===//
155
160
161std::unique_ptr<Embedder> Embedder::create(IR2VecKind Mode, const Function &F,
162 const Vocabulary &Vocab) {
163 switch (Mode) {
165 return std::make_unique<SymbolicEmbedder>(F, Vocab);
167 return std::make_unique<FlowAwareEmbedder>(F, Vocab);
168 }
169 return nullptr;
170}
171
173 if (InstVecMap.empty())
175 return InstVecMap;
176}
177
179 if (BBVecMap.empty())
181 return BBVecMap;
182}
183
185 auto It = BBVecMap.find(&BB);
186 if (It != BBVecMap.end())
187 return It->second;
189 return BBVecMap[&BB];
190}
191
193 // Currently, we always (re)compute the embeddings for the function.
194 // This is cheaper than caching the vector.
196 return FuncVector;
197}
198
200 if (F.isDeclaration())
201 return;
202
203 // Consider only the basic blocks that are reachable from entry
204 for (const BasicBlock *BB : depth_first(&F)) {
206 FuncVector += BBVecMap[BB];
207 }
208}
209
211 Embedding BBVector(Dimension, 0);
212
213 // We consider only the non-debug and non-pseudo instructions
214 for (const auto &I : BB.instructionsWithoutDebug()) {
215 Embedding ArgEmb(Dimension, 0);
216 for (const auto &Op : I.operands())
217 ArgEmb += Vocab[*Op];
218 auto InstVector =
219 Vocab[I.getOpcode()] + Vocab[I.getType()->getTypeID()] + ArgEmb;
220 if (const auto *IC = dyn_cast<CmpInst>(&I))
221 InstVector += Vocab[IC->getPredicate()];
222 InstVecMap[&I] = InstVector;
223 BBVector += InstVector;
224 }
225 BBVecMap[&BB] = BBVector;
226}
227
229 Embedding BBVector(Dimension, 0);
230
231 // We consider only the non-debug and non-pseudo instructions
232 for (const auto &I : BB.instructionsWithoutDebug()) {
233 // TODO: Handle call instructions differently.
234 // For now, we treat them like other instructions
235 Embedding ArgEmb(Dimension, 0);
236 for (const auto &Op : I.operands()) {
237 // If the operand is defined elsewhere, we use its embedding
238 if (const auto *DefInst = dyn_cast<Instruction>(Op)) {
239 auto DefIt = InstVecMap.find(DefInst);
240 assert(DefIt != InstVecMap.end() &&
241 "Instruction should have been processed before its operands");
242 ArgEmb += DefIt->second;
243 continue;
244 }
245 // If the operand is not defined by an instruction, we use the vocabulary
246 else {
247 LLVM_DEBUG(errs() << "Using embedding from vocabulary for operand: "
248 << *Op << "=" << Vocab[*Op][0] << "\n");
249 ArgEmb += Vocab[*Op];
250 }
251 }
252 // Create the instruction vector by combining opcode, type, and arguments
253 // embeddings
254 auto InstVector =
255 Vocab[I.getOpcode()] + Vocab[I.getType()->getTypeID()] + ArgEmb;
256 // Add compare predicate embedding as an additional operand if applicable
257 if (const auto *IC = dyn_cast<CmpInst>(&I))
258 InstVector += Vocab[IC->getPredicate()];
259 InstVecMap[&I] = InstVector;
260 BBVector += InstVector;
261 }
262 BBVecMap[&BB] = BBVector;
263}
264
265// ==----------------------------------------------------------------------===//
266// VocabStorage
267//===----------------------------------------------------------------------===//
268
269VocabStorage::VocabStorage(std::vector<std::vector<Embedding>> &&SectionData)
270 : Sections(std::move(SectionData)), TotalSize([&] {
271 assert(!Sections.empty() && "Vocabulary has no sections");
272 // Compute total size across all sections
273 size_t Size = 0;
274 for (const auto &Section : Sections) {
275 assert(!Section.empty() && "Vocabulary section is empty");
276 Size += Section.size();
277 }
278 return Size;
279 }()),
280 Dimension([&] {
281 // Get dimension from the first embedding in the first section - all
282 // embeddings must have the same dimension
283 assert(!Sections.empty() && "Vocabulary has no sections");
284 assert(!Sections[0].empty() && "First section of vocabulary is empty");
285 unsigned ExpectedDim = static_cast<unsigned>(Sections[0][0].size());
286
287 // Verify that all embeddings across all sections have the same
288 // dimension
289 auto allSameDim = [ExpectedDim](const std::vector<Embedding> &Section) {
290 return std::all_of(Section.begin(), Section.end(),
291 [ExpectedDim](const Embedding &Emb) {
292 return Emb.size() == ExpectedDim;
293 });
294 };
295 assert(std::all_of(Sections.begin(), Sections.end(), allSameDim) &&
296 "All embeddings must have the same dimension");
297
298 return ExpectedDim;
299 }()) {}
300
302 assert(SectionId < Storage->Sections.size() && "Invalid section ID");
303 assert(LocalIndex < Storage->Sections[SectionId].size() &&
304 "Local index out of range");
305 return Storage->Sections[SectionId][LocalIndex];
306}
307
309 ++LocalIndex;
310 // Check if we need to move to the next section
311 if (SectionId < Storage->getNumSections() &&
312 LocalIndex >= Storage->Sections[SectionId].size()) {
313 assert(LocalIndex == Storage->Sections[SectionId].size() &&
314 "Local index should be at the end of the current section");
315 LocalIndex = 0;
316 ++SectionId;
317 }
318 return *this;
319}
320
322 const const_iterator &Other) const {
323 return Storage == Other.Storage && SectionId == Other.SectionId &&
324 LocalIndex == Other.LocalIndex;
325}
326
328 const const_iterator &Other) const {
329 return !(*this == Other);
330}
331
332// ==----------------------------------------------------------------------===//
333// Vocabulary
334//===----------------------------------------------------------------------===//
335
337 assert(Opcode >= 1 && Opcode <= MaxOpcodes && "Invalid opcode");
338#define HANDLE_INST(NUM, OPCODE, CLASS) \
339 if (Opcode == NUM) { \
340 return #OPCODE; \
341 }
342#include "llvm/IR/Instruction.def"
343#undef HANDLE_INST
344 return "UnknownOpcode";
345}
346
347// Helper function to classify an operand into OperandKind
357
358unsigned Vocabulary::getPredicateLocalIndex(CmpInst::Predicate P) {
361 else
364}
365
366CmpInst::Predicate Vocabulary::getPredicateFromLocalIndex(unsigned LocalIndex) {
367 unsigned fcmpRange =
369 if (LocalIndex < fcmpRange)
371 LocalIndex);
372 else
374 LocalIndex - fcmpRange);
375}
376
378 static SmallString<16> PredNameBuffer;
380 PredNameBuffer = "FCMP_";
381 else
382 PredNameBuffer = "ICMP_";
383 PredNameBuffer += CmpInst::getPredicateName(Pred);
384 return PredNameBuffer;
385}
386
388 assert(Pos < NumCanonicalEntries && "Position out of bounds in vocabulary");
389 // Opcode
390 if (Pos < MaxOpcodes)
391 return getVocabKeyForOpcode(Pos + 1);
392 // Type
393 if (Pos < OperandBaseOffset)
394 return getVocabKeyForCanonicalTypeID(
395 static_cast<CanonicalTypeID>(Pos - MaxOpcodes));
396 // Operand
397 if (Pos < PredicateBaseOffset)
399 static_cast<OperandKind>(Pos - OperandBaseOffset));
400 // Predicates
401 return getVocabKeyForPredicate(getPredicate(Pos - PredicateBaseOffset));
402}
403
404// For now, assume vocabulary is stable unless explicitly invalidated.
406 ModuleAnalysisManager::Invalidator &Inv) const {
407 auto PAC = PA.getChecker<IR2VecVocabAnalysis>();
408 return !(PAC.preservedWhenStateless());
409}
410
412 float DummyVal = 0.1f;
413
414 // Create sections for opcodes, types, operands, and predicates
415 // Order must match Vocabulary::Section enum
416 std::vector<std::vector<Embedding>> Sections;
417 Sections.reserve(4);
418
419 // Opcodes section
420 std::vector<Embedding> OpcodeSec;
421 OpcodeSec.reserve(MaxOpcodes);
422 for (unsigned I = 0; I < MaxOpcodes; ++I) {
423 OpcodeSec.emplace_back(Dim, DummyVal);
424 DummyVal += 0.1f;
425 }
426 Sections.push_back(std::move(OpcodeSec));
427
428 // Types section
429 std::vector<Embedding> TypeSec;
430 TypeSec.reserve(MaxCanonicalTypeIDs);
431 for (unsigned I = 0; I < MaxCanonicalTypeIDs; ++I) {
432 TypeSec.emplace_back(Dim, DummyVal);
433 DummyVal += 0.1f;
434 }
435 Sections.push_back(std::move(TypeSec));
436
437 // Operands section
438 std::vector<Embedding> OperandSec;
439 OperandSec.reserve(MaxOperandKinds);
440 for (unsigned I = 0; I < MaxOperandKinds; ++I) {
441 OperandSec.emplace_back(Dim, DummyVal);
442 DummyVal += 0.1f;
443 }
444 Sections.push_back(std::move(OperandSec));
445
446 // Predicates section
447 std::vector<Embedding> PredicateSec;
448 PredicateSec.reserve(MaxPredicateKinds);
449 for (unsigned I = 0; I < MaxPredicateKinds; ++I) {
450 PredicateSec.emplace_back(Dim, DummyVal);
451 DummyVal += 0.1f;
452 }
453 Sections.push_back(std::move(PredicateSec));
454
455 return VocabStorage(std::move(Sections));
456}
457
458// ==----------------------------------------------------------------------===//
459// IR2VecVocabAnalysis
460//===----------------------------------------------------------------------===//
461
462Error IR2VecVocabAnalysis::parseVocabSection(
463 StringRef Key, const json::Value &ParsedVocabValue, VocabMap &TargetVocab,
464 unsigned &Dim) {
465 json::Path::Root Path("");
466 const json::Object *RootObj = ParsedVocabValue.getAsObject();
467 if (!RootObj)
469 "JSON root is not an object");
470
471 const json::Value *SectionValue = RootObj->get(Key);
472 if (!SectionValue)
474 "Missing '" + std::string(Key) +
475 "' section in vocabulary file");
476 if (!json::fromJSON(*SectionValue, TargetVocab, Path))
478 "Unable to parse '" + std::string(Key) +
479 "' section from vocabulary");
480
481 Dim = TargetVocab.begin()->second.size();
482 if (Dim == 0)
484 "Dimension of '" + std::string(Key) +
485 "' section of the vocabulary is zero");
486
487 if (!std::all_of(TargetVocab.begin(), TargetVocab.end(),
488 [Dim](const std::pair<StringRef, Embedding> &Entry) {
489 return Entry.second.size() == Dim;
490 }))
491 return createStringError(
493 "All vectors in the '" + std::string(Key) +
494 "' section of the vocabulary are not of the same dimension");
495
496 return Error::success();
497}
498
499// FIXME: Make this optional. We can avoid file reads
500// by auto-generating a default vocabulary during the build time.
501Error IR2VecVocabAnalysis::readVocabulary(VocabMap &OpcVocab,
502 VocabMap &TypeVocab,
503 VocabMap &ArgVocab) {
504 auto BufOrError = MemoryBuffer::getFileOrSTDIN(VocabFile, /*IsText=*/true);
505 if (!BufOrError)
506 return createFileError(VocabFile, BufOrError.getError());
507
508 auto Content = BufOrError.get()->getBuffer();
509
510 Expected<json::Value> ParsedVocabValue = json::parse(Content);
511 if (!ParsedVocabValue)
512 return ParsedVocabValue.takeError();
513
514 unsigned OpcodeDim = 0, TypeDim = 0, ArgDim = 0;
515 if (auto Err =
516 parseVocabSection("Opcodes", *ParsedVocabValue, OpcVocab, OpcodeDim))
517 return Err;
518
519 if (auto Err =
520 parseVocabSection("Types", *ParsedVocabValue, TypeVocab, TypeDim))
521 return Err;
522
523 if (auto Err =
524 parseVocabSection("Arguments", *ParsedVocabValue, ArgVocab, ArgDim))
525 return Err;
526
527 if (!(OpcodeDim == TypeDim && TypeDim == ArgDim))
529 "Vocabulary sections have different dimensions");
530
531 return Error::success();
532}
533
534void IR2VecVocabAnalysis::generateVocabStorage(VocabMap &OpcVocab,
535 VocabMap &TypeVocab,
536 VocabMap &ArgVocab) {
537
538 // Helper for handling missing entities in the vocabulary.
539 // Currently, we use a zero vector. In the future, we will throw an error to
540 // ensure that *all* known entities are present in the vocabulary.
541 auto handleMissingEntity = [](const std::string &Val) {
542 LLVM_DEBUG(errs() << Val
543 << " is not in vocabulary, using zero vector; This "
544 "would result in an error in future.\n");
545 ++VocabMissCounter;
546 };
547
548 unsigned Dim = OpcVocab.begin()->second.size();
549 assert(Dim > 0 && "Vocabulary dimension must be greater than zero");
550
551 // Handle Opcodes
552 std::vector<Embedding> NumericOpcodeEmbeddings(Vocabulary::MaxOpcodes,
553 Embedding(Dim));
554 for (unsigned Opcode : seq(0u, Vocabulary::MaxOpcodes)) {
555 StringRef VocabKey = Vocabulary::getVocabKeyForOpcode(Opcode + 1);
556 auto It = OpcVocab.find(VocabKey.str());
557 if (It != OpcVocab.end())
558 NumericOpcodeEmbeddings[Opcode] = It->second;
559 else
560 handleMissingEntity(VocabKey.str());
561 }
562
563 // Handle Types - only canonical types are present in vocabulary
564 std::vector<Embedding> NumericTypeEmbeddings(Vocabulary::MaxCanonicalTypeIDs,
565 Embedding(Dim));
566 for (unsigned CTypeID : seq(0u, Vocabulary::MaxCanonicalTypeIDs)) {
567 StringRef VocabKey = Vocabulary::getVocabKeyForCanonicalTypeID(
568 static_cast<Vocabulary::CanonicalTypeID>(CTypeID));
569 if (auto It = TypeVocab.find(VocabKey.str()); It != TypeVocab.end()) {
570 NumericTypeEmbeddings[CTypeID] = It->second;
571 continue;
572 }
573 handleMissingEntity(VocabKey.str());
574 }
575
576 // Handle Arguments/Operands
577 std::vector<Embedding> NumericArgEmbeddings(Vocabulary::MaxOperandKinds,
578 Embedding(Dim));
579 for (unsigned OpKind : seq(0u, Vocabulary::MaxOperandKinds)) {
581 StringRef VocabKey = Vocabulary::getVocabKeyForOperandKind(Kind);
582 auto It = ArgVocab.find(VocabKey.str());
583 if (It != ArgVocab.end()) {
584 NumericArgEmbeddings[OpKind] = It->second;
585 continue;
586 }
587 handleMissingEntity(VocabKey.str());
588 }
589
590 // Handle Predicates: part of Operands section. We look up predicate keys
591 // in ArgVocab.
592 std::vector<Embedding> NumericPredEmbeddings(Vocabulary::MaxPredicateKinds,
593 Embedding(Dim, 0));
594 for (unsigned PK : seq(0u, Vocabulary::MaxPredicateKinds)) {
595 StringRef VocabKey =
596 Vocabulary::getVocabKeyForPredicate(Vocabulary::getPredicate(PK));
597 auto It = ArgVocab.find(VocabKey.str());
598 if (It != ArgVocab.end()) {
599 NumericPredEmbeddings[PK] = It->second;
600 continue;
601 }
602 handleMissingEntity(VocabKey.str());
603 }
604
605 // Create section-based storage instead of flat vocabulary
606 // Order must match Vocabulary::Section enum
607 std::vector<std::vector<Embedding>> Sections(4);
608 Sections[static_cast<unsigned>(Vocabulary::Section::Opcodes)] =
609 std::move(NumericOpcodeEmbeddings); // Section::Opcodes
610 Sections[static_cast<unsigned>(Vocabulary::Section::CanonicalTypes)] =
611 std::move(NumericTypeEmbeddings); // Section::CanonicalTypes
612 Sections[static_cast<unsigned>(Vocabulary::Section::Operands)] =
613 std::move(NumericArgEmbeddings); // Section::Operands
614 Sections[static_cast<unsigned>(Vocabulary::Section::Predicates)] =
615 std::move(NumericPredEmbeddings); // Section::Predicates
616
617 // Create VocabStorage from organized sections
618 Vocab.emplace(std::move(Sections));
619}
620
621void IR2VecVocabAnalysis::emitError(Error Err, LLVMContext &Ctx) {
622 handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
623 Ctx.emitError("Error reading vocabulary: " + EI.message());
624 });
625}
626
629 auto Ctx = &M.getContext();
630 // If vocabulary is already populated by the constructor, use it.
631 if (Vocab.has_value())
632 return Vocabulary(std::move(Vocab.value()));
633
634 // Otherwise, try to read from the vocabulary file.
635 if (VocabFile.empty()) {
636 // FIXME: Use default vocabulary
637 Ctx->emitError("IR2Vec vocabulary file path not specified; You may need to "
638 "set it using --ir2vec-vocab-path");
639 return Vocabulary(); // Return invalid result
640 }
641
642 VocabMap OpcVocab, TypeVocab, ArgVocab;
643 if (auto Err = readVocabulary(OpcVocab, TypeVocab, ArgVocab)) {
644 emitError(std::move(Err), *Ctx);
645 return Vocabulary();
646 }
647
648 // Scale the vocabulary sections based on the provided weights
649 auto scaleVocabSection = [](VocabMap &Vocab, double Weight) {
650 for (auto &Entry : Vocab)
651 Entry.second *= Weight;
652 };
653 scaleVocabSection(OpcVocab, OpcWeight);
654 scaleVocabSection(TypeVocab, TypeWeight);
655 scaleVocabSection(ArgVocab, ArgWeight);
656
657 // Generate the numeric lookup vocabulary
658 generateVocabStorage(OpcVocab, TypeVocab, ArgVocab);
659
660 return Vocabulary(std::move(Vocab.value()));
661}
662
663// ==----------------------------------------------------------------------===//
664// Printer Passes
665//===----------------------------------------------------------------------===//
666
669 auto &Vocabulary = MAM.getResult<IR2VecVocabAnalysis>(M);
670 assert(Vocabulary.isValid() && "IR2Vec Vocabulary is invalid");
671
672 for (Function &F : M) {
674 if (!Emb) {
675 OS << "Error creating IR2Vec embeddings \n";
676 continue;
677 }
678
679 OS << "IR2Vec embeddings for function " << F.getName() << ":\n";
680 OS << "Function vector: ";
681 Emb->getFunctionVector().print(OS);
682
683 OS << "Basic block vectors:\n";
684 const auto &BBMap = Emb->getBBVecMap();
685 for (const BasicBlock &BB : F) {
686 auto It = BBMap.find(&BB);
687 if (It != BBMap.end()) {
688 OS << "Basic block: " << BB.getName() << ":\n";
689 It->second.print(OS);
690 }
691 }
692
693 OS << "Instruction vectors:\n";
694 const auto &InstMap = Emb->getInstVecMap();
695 for (const BasicBlock &BB : F) {
696 for (const Instruction &I : BB) {
697 auto It = InstMap.find(&I);
698 if (It != InstMap.end()) {
699 OS << "Instruction: ";
700 I.print(OS);
701 It->second.print(OS);
702 }
703 }
704 }
705 }
706 return PreservedAnalyses::all();
707}
708
711 auto &IR2VecVocabulary = MAM.getResult<IR2VecVocabAnalysis>(M);
712 assert(IR2VecVocabulary.isValid() && "IR2Vec Vocabulary is invalid");
713
714 // Print each entry
715 unsigned Pos = 0;
716 for (const auto &Entry : IR2VecVocabulary) {
717 OS << "Key: " << IR2VecVocabulary.getStringKey(Pos++) << ": ";
718 Entry.print(OS);
719 }
720 return PreservedAnalyses::all();
721}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
This file defines the IR2Vec vocabulary analysis(IR2VecVocabAnalysis), the core ir2vec::Embedder inte...
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define P(N)
ModuleAnalysisManager MAM
Provides some synthesis utilities to produce sequences of values.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
static LLVM_ABI StringRef getPredicateName(Predicate P)
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:167
iterator end()
Definition DenseMap.h:81
virtual std::string message() const
Return the error message as a string.
Definition Error.h:52
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static ErrorSuccess success()
Create a success value.
Definition Error.h:336
Tagged union holding either a T or a Error.
Definition Error.h:485
Error takeError()
Take ownership of the stored error.
Definition Error.h:612
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &MAM)
Definition IR2Vec.cpp:667
This analysis provides the vocabulary for IR2Vec.
Definition IR2Vec.h:597
ir2vec::Vocabulary Result
Definition IR2Vec.h:614
LLVM_ABI Result run(Module &M, ModuleAnalysisManager &MAM)
Definition IR2Vec.cpp:628
static LLVM_ABI AnalysisKey Key
Definition IR2Vec.h:610
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &MAM)
Definition IR2Vec.cpp:709
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
static ErrorOr< std::unique_ptr< MemoryBuffer > > getFileOrSTDIN(const Twine &Filename, bool IsText=false, bool RequiresNullTerminator=true, std::optional< Align > Alignment=std::nullopt)
Open the specified file as a MemoryBuffer, or open stdin if the Filename is "-".
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Definition Analysis.h:275
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::string str() const
str - Get the contents as an std::string.
Definition StringRef.h:225
LLVM Value Representation.
Definition Value.h:75
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI const Embedding & getBBVector(const BasicBlock &BB) const
Returns the embedding for a given basic block in the function F if it has been computed.
Definition IR2Vec.cpp:184
static LLVM_ABI std::unique_ptr< Embedder > create(IR2VecKind Mode, const Function &F, const Vocabulary &Vocab)
Factory method to create an Embedder object.
Definition IR2Vec.cpp:161
BBEmbeddingsMap BBVecMap
Definition IR2Vec.h:529
LLVM_ABI const BBEmbeddingsMap & getBBVecMap() const
Returns a map containing basic block and the corresponding embeddings for the function F if it has be...
Definition IR2Vec.cpp:178
const Vocabulary & Vocab
Definition IR2Vec.h:517
void computeEmbeddings() const
Function to compute embeddings.
Definition IR2Vec.cpp:199
const float TypeWeight
Definition IR2Vec.h:524
LLVM_ABI const InstEmbeddingsMap & getInstVecMap() const
Returns a map containing instructions and the corresponding embeddings for the function F if it has b...
Definition IR2Vec.cpp:172
const float OpcWeight
Weights for different entities (like opcode, arguments, types) in the IR instructions to generate the...
Definition IR2Vec.h:524
const unsigned Dimension
Dimension of the vector representation; captured from the input vocabulary.
Definition IR2Vec.h:520
LLVM_ABI Embedder(const Function &F, const Vocabulary &Vocab)
Definition IR2Vec.cpp:156
const float ArgWeight
Definition IR2Vec.h:524
Embedding FuncVector
Definition IR2Vec.h:528
LLVM_ABI const Embedding & getFunctionVector() const
Computes and returns the embedding for the current function.
Definition IR2Vec.cpp:192
InstEmbeddingsMap InstVecMap
Definition IR2Vec.h:530
const Function & F
Definition IR2Vec.h:516
Iterator support for section-based access.
Definition IR2Vec.h:193
const_iterator(const VocabStorage *Storage, unsigned SectionId, size_t LocalIndex)
Definition IR2Vec.h:199
LLVM_ABI bool operator!=(const const_iterator &Other) const
Definition IR2Vec.cpp:327
LLVM_ABI const_iterator & operator++()
Definition IR2Vec.cpp:308
LLVM_ABI const Embedding & operator*() const
Definition IR2Vec.cpp:301
LLVM_ABI bool operator==(const const_iterator &Other) const
Definition IR2Vec.cpp:321
Generic storage class for section-based vocabularies.
Definition IR2Vec.h:151
unsigned getNumSections() const
Get number of sections.
Definition IR2Vec.h:176
VocabStorage()
Default constructor creates empty storage (invalid state)
Definition IR2Vec.h:161
size_t size() const
Get total number of entries across all sections.
Definition IR2Vec.h:173
Class for storing and accessing the IR2Vec vocabulary.
Definition IR2Vec.h:232
static LLVM_ABI StringRef getVocabKeyForOperandKind(OperandKind Kind)
Function to get vocabulary key for a given OperandKind.
Definition IR2Vec.h:342
LLVM_ABI bool invalidate(Module &M, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &Inv) const
Definition IR2Vec.cpp:405
static LLVM_ABI OperandKind getOperandKind(const Value *Op)
Function to classify an operand into OperandKind.
Definition IR2Vec.cpp:348
friend class llvm::IR2VecVocabAnalysis
Definition IR2Vec.h:233
static LLVM_ABI StringRef getStringKey(unsigned Pos)
Returns the string key for a given index position in the vocabulary.
Definition IR2Vec.cpp:387
static constexpr unsigned MaxCanonicalTypeIDs
Definition IR2Vec.h:302
static constexpr unsigned MaxOperandKinds
Definition IR2Vec.h:304
OperandKind
Operand kinds supported by IR2Vec Vocabulary.
Definition IR2Vec.h:288
static LLVM_ABI StringRef getVocabKeyForPredicate(CmpInst::Predicate P)
Function to get vocabulary key for a given predicate.
Definition IR2Vec.cpp:377
static LLVM_ABI StringRef getVocabKeyForOpcode(unsigned Opcode)
Function to get vocabulary key for a given Opcode.
Definition IR2Vec.cpp:336
LLVM_ABI bool isValid() const
Definition IR2Vec.h:320
static LLVM_ABI VocabStorage createDummyVocabForTest(unsigned Dim=1)
Create a dummy vocabulary for testing purposes.
Definition IR2Vec.cpp:411
static constexpr unsigned MaxPredicateKinds
Definition IR2Vec.h:308
CanonicalTypeID
Canonical type IDs supported by IR2Vec Vocabulary.
Definition IR2Vec.h:271
An Object is a JSON object, which maps strings to heterogenous JSON values.
Definition JSON.h:98
LLVM_ABI Value * get(StringRef K)
Definition JSON.cpp:30
The root is the trivial Path to the root value.
Definition JSON.h:713
A "cursor" marking a position within a Value.
Definition JSON.h:666
A Value is an JSON value of unknown type.
Definition JSON.h:290
const json::Object * getAsObject() const
Definition JSON.h:464
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DenseMap< const Instruction *, Embedding > InstEmbeddingsMap
Definition IR2Vec.h:145
static cl::opt< std::string > VocabFile("ir2vec-vocab-path", cl::Optional, cl::desc("Path to the vocabulary file for IR2Vec"), cl::init(""), cl::cat(IR2VecCategory))
LLVM_ABI cl::opt< float > ArgWeight
DenseMap< const BasicBlock *, Embedding > BBEmbeddingsMap
Definition IR2Vec.h:146
LLVM_ABI cl::opt< float > OpcWeight
LLVM_ABI cl::opt< float > TypeWeight
LLVM_ABI cl::opt< IR2VecKind > IR2VecEmbeddingKind
llvm::cl::OptionCategory IR2VecCategory
LLVM_ABI llvm::Expected< Value > parse(llvm::StringRef JSON)
Parses the provided JSON source, or returns a ParseError.
Definition JSON.cpp:675
bool fromJSON(const Value &E, std::string &Out, Path P)
Definition JSON.h:742
This is an optimization pass for GlobalISel generic memory operations.
Error createFileError(const Twine &F, Error E)
Concatenate a source file path and/or name with an Error.
Definition Error.h:1399
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
Definition Error.h:990
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition Error.h:1305
@ illegal_byte_sequence
Definition Errc.h:52
@ invalid_argument
Definition Errc.h:56
IR2VecKind
IR2Vec computes two kinds of embeddings: Symbolic and Flow-aware.
Definition IR2Vec.h:71
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:118
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
DWARFExpression::Operation Op
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1847
iterator_range< df_iterator< T > > depth_first(const T &G)
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
Definition MIRParser.h:39
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Embedding is a datatype that wraps std::vector<double>.
Definition IR2Vec.h:87
LLVM_ABI bool approximatelyEquals(const Embedding &RHS, double Tolerance=1e-4) const
Returns true if the embedding is approximately equal to the RHS embedding within the specified tolera...
Definition IR2Vec.cpp:132
LLVM_ABI Embedding & operator+=(const Embedding &RHS)
Arithmetic operators.
Definition IR2Vec.cpp:87
LLVM_ABI Embedding operator-(const Embedding &RHS) const
Definition IR2Vec.cpp:107
LLVM_ABI Embedding & operator-=(const Embedding &RHS)
Definition IR2Vec.cpp:100
LLVM_ABI Embedding operator*(double Factor) const
Definition IR2Vec.cpp:119
size_t size() const
Definition IR2Vec.h:100
LLVM_ABI Embedding & operator*=(double Factor)
Definition IR2Vec.cpp:113
LLVM_ABI Embedding operator+(const Embedding &RHS) const
Definition IR2Vec.cpp:94
LLVM_ABI Embedding & scaleAndAdd(const Embedding &Src, float Factor)
Adds Src Embedding scaled by Factor with the called Embedding.
Definition IR2Vec.cpp:125
LLVM_ABI void print(raw_ostream &OS) const
Definition IR2Vec.cpp:145