47#define DEBUG_TYPE "lazy-value-info"
56 "Lazy Value Information Analysis",
false,
true)
63 "lvi-per-pred-ranges",
cl::Hidden,
cl::init(
false),
64 cl::desc(
"Enable tracking of ranges for a value in a block for"
65 "each block predecessor (default = false)"));
95 class LazyValueInfoCache;
96 struct LVIValueHandle final :
public CallbackVH {
97 LazyValueInfoCache *Parent;
99 LVIValueHandle(
Value *V, LazyValueInfoCache *
P =
nullptr)
100 : CallbackVH(
V), Parent(
P) { }
102 void deleted()
override;
103 void allUsesReplacedWith(
Value *V)
override {
111using BBLatticeElementMap =
113using PredecessorValueLatticeMap =
118class LazyValueInfoCache {
123 struct BlockCacheEntry {
124 SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements;
125 SmallDenseSet<AssertingVH<Value>, 4> OverDefined;
128 std::optional<NonNullPointerSet> NonNullPointers;
132 std::optional<PredecessorValueLatticeMap> PredecessorLatticeElements;
136 DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>>
139 DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles;
141 const BlockCacheEntry *getBlockEntry(BasicBlock *BB)
const {
142 auto It = BlockCache.
find_as(BB);
143 if (It == BlockCache.
end())
145 return It->second.get();
148 BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) {
149 auto It = BlockCache.
find_as(BB);
150 if (It == BlockCache.
end()) {
151 std::unique_ptr<BlockCacheEntry> BCE =
152 std::make_unique<BlockCacheEntry>();
154 BCE->PredecessorLatticeElements =
155 std::make_optional<PredecessorValueLatticeMap>();
156 It = BlockCache.
insert({BB, std::move(BCE)}).first;
159 return It->second.get();
162 void addValueHandle(
Value *Val) {
163 auto HandleIt = ValueHandles.
find_as(Val);
164 if (HandleIt == ValueHandles.
end())
165 ValueHandles.
insert({Val,
this});
169 void insertResult(
Value *Val, BasicBlock *BB,
170 const ValueLatticeElement &Result) {
171 BlockCacheEntry *
Entry = getOrCreateBlockEntry(BB);
175 if (
Result.isOverdefined())
176 Entry->OverDefined.insert(Val);
183 void insertPredecessorResults(
Value *Val, BasicBlock *BB,
184 BBLatticeElementMap &PredLatticeElements) {
185 BlockCacheEntry *
Entry = getOrCreateBlockEntry(BB);
187 Entry->PredecessorLatticeElements->insert({Val, PredLatticeElements});
192 std::optional<BBLatticeElementMap>
193 getCachedPredecessorInfo(
Value *V, BasicBlock *BB)
const {
194 const BlockCacheEntry *
Entry = getBlockEntry(BB);
198 auto LatticeIt =
Entry->PredecessorLatticeElements->find_as(V);
199 if (LatticeIt ==
Entry->PredecessorLatticeElements->end())
202 return LatticeIt->second;
205 std::optional<ValueLatticeElement> getCachedValueInfo(
Value *V,
206 BasicBlock *BB)
const {
207 const BlockCacheEntry *
Entry = getBlockEntry(BB);
211 if (
Entry->OverDefined.count(V))
214 auto LatticeIt =
Entry->LatticeElements.find_as(V);
215 if (LatticeIt ==
Entry->LatticeElements.end())
218 return LatticeIt->second;
222 isNonNullAtEndOfBlock(
Value *V, BasicBlock *BB,
223 function_ref<NonNullPointerSet(BasicBlock *)> InitFn) {
224 BlockCacheEntry *
Entry = getOrCreateBlockEntry(BB);
225 if (!
Entry->NonNullPointers) {
226 Entry->NonNullPointers = InitFn(BB);
231 return Entry->NonNullPointers->count(V);
237 ValueHandles.
clear();
241 void eraseValue(
Value *V);
245 void eraseBlock(BasicBlock *BB);
250 void threadEdgeImpl(BasicBlock *OldSucc, BasicBlock *NewSucc);
254void LazyValueInfoCache::eraseValue(
Value *V) {
255 for (
auto &Pair : BlockCache) {
256 Pair.second->LatticeElements.erase(V);
257 Pair.second->OverDefined.erase(V);
258 if (Pair.second->NonNullPointers)
259 Pair.second->NonNullPointers->erase(V);
261 Pair.second->PredecessorLatticeElements->erase(V);
264 auto HandleIt = ValueHandles.
find_as(V);
265 if (HandleIt != ValueHandles.
end())
266 ValueHandles.
erase(HandleIt);
269void LVIValueHandle::deleted() {
272 Parent->eraseValue(*
this);
275void LazyValueInfoCache::eraseBlock(
BasicBlock *BB) {
278 for (
auto &Pair : BlockCache)
279 Pair.second->PredecessorLatticeElements->clear();
280 BlockCache.erase(BB);
283void LazyValueInfoCache::threadEdgeImpl(
BasicBlock *OldSucc,
295 std::vector<BasicBlock*> worklist;
296 worklist.push_back(OldSucc);
298 const BlockCacheEntry *
Entry = getBlockEntry(OldSucc);
299 if (!Entry ||
Entry->OverDefined.empty())
302 Entry->OverDefined.end());
308 while (!worklist.empty()) {
313 if (ToUpdate == NewSucc)
continue;
316 auto OI = BlockCache.find_as(ToUpdate);
317 if (OI == BlockCache.end() || OI->second->OverDefined.empty())
319 auto &ValueSet = OI->second->OverDefined;
321 bool changed =
false;
322 for (
Value *V : ValsToClear) {
323 if (!ValueSet.erase(V))
331 if (!changed)
continue;
342 LazyValueInfoImpl *LVIImpl;
348 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
349 : LVIImpl(
L), DT(DTree) {}
351 void emitBasicBlockStartAnnot(
const BasicBlock *BB,
352 formatted_raw_ostream &OS)
override;
354 void emitInstructionAnnot(
const Instruction *
I,
355 formatted_raw_ostream &OS)
override;
362 LazyValueInfoCache TheCache;
374 bool pushBlockValue(
const std::pair<BasicBlock *, Value *> &BV) {
375 if (!BlockValueSet.insert(BV).second)
379 << BV.first->getName() <<
"\n");
380 BlockValueStack.push_back(BV);
391 std::optional<ValueLatticeElement> getBlockValue(
Value *Val,
BasicBlock *BB,
401 std::optional<ValueLatticeElement> solveBlockValueImpl(
Value *Val,
403 std::optional<ValueLatticeElement> solveBlockValueNonLocal(
Value *Val,
405 std::optional<ValueLatticeElement> solveBlockValuePHINode(
PHINode *PN,
407 std::optional<ValueLatticeElement> solveBlockValueSelect(
SelectInst *S,
411 std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl(
415 std::optional<ValueLatticeElement>
417 std::optional<ValueLatticeElement> solveBlockValueCast(
CastInst *CI,
419 std::optional<ValueLatticeElement>
421 std::optional<ValueLatticeElement> solveBlockValueIntrinsic(
IntrinsicInst *
II,
423 std::optional<ValueLatticeElement>
425 std::optional<ValueLatticeElement>
428 void intersectAssumeOrGuardBlockValueConstantRange(
Value *Val,
438 std::optional<ValueLatticeElement>
443 std::optional<ValueLatticeElement>
444 getValueFromICmpCondition(
Value *Val,
ICmpInst *ICI,
bool isTrueDest,
449 std::optional<ValueLatticeElement>
451 bool UseBlockValue,
unsigned Depth = 0);
453 std::optional<ValueLatticeElement> getEdgeValueLocal(
Value *Val,
486 LazyValueInfoAnnotatedWriter Writer(
this, DTree);
487 F.print(OS, &Writer);
497 TheCache.eraseBlock(BB);
506 : AC(AC), DL(DL), GuardDecl(GuardDecl) {}
510void LazyValueInfoImpl::solve() {
514 unsigned processedCount = 0;
515 while (!BlockValueStack.empty()) {
527 dbgs() <<
"Giving up on stack because we are getting too deep\n");
529 while (!StartingStack.
empty()) {
530 std::pair<BasicBlock *, Value *> &
e = StartingStack.
back();
531 TheCache.insertResult(
e.second,
e.first,
535 BlockValueSet.clear();
536 BlockValueStack.clear();
539 std::pair<BasicBlock *, Value *>
e = BlockValueStack.back();
540 assert(BlockValueSet.count(e) &&
"Stack value should be in BlockValueSet!");
541 unsigned StackSize = BlockValueStack.size();
544 if (solveBlockValue(
e.second,
e.first)) {
546 assert(BlockValueStack.size() == StackSize &&
547 BlockValueStack.back() == e &&
"Nothing should have been pushed!");
549 std::optional<ValueLatticeElement> BBLV =
550 TheCache.getCachedValueInfo(
e.second,
e.first);
551 assert(BBLV &&
"Result should be in cache!");
553 dbgs() <<
"POP " << *
e.second <<
" in " <<
e.first->getName() <<
" = "
557 BlockValueStack.pop_back();
558 BlockValueSet.erase(e);
561 assert(BlockValueStack.size() == StackSize + 1 &&
562 "Exactly one element should have been pushed!");
567std::optional<ValueLatticeElement>
574 if (std::optional<ValueLatticeElement> OptLatticeVal =
575 TheCache.getCachedValueInfo(Val, BB)) {
576 intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI);
577 return OptLatticeVal;
581 if (!pushBlockValue({ BB, Val }))
592 case Instruction::Call:
593 case Instruction::Invoke:
597 case Instruction::Load:
611 assert(!TheCache.getCachedValueInfo(Val, BB) &&
612 "Value should not be in cache");
616 std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB);
621 TheCache.insertResult(Val, BB, *Res);
625std::optional<ValueLatticeElement>
629 return solveBlockValueNonLocal(Val, BB);
632 return solveBlockValuePHINode(PN, BB);
635 return solveBlockValueSelect(SI, BB);
652 return solveBlockValueCast(CI, BB);
655 return solveBlockValueBinaryOp(BO, BB);
658 return solveBlockValueInsertElement(IEI, BB);
661 return solveBlockValueExtractValue(EVI, BB);
664 return solveBlockValueIntrinsic(
II, BB);
668 <<
"' - unknown inst def found.\n");
673 bool IsDereferenced =
true) {
675 if (
Ptr->getType()->getPointerAddressSpace() == 0)
677 :
Ptr->stripInBoundsOffsets());
687 if (
MI->isVolatile())
return;
691 if (!Len || Len->isZero())
return;
697 for (
auto &U : CB->args()) {
698 if (U->getType()->isPointerTy() &&
699 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
706bool LazyValueInfoImpl::isNonNullAtEndOfBlock(
Value *Val,
BasicBlock *BB) {
712 return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) {
713 NonNullPointerSet NonNullPointers;
714 for (Instruction &
I : *BB)
716 return NonNullPointers;
720std::optional<ValueLatticeElement>
721LazyValueInfoImpl::solveBlockValueNonLocal(
Value *Val,
BasicBlock *BB) {
722 ValueLatticeElement
Result;
741 std::optional<BBLatticeElementMap> PredLatticeElements;
743 PredLatticeElements = std::make_optional<BBLatticeElementMap>();
748 std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB);
753 Result.mergeIn(*EdgeResult);
757 if (
Result.isOverdefined()) {
759 <<
"' - overdefined because of pred '"
760 << Pred->getName() <<
"' (non local).\n");
764 PredLatticeElements->insert({Pred, *EdgeResult});
768 TheCache.insertPredecessorResults(Val, BB, *PredLatticeElements);
775std::optional<ValueLatticeElement>
777 ValueLatticeElement
Result;
782 std::optional<BBLatticeElementMap> PredLatticeElements;
784 PredLatticeElements = std::make_optional<BBLatticeElementMap>();
791 std::optional<ValueLatticeElement> EdgeResult =
792 getEdgeValue(PhiVal, PhiBB, BB, PN);
797 Result.mergeIn(*EdgeResult);
801 if (
Result.isOverdefined()) {
803 <<
"' - overdefined because of pred (local).\n");
809 PredLatticeElements->insert({PhiBB, *EdgeResult});
813 TheCache.insertPredecessorResults(PN, BB, *PredLatticeElements);
816 assert(!
Result.isOverdefined() &&
"Possible PHI in entry block?");
822void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
829 for (
auto &AssumeVH : AC->assumptionsFor(Val)) {
840 BBLV = BBLV.
intersect(*getValueFromCondition(Val,
I->getArgOperand(0),
846 if (GuardDecl && !GuardDecl->use_empty() &&
848 for (Instruction &
I :
863 isNonNullAtEndOfBlock(Val, BB))
868std::optional<ValueLatticeElement>
871 std::optional<ValueLatticeElement> OptTrueVal =
872 getBlockValue(
SI->getTrueValue(), BB, SI);
875 ValueLatticeElement &
TrueVal = *OptTrueVal;
877 std::optional<ValueLatticeElement> OptFalseVal =
878 getBlockValue(
SI->getFalseValue(), BB, SI);
881 ValueLatticeElement &
FalseVal = *OptFalseVal;
884 const ConstantRange &TrueCR =
TrueVal.asConstantRange(
SI->getType());
885 const ConstantRange &FalseCR =
FalseVal.asConstantRange(
SI->getType());
892 ((
LHS ==
SI->getTrueValue() &&
RHS ==
SI->getFalseValue()) ||
893 (
RHS ==
SI->getTrueValue() &&
LHS ==
SI->getFalseValue()))) {
894 ConstantRange ResultCR = [&]() {
899 return TrueCR.
smin(FalseCR);
901 return TrueCR.
umin(FalseCR);
903 return TrueCR.
smax(FalseCR);
905 return TrueCR.
umax(FalseCR);
909 ResultCR,
TrueVal.isConstantRangeIncludingUndef() ||
910 FalseVal.isConstantRangeIncludingUndef());
914 if (
LHS ==
SI->getTrueValue())
916 TrueCR.
abs(),
TrueVal.isConstantRangeIncludingUndef());
917 if (
LHS ==
SI->getFalseValue())
919 FalseCR.
abs(),
FalseVal.isConstantRangeIncludingUndef());
924 if (
LHS ==
SI->getTrueValue())
927 if (
LHS ==
SI->getFalseValue())
941 TrueVal.intersect(*getValueFromCondition(
SI->getTrueValue(),
Cond,
945 FalseVal.intersect(*getValueFromCondition(
SI->getFalseValue(),
Cond,
955std::optional<ConstantRange>
957 std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI);
960 return OptVal->asConstantRange(
V->getType());
963std::optional<ValueLatticeElement>
969 case Instruction::Trunc:
970 case Instruction::SExt:
971 case Instruction::ZExt:
976 <<
"' - overdefined (unknown cast).\n");
983 std::optional<ConstantRange> LHSRes = getRangeFor(CI->
getOperand(0), CI, BB);
987 const ConstantRange &LHSRange = *LHSRes;
994 ConstantRange Res = ConstantRange::getEmpty(ResultBitWidth);
996 Res = LHSRange.
truncate(ResultBitWidth, Trunc->getNoWrapKind());
1003std::optional<ValueLatticeElement>
1004LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
1011 auto ThreadBinOpOverSelect =
1012 [&](
Value *
X,
const ConstantRange &CRX, SelectInst *
Y,
1013 bool XIsLHS) -> std::optional<ValueLatticeElement> {
1018 return std::nullopt;
1021 return std::nullopt;
1023 return std::nullopt;
1025 ConstantRange TrueX =
1026 CRX.intersectWith(getValueFromCondition(
X,
Cond,
true,
1028 ->asConstantRange(
X->getType()));
1029 ConstantRange FalseX =
1030 CRX.intersectWith(getValueFromCondition(
X,
Cond,
false,
1032 ->asConstantRange(
X->getType()));
1038 OpFn(TrueX, TrueY).unionWith(OpFn(FalseX, FalseY)));
1040 OpFn(TrueY, TrueX).unionWith(OpFn(FalseY, FalseX)));
1047 std::optional<ConstantRange> LHSRes = getRangeFor(
LHS,
I, BB);
1049 return std::nullopt;
1053 if (
auto Res = ThreadBinOpOverSelect(
LHS, *LHSRes, SI,
true))
1057 std::optional<ConstantRange> RHSRes = getRangeFor(
RHS,
I, BB);
1059 return std::nullopt;
1063 if (
auto Res = ThreadBinOpOverSelect(
RHS, *RHSRes, SI,
false))
1067 const ConstantRange &LHSRange = *LHSRes;
1068 const ConstantRange &RHSRange = *RHSRes;
1070 std::optional<ValueLatticeElement> MergedResult =
1074 return MergedResult;
1076 std::optional<BBLatticeElementMap> PredLHS =
1077 TheCache.getCachedPredecessorInfo(
LHS, BB);
1079 return MergedResult;
1080 std::optional<BBLatticeElementMap> PredRHS =
1081 TheCache.getCachedPredecessorInfo(
RHS, BB);
1083 return MergedResult;
1085 const BBLatticeElementMap &LHSPredMap = *PredLHS;
1086 const BBLatticeElementMap &RHSPredMap = *PredRHS;
1088 BBLatticeElementMap PredLatticeElements;
1089 ValueLatticeElement OverallPredResult;
1091 auto LHSIt = LHSPredMap.find_as(Pred);
1092 if (LHSIt == LHSPredMap.end())
1093 return MergedResult;
1094 const ValueLatticeElement &LHSFromPred = LHSIt->second;
1095 std::optional<ConstantRange> LHSFromPredRes =
1097 if (!LHSFromPredRes)
1098 return MergedResult;
1100 auto RHSIt = RHSPredMap.find_as(Pred);
1101 if (RHSIt == RHSPredMap.end())
1102 return MergedResult;
1103 const ValueLatticeElement &RHSFromPred = RHSIt->second;
1104 std::optional<ConstantRange> RHSFromPredRes =
1106 if (!RHSFromPredRes)
1107 return MergedResult;
1109 const ConstantRange &LHSFromPredRange = *LHSFromPredRes;
1110 const ConstantRange &RHSFromPredRange = *RHSFromPredRes;
1111 std::optional<ValueLatticeElement> PredResult =
1114 return MergedResult;
1115 if (PredResult->isOverdefined()) {
1117 dbgs() <<
" pred BB '" << Pred->getName() <<
"' for BB '"
1119 <<
"' overdefined. Discarding all predecessor intervals.\n");
1120 return MergedResult;
1122 PredLatticeElements.insert({Pred, *PredResult});
1123 OverallPredResult.
mergeIn(*PredResult);
1129 TheCache.insertPredecessorResults(
I, BB, PredLatticeElements);
1132 <<
" to: " << OverallPredResult <<
".\n");
1135 return OverallPredResult;
1138 << OverallPredResult <<
" and " << MergedResult <<
".\n");
1139 return MergedResult->intersect(OverallPredResult);
1142std::optional<ValueLatticeElement>
1145 "all operands to binary operators are sized");
1147 unsigned NoWrapKind = OBO->getNoWrapKind();
1148 return solveBlockValueBinaryOpImpl(
1150 [BO, NoWrapKind](
const ConstantRange &CR1,
const ConstantRange &CR2) {
1155 return solveBlockValueBinaryOpImpl(
1156 BO, BB, [BO](
const ConstantRange &CR1,
const ConstantRange &CR2) {
1161std::optional<ValueLatticeElement>
1164 return solveBlockValueBinaryOpImpl(
1165 WO, BB, [WO](
const ConstantRange &CR1,
const ConstantRange &CR2) {
1170std::optional<ValueLatticeElement>
1175 <<
"' - unknown intrinsic.\n");
1181 std::optional<ConstantRange>
Range = getRangeFor(
Op,
II, BB);
1183 return std::nullopt;
1192std::optional<ValueLatticeElement>
1195 std::optional<ValueLatticeElement> OptEltVal =
1198 return std::nullopt;
1199 ValueLatticeElement &Res = *OptEltVal;
1201 std::optional<ValueLatticeElement> OptVecVal =
1204 return std::nullopt;
1210 if (OptEltVal->isConstant())
1217std::optional<ValueLatticeElement>
1222 return solveBlockValueOverflowIntrinsic(WO, BB);
1229 return getBlockValue(V, BB, EVI);
1232 <<
"' - overdefined (unknown extractvalue).\n");
1270std::optional<ValueLatticeElement>
1275 bool UseBlockValue) {
1279 RHSRange = ConstantRange(CI->getValue());
1280 }
else if (UseBlockValue) {
1281 std::optional<ValueLatticeElement>
R =
1284 return std::nullopt;
1288 ConstantRange TrueValues =
1293static std::optional<ConstantRange>
1296 bool Invert =
false;
1303 if (
RHS.isMaxSignedValue())
1304 return std::nullopt;
1308 if (
auto CR = Fn(
RHS))
1309 return Invert ? CR->inverse() : CR;
1310 return std::nullopt;
1316 unsigned BitWidth =
RHS->getType()->getScalarSizeInBits();
1334std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition(
1335 Value *Val,
ICmpInst *ICI,
bool isTrueDest,
bool UseBlockValue) {
1359 return getValueFromSimpleICmpCondition(EdgePred,
RHS,
Offset, ICI,
1364 return getValueFromSimpleICmpCondition(SwappedPred,
LHS,
Offset, ICI,
1370 const APInt *
Mask, *
C;
1404 const APInt *ShAmtC;
1409 EdgePred, *
C, [&](
const APInt &
RHS) -> std::optional<ConstantRange> {
1410 APInt
New =
RHS << *ShAmtC;
1411 if ((
New.ashr(*ShAmtC)) !=
RHS)
1412 return std::nullopt;
1480std::optional<ValueLatticeElement>
1482 bool IsTrueDest,
bool UseBlockValue,
1485 return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue);
1488 return getValueFromTrunc(Val, Trunc, IsTrueDest);
1500 return getValueFromCondition(Val,
N, !IsTrueDest, UseBlockValue,
Depth);
1511 std::optional<ValueLatticeElement> LV =
1512 getValueFromCondition(Val, L, IsTrueDest, UseBlockValue,
Depth);
1514 return std::nullopt;
1515 std::optional<ValueLatticeElement> RV =
1516 getValueFromCondition(Val, R, IsTrueDest, UseBlockValue,
Depth);
1518 return std::nullopt;
1524 if (IsTrueDest ^ IsAnd) {
1529 return LV->intersect(*RV);
1550 const APInt &OpConstVal,
1565 assert((Op0Match || Op1Match) &&
1566 "Operand 0 nor Operand 1 isn't a match");
1581std::optional<ValueLatticeElement>
1589 if (BI->isConditional() &&
1590 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1591 bool isTrueDest = BI->getSuccessor(0) == BBTo;
1592 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1593 "BBTo isn't a successor of BBFrom");
1594 Value *Condition = BI->getCondition();
1599 if (Condition == Val)
1605 std::optional<ValueLatticeElement>
Result =
1606 getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue);
1608 return std::nullopt;
1610 if (!
Result->isOverdefined())
1614 assert(
Result->isOverdefined() &&
"Result isn't overdefined");
1628 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1631 ValueLatticeElement OpLatticeVal =
1632 *getValueFromCondition(Usr->getOperand(0), Condition,
1636 const unsigned ResultBitWidth =
1637 Usr->getType()->getScalarSizeInBits();
1662 for (
unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1663 Value *
Op = Usr->getOperand(i);
1664 ValueLatticeElement OpLatticeVal = *getValueFromCondition(
1665 Op, Condition, isTrueDest,
false);
1666 if (std::optional<APInt> OpConst =
1675 if (!
Result->isOverdefined())
1683 Value *Condition =
SI->getCondition();
1686 bool ValUsesConditionAndMayBeFoldable =
false;
1687 if (Condition != Val) {
1692 if (!ValUsesConditionAndMayBeFoldable)
1695 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1696 "Condition != Val nor Val doesn't use Condition");
1698 bool DefaultCase =
SI->getDefaultDest() == BBTo;
1700 ConstantRange EdgesVals(
BitWidth, DefaultCase);
1702 for (
auto Case :
SI->cases()) {
1703 APInt CaseValue = Case.getCaseValue()->getValue();
1704 ConstantRange EdgeVal(CaseValue);
1705 if (ValUsesConditionAndMayBeFoldable) {
1708 ValueLatticeElement EdgeLatticeVal =
1721 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1722 EdgesVals = EdgesVals.difference(EdgeVal);
1723 }
else if (Case.getCaseSuccessor() == BBTo)
1724 EdgesVals = EdgesVals.unionWith(EdgeVal);
1733std::optional<ValueLatticeElement>
1740 std::optional<ValueLatticeElement> LocalResult =
1741 getEdgeValueLocal(Val, BBFrom, BBTo,
true);
1743 return std::nullopt;
1749 std::optional<ValueLatticeElement> OptInBlock =
1752 return std::nullopt;
1753 ValueLatticeElement &
InBlock = *OptInBlock;
1763 intersectAssumeOrGuardBlockValueConstantRange(Val,
InBlock, CxtI);
1765 return LocalResult->intersect(
InBlock);
1770 LLVM_DEBUG(
dbgs() <<
"LVI Getting block end value " << *V <<
" at '"
1773 assert(BlockValueStack.empty() && BlockValueSet.empty());
1774 std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI);
1777 OptResult = getBlockValue(V, BB, CxtI);
1778 assert(OptResult &&
"Value not available after solving");
1796 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1805 LLVM_DEBUG(
dbgs() <<
"LVI Getting edge value " << *V <<
" from '"
1809 std::optional<ValueLatticeElement> Result =
1810 getEdgeValue(V, FromBB, ToBB, CxtI);
1816 Result = getEdgeValue(V, FromBB, ToBB, CxtI);
1830 const Use *CurrU = &U;
1832 const unsigned MaxUsesToInspect = 3;
1833 for (
unsigned I = 0;
I < MaxUsesToInspect; ++
I) {
1834 std::optional<ValueLatticeElement> CondVal;
1841 if (CurrU->getOperandNo() == 1)
1843 *getValueFromCondition(V,
SI->getCondition(),
true,
1845 else if (CurrU->getOperandNo() == 2)
1847 *getValueFromCondition(V,
SI->getCondition(),
false,
1851 CondVal = *getEdgeValueLocal(V,
PHI->getIncomingBlock(*CurrU),
1852 PHI->getParent(),
false);
1866 if (!CurrI->hasOneUse() ||
1877 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1887 if (
auto *Impl = Info.getImpl())
1905 assert(M &&
"getCache() called with a null Module");
1920 if (
auto *Impl = getImpl()) {
1927 FunctionAnalysisManager::Invalidator &Inv) {
1953 V = V->stripPointerCasts();
1967 getOrCreateImpl(BB->
getModule()).getValueInBlock(V, BB, CxtI);
1969 if (Result.isConstant())
1970 return Result.getConstant();
1971 if (Result.isConstantRange()) {
1974 return ConstantInt::get(V->getType(), *SingleVal);
1980 bool UndefAllowed) {
1983 getOrCreateImpl(BB->
getModule()).getValueInBlock(V, BB, CxtI);
1984 return Result.asConstantRange(V->getType(), UndefAllowed);
1988 bool UndefAllowed) {
1991 getOrCreateImpl(Inst->getModule()).getValueAtUse(U);
1992 return Result.asConstantRange(U->getType(), UndefAllowed);
2002 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
2004 if (Result.isConstant())
2005 return Result.getConstant();
2006 if (Result.isConstantRange()) {
2009 return ConstantInt::get(V->getType(), *SingleVal);
2020 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
2022 return Result.asConstantRange(V->getType(),
true);
2073 getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI);
2080 bool UseBlockValue) {
2087 if (V->getType()->isPointerTy() &&
C->isNullValue() &&
2096 auto &Impl = getOrCreateImpl(M);
2098 UseBlockValue ? Impl.getValueInBlock(V, CxtI->
getParent(), CxtI)
2099 : Impl.getValueAt(V, CxtI);
2139 if (
PHI->getParent() == BB) {
2141 for (
unsigned i = 0, e =
PHI->getNumIncomingValues(); i < e; i++) {
2150 Baseline = (i == 0) ? Result
2151 : (Baseline == Result ? Baseline
2170 while (++PI != PE) {
2172 if (Ret != Baseline)
2187 bool UseBlockValue) {
2197 if (UseBlockValue) {
2200 getOrCreateImpl(M).getValueInBlock(LHS, CxtI->
getParent(), CxtI);
2201 if (L.isOverdefined())
2205 getOrCreateImpl(M).getValueInBlock(RHS, CxtI->
getParent(), CxtI);
2207 return L.getCompare(Pred, Ty, R, M->getDataLayout());
2214 if (
auto *Impl = getImpl())
2215 Impl->threadEdge(PredBB, OldSucc, NewSucc);
2219 if (
auto *Impl = getImpl())
2220 Impl->forgetValue(V);
2224 if (
auto *Impl = getImpl())
2225 Impl->eraseBlock(BB);
2229 if (
auto *Impl = getImpl())
2234 if (
auto *Impl = getImpl())
2235 Impl->printLVI(
F, DTree, OS);
2239void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
2243 for (
const auto &Arg :
F->args()) {
2246 if (Result.isUnknown())
2248 OS <<
"; LatticeVal for: '" << Arg <<
"' is: " << Result <<
"\n";
2256void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2257 const Instruction *
I, formatted_raw_ostream &OS) {
2260 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2266 auto printResult = [&](
const BasicBlock *BB) {
2267 if (!BlocksContainingLVI.
insert(BB).second)
2271 OS <<
"; LatticeVal for: '" << *
I <<
"' in BB: '";
2273 OS <<
"' is: " <<
Result <<
"\n";
2276 printResult(ParentBB);
2279 for (
const auto *BBSucc :
successors(ParentBB))
2281 printResult(BBSucc);
2284 for (
const auto *U :
I->users())
2287 printResult(UseI->getParent());
2293 OS <<
"LVI for function '" <<
F.getName() <<
"':\n";
2296 LVI.printLVI(
F, DTree, OS);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static bool isOperationFoldable(User *Usr)
static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet, bool IsDereferenced=true)
static void AddNonNullPointersByInstruction(Instruction *I, NonNullPointerSet &PtrSet)
static std::optional< ConstantRange > getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, function_ref< std::optional< ConstantRange >(const APInt &)> Fn)
static const unsigned MaxProcessedPerValue
static ValueLatticeElement getValueFromICmpCtpop(ICmpInst::Predicate Pred, Value *RHS)
Get value range for a "ctpop(Val) Pred RHS" condition.
static bool usesOperand(User *Usr, Value *Op)
static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, const APInt &OpConstVal, const DataLayout &DL)
static ValueLatticeElement getFromRangeMetadata(Instruction *BBI)
lazy value Lazy Value Information static true cl::opt< bool > PerPredRanges("lvi-per-pred-ranges", cl::Hidden, cl::init(false), cl::desc("Enable tracking of ranges for a value in a block for" "each block predecessor (default = false)"))
static Constant * getPredicateResult(CmpInst::Predicate Pred, Constant *C, const ValueLatticeElement &Val, const DataLayout &DL)
static ValueLatticeElement getValueFromOverflowCondition(Value *Val, WithOverflowInst *WO, bool IsTrueDest)
static bool isKnownNonConstant(Value *V)
Returns true if we can statically tell that this value will never be a "useful" constant.
static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, ICmpInst::Predicate Pred)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
FunctionAnalysisManager FAM
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static bool InBlock(const Value *V, const BasicBlock *BB)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesAll()
Set by analyses that do not transform their input at all.
This class represents an incoming formal argument to a Function.
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
LLVM_ABI unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Value handle with callbacks on RAUW and destruction.
This is the base class for all instructions that perform data casts.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Type * getDestTy() const
Return the destination type, as a convenience.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const
Return a new range representing the possible values resulting from an application of the specified ca...
LLVM_ABI ConstantRange umin(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned minimum of a value in ...
LLVM_ABI APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
static LLVM_ABI ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
LLVM_ABI ConstantRange abs(bool IntMinIsPoison=false) const
Calculate absolute value range.
static LLVM_ABI bool isIntrinsicSupported(Intrinsic::ID IntrinsicID)
Returns true if ConstantRange calculations are supported for intrinsic with IntrinsicID.
LLVM_ABI ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind) const
Return a new range representing the possible values resulting from an application of the specified ov...
bool isSingleElement() const
Return true if this set contains exactly one member.
LLVM_ABI ConstantRange truncate(uint32_t BitWidth, unsigned NoWrapKind=0) const
Return a new range in the specified integer type, which must be strictly smaller than the current typ...
LLVM_ABI ConstantRange umax(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned maximum of a value in ...
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
static LLVM_ABI ConstantRange makeMaskNotEqualRange(const APInt &Mask, const APInt &C)
Initialize a range containing all values X that satisfy (X & Mask) / != C.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
LLVM_ABI ConstantRange smin(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed minimum of a value in thi...
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI ConstantRange smax(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed maximum of a value in thi...
LLVM_ABI ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
LLVM_ABI ConstantRange toConstantRange() const
Convert constant to an approximate constant range.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
iterator find_as(const LookupKeyT &Val)
Alternate version of find() which allows a different, and possibly less expensive,...
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
FunctionPass class - This class is used to implement most global optimizations.
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
This instruction inserts a single (scalar) element into a VectorType value.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
Analysis to compute lazy value information.
Result run(Function &F, FunctionAnalysisManager &FAM)
ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
This is the query interface to determine the lattice value for the specified Value* that is true on t...
ValueLatticeElement getValueAt(Value *V, Instruction *CxtI)
This is the query interface to determine the lattice value for the specified Value* at the specified ...
void threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc)
This is the update interface to inform the cache that an edge from PredBB to OldSucc has been threade...
void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS)
Printing the LazyValueInfo Analysis.
void forgetValue(Value *V)
This is part of the update interface to remove information related to this value from the cache.
void eraseBlock(BasicBlock *BB)
This is part of the update interface to inform the cache that a block has been deleted.
void clear()
Complete flush all previously computed values.
LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, Function *GuardDecl)
ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, Instruction *CxtI=nullptr)
This is the query interface to determine the lattice value for the specified Value* at the context in...
ValueLatticeElement getValueAtUse(const Use &U)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Wrapper around LazyValueInfo.
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
LazyValueInfoWrapperPass()
This pass computes, caches, and vends lazy value constraint information.
void eraseBlock(BasicBlock *BB)
Inform the analysis cache that we have erased a block.
ConstantRange getConstantRangeAtUse(const Use &U, bool UndefAllowed)
Return the ConstantRange constraint that is known to hold for the value at a specific use-site.
ConstantRange getConstantRange(Value *V, Instruction *CxtI, bool UndefAllowed)
Return the ConstantRange constraint that is known to hold for the specified value at the specified in...
void threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc)
Inform the analysis cache that we have threaded an edge from PredBB to OldSucc to be from PredBB to N...
Constant * getPredicateOnEdge(CmpInst::Predicate Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value comparison with a constant is known to be true or false on the ...
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value is known to be a constant on the specified edge.
ConstantRange getConstantRangeOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Return the ConstantRage constraint that is known to hold for the specified value on the specified edg...
Constant * getConstant(Value *V, Instruction *CxtI)
Determine whether the specified value is known to be a constant at the specified instruction.
void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS)
Print the \LazyValueInfo Analysis.
void forgetValue(Value *V)
Remove information related to this value from the cache.
void clear()
Complete flush all previously computed values.
Constant * getPredicateAt(CmpInst::Predicate Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue)
Determine whether the specified value comparison with a constant is known to be true or false at the ...
bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
Handle invalidation events in the new pass manager.
An instruction for reading from memory.
This is the common base class for memset/memcpy/memmove.
This class wraps the llvm.memcpy/memmove intrinsics.
A Module instance is used to store all the information related to an LLVM module.
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
This class represents the LLVM 'select' instruction.
Implements a dense probed hash-table based set with some number of buckets stored inline.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
This class represents a truncation of integer types.
unsigned getNoWrapKind() const
Returns the no-wrap kind of the operation.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
This class represents lattice values for constants.
static ValueLatticeElement getRange(ConstantRange CR, bool MayIncludeUndef=false)
bool isOverdefined() const
static ValueLatticeElement getNot(Constant *C)
ConstantRange asConstantRange(unsigned BW, bool UndefAllowed=false) const
bool isNotConstant() const
std::optional< APInt > asConstantInteger() const
const ConstantRange & getConstantRange(bool UndefAllowed=true) const
Returns the constant range for this value.
bool isConstantRange(bool UndefAllowed=true) const
Returns true if this value is a constant range.
static ValueLatticeElement get(Constant *C)
Constant * getNotConstant() const
LLVM_ABI ValueLatticeElement intersect(const ValueLatticeElement &Other) const
Combine two sets of facts about the same value into a single set of facts.
Constant * getConstant() const
bool mergeIn(const ValueLatticeElement &RHS, MergeOptions Opts=MergeOptions())
Updates this object to approximate both this object and RHS.
static ValueLatticeElement getOverdefined()
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {}) const
Strip off pointer casts and inbounds GEPs.
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Represents an op.with.overflow intrinsic.
std::pair< iterator, bool > insert(const ValueT &V)
iterator find_as(const LookupKeyT &Val)
Alternative version of find() which allows a different, and possibly less expensive,...
bool erase(const ValueT &V)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This namespace contains all of the command line option processing machinery.
@ User
could "use" a pointer
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto pred_end(const MachineBasicBlock *BB)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
auto successors(const MachineBasicBlock *BB)
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
LLVM_ABI Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
LLVM_ABI FunctionPass * createLazyValueInfoPass()
createLazyValueInfoPass - This creates an instance of the LazyValueInfo pass.
auto dyn_cast_or_null(const Y &Val)
constexpr unsigned MaxAnalysisRecursionDepth
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
PredIterator< BasicBlock, Value::user_iterator > pred_iterator
static bool hasSingleValue(const ValueLatticeElement &Val)
constexpr unsigned BitWidth
auto pred_begin(const MachineBasicBlock *BB)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
A special type used by analysis passes to provide an address that identifies that particular analysis...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?