Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cstdint>
150#include <functional>
151#include <iterator>
152#include <limits>
153#include <memory>
154#include <string>
155#include <tuple>
156#include <utility>
157
158using namespace llvm;
159using namespace SCEVPatternMatch;
160
161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
163
164#ifndef NDEBUG
165const char VerboseDebug[] = DEBUG_TYPE "-verbose";
166#endif
167
168STATISTIC(LoopsVectorized, "Number of loops vectorized");
169STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
172
174 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
175 cl::desc("Enable vectorization of epilogue loops."));
176
178 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
179 cl::desc("When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
181 "loops."));
182
184 "epilogue-vectorization-minimum-VF", cl::Hidden,
185 cl::desc("Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
187
188/// Loops with a known constant trip count below this number are vectorized only
189/// if no scalar iteration overheads are incurred.
191 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
192 cl::desc("Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
194 "are incurred."));
195
197 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
198 cl::desc("The maximum allowed number of runtime memory checks"));
199
200// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
201// that predication is preferred, and this lists all options. I.e., the
202// vectorizer will try to fold the tail-loop (epilogue) into the vector body
203// and predicate the instructions accordingly. If tail-folding fails, there are
204// different fallback strategies depending on these values:
211} // namespace PreferPredicateTy
212
214 "prefer-predicate-over-epilogue",
217 cl::desc("Tail-folding and predication preferences over creating a scalar "
218 "epilogue loop."),
220 "scalar-epilogue",
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
225 "folding fails."),
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
230
232 "force-tail-folding-style", cl::desc("Force the tail folding style"),
235 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
251
253 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
254 cl::desc("Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
256
258 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
259 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
260
261/// An interleave-group may need masking if it resides in a block that needs
262/// predication, or in order to mask away gaps.
264 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
266
268 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
269 cl::desc("A flag that overrides the target's number of scalar registers."));
270
272 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
273 cl::desc("A flag that overrides the target's number of vector registers."));
274
276 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
277 cl::desc("A flag that overrides the target's max interleave factor for "
278 "scalar loops."));
279
281 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
282 cl::desc("A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
284
286 "force-target-instruction-cost", cl::init(0), cl::Hidden,
287 cl::desc("A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
290
292 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
293 cl::desc(
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
296
298 "small-loop-cost", cl::init(20), cl::Hidden,
299 cl::desc(
300 "The cost of a loop that is considered 'small' by the interleaver."));
301
303 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
304 cl::desc("Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
307
308// Runtime interleave loops for load/store throughput.
310 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
311 cl::desc(
312 "Enable runtime interleaving until load/store ports are saturated"));
313
314/// The number of stores in a loop that are allowed to need predication.
316 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
317 cl::desc("Max number of stores to be predicated behind an if."));
318
320 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
321 cl::desc("Count the induction variable only once when interleaving"));
322
324 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
325 cl::desc("Enable if predication of stores during vectorization."));
326
328 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
329 cl::desc("The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
331
332static cl::opt<bool>
333 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
335 cl::desc("Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
337
339 "force-ordered-reductions", cl::init(false), cl::Hidden,
340 cl::desc("Enable the vectorisation of loops with in-order (strict) "
341 "FP reductions"));
342
344 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
345 cl::desc(
346 "Prefer predicating a reduction operation over an after loop select."));
347
349 "enable-vplan-native-path", cl::Hidden,
350 cl::desc("Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
352
354 llvm::VerifyEachVPlan("vplan-verify-each",
355#ifdef EXPENSIVE_CHECKS
356 cl::init(true),
357#else
358 cl::init(false),
359#endif
361 cl::desc("Verfiy VPlans after VPlan transforms."));
362
363// This flag enables the stress testing of the VPlan H-CFG construction in the
364// VPlan-native vectorization path. It must be used in conjuction with
365// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
366// verification of the H-CFGs built.
368 "vplan-build-stress-test", cl::init(false), cl::Hidden,
369 cl::desc(
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
373
375 "interleave-loops", cl::init(true), cl::Hidden,
376 cl::desc("Enable loop interleaving in Loop vectorization passes"));
378 "vectorize-loops", cl::init(true), cl::Hidden,
379 cl::desc("Run the Loop vectorization passes"));
380
382 "force-widen-divrem-via-safe-divisor", cl::Hidden,
383 cl::desc(
384 "Override cost based safe divisor widening for div/rem instructions"));
385
387 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
389 cl::desc("Try wider VFs if they enable the use of vector variants"));
390
392 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
393 cl::desc(
394 "Enable vectorization of early exit loops with uncountable exits."));
395
397 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
398 cl::desc("Discard VFs if their register pressure is too high."));
399
400// Likelyhood of bypassing the vectorized loop because there are zero trips left
401// after prolog. See `emitIterationCountCheck`.
402static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
403
404/// A helper function that returns true if the given type is irregular. The
405/// type is irregular if its allocated size doesn't equal the store size of an
406/// element of the corresponding vector type.
407static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
408 // Determine if an array of N elements of type Ty is "bitcast compatible"
409 // with a <N x Ty> vector.
410 // This is only true if there is no padding between the array elements.
411 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
412}
413
414/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
415/// ElementCount to include loops whose trip count is a function of vscale.
417 const Loop *L) {
418 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
419 return ElementCount::getFixed(ExpectedTC);
420
421 const SCEV *BTC = SE->getBackedgeTakenCount(L);
423 return ElementCount::getFixed(0);
424
425 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
426 if (isa<SCEVVScale>(ExitCount))
428
429 const APInt *Scale;
430 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
431 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
432 if (Scale->getActiveBits() <= 32)
434
435 return ElementCount::getFixed(0);
436}
437
438/// Returns "best known" trip count, which is either a valid positive trip count
439/// or std::nullopt when an estimate cannot be made (including when the trip
440/// count would overflow), for the specified loop \p L as defined by the
441/// following procedure:
442/// 1) Returns exact trip count if it is known.
443/// 2) Returns expected trip count according to profile data if any.
444/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
445/// 4) Returns std::nullopt if all of the above failed.
446static std::optional<ElementCount>
448 bool CanUseConstantMax = true) {
449 // Check if exact trip count is known.
450 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
451 return ExpectedTC;
452
453 // Check if there is an expected trip count available from profile data.
455 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
456 return ElementCount::getFixed(*EstimatedTC);
457
458 if (!CanUseConstantMax)
459 return std::nullopt;
460
461 // Check if upper bound estimate is known.
462 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
463 return ElementCount::getFixed(ExpectedTC);
464
465 return std::nullopt;
466}
467
468namespace {
469// Forward declare GeneratedRTChecks.
470class GeneratedRTChecks;
471
472using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
473} // namespace
474
475namespace llvm {
476
478
479/// InnerLoopVectorizer vectorizes loops which contain only one basic
480/// block to a specified vectorization factor (VF).
481/// This class performs the widening of scalars into vectors, or multiple
482/// scalars. This class also implements the following features:
483/// * It inserts an epilogue loop for handling loops that don't have iteration
484/// counts that are known to be a multiple of the vectorization factor.
485/// * It handles the code generation for reduction variables.
486/// * Scalarization (implementation using scalars) of un-vectorizable
487/// instructions.
488/// InnerLoopVectorizer does not perform any vectorization-legality
489/// checks, and relies on the caller to check for the different legality
490/// aspects. The InnerLoopVectorizer relies on the
491/// LoopVectorizationLegality class to provide information about the induction
492/// and reduction variables that were found to a given vectorization factor.
494public:
498 ElementCount VecWidth, unsigned UnrollFactor,
500 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks,
501 VPlan &Plan)
502 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
503 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
507
508 virtual ~InnerLoopVectorizer() = default;
509
510 /// Creates a basic block for the scalar preheader. Both
511 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
512 /// the method to create additional blocks and checks needed for epilogue
513 /// vectorization.
515
516 /// Fix the vectorized code, taking care of header phi's, and more.
518
519 /// Fix the non-induction PHIs in \p Plan.
521
522 /// Returns the original loop trip count.
523 Value *getTripCount() const { return TripCount; }
524
525 /// Used to set the trip count after ILV's construction and after the
526 /// preheader block has been executed. Note that this always holds the trip
527 /// count of the original loop for both main loop and epilogue vectorization.
528 void setTripCount(Value *TC) { TripCount = TC; }
529
530protected:
532
533 /// Create and return a new IR basic block for the scalar preheader whose name
534 /// is prefixed with \p Prefix.
536
537 /// Allow subclasses to override and print debug traces before/after vplan
538 /// execution, when trace information is requested.
539 virtual void printDebugTracesAtStart() {}
540 virtual void printDebugTracesAtEnd() {}
541
542 /// The original loop.
544
545 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
546 /// dynamic knowledge to simplify SCEV expressions and converts them to a
547 /// more usable form.
549
550 /// Loop Info.
552
553 /// Dominator Tree.
555
556 /// Target Transform Info.
558
559 /// Assumption Cache.
561
562 /// The vectorization SIMD factor to use. Each vector will have this many
563 /// vector elements.
565
566 /// The vectorization unroll factor to use. Each scalar is vectorized to this
567 /// many different vector instructions.
568 unsigned UF;
569
570 /// The builder that we use
572
573 // --- Vectorization state ---
574
575 /// Trip count of the original loop.
576 Value *TripCount = nullptr;
577
578 /// The profitablity analysis.
580
581 /// BFI and PSI are used to check for profile guided size optimizations.
584
585 /// Structure to hold information about generated runtime checks, responsible
586 /// for cleaning the checks, if vectorization turns out unprofitable.
587 GeneratedRTChecks &RTChecks;
588
590
591 /// The vector preheader block of \p Plan, used as target for check blocks
592 /// introduced during skeleton creation.
594};
595
596/// Encapsulate information regarding vectorization of a loop and its epilogue.
597/// This information is meant to be updated and used across two stages of
598/// epilogue vectorization.
601 unsigned MainLoopUF = 0;
603 unsigned EpilogueUF = 0;
606 Value *TripCount = nullptr;
609
611 ElementCount EVF, unsigned EUF,
613 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
615 assert(EUF == 1 &&
616 "A high UF for the epilogue loop is likely not beneficial.");
617 }
618};
619
620/// An extension of the inner loop vectorizer that creates a skeleton for a
621/// vectorized loop that has its epilogue (residual) also vectorized.
622/// The idea is to run the vplan on a given loop twice, firstly to setup the
623/// skeleton and vectorize the main loop, and secondly to complete the skeleton
624/// from the first step and vectorize the epilogue. This is achieved by
625/// deriving two concrete strategy classes from this base class and invoking
626/// them in succession from the loop vectorizer planner.
628public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
668 /// Implements the interface for creating a vectorized skeleton using the
669 /// *main loop* strategy (i.e., the first pass of VPlan execution).
671
672protected:
673 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
674 /// vector preheader and its predecessor, also connecting the new block to the
675 /// scalar preheader.
676 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
677
678 // Create a check to see if the main vector loop should be executed
680 unsigned UF) const;
681
682 /// Emits an iteration count bypass check once for the main loop (when \p
683 /// ForEpilogue is false) and once for the epilogue loop (when \p
684 /// ForEpilogue is true).
686 bool ForEpilogue);
687 void printDebugTracesAtStart() override;
688 void printDebugTracesAtEnd() override;
689};
690
691// A specialized derived class of inner loop vectorizer that performs
692// vectorization of *epilogue* loops in the process of vectorizing loops and
693// their epilogues.
695public:
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
883 Hints(Hints), InterleaveInfo(IAI) {
884 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
885 initializeVScaleForTuning();
887 // Query this against the original loop and save it here because the profile
888 // of the original loop header may change as the transformation happens.
889 OptForSize = llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
891 }
892
893 /// \return An upper bound for the vectorization factors (both fixed and
894 /// scalable). If the factors are 0, vectorization and interleaving should be
895 /// avoided up front.
896 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
897
898 /// \return True if runtime checks are required for vectorization, and false
899 /// otherwise.
900 bool runtimeChecksRequired();
901
902 /// Setup cost-based decisions for user vectorization factor.
903 /// \return true if the UserVF is a feasible VF to be chosen.
906 return expectedCost(UserVF).isValid();
907 }
908
909 /// \return True if maximizing vector bandwidth is enabled by the target or
910 /// user options, for the given register kind.
911 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
912
913 /// \return True if register pressure should be considered for the given VF.
914 bool shouldConsiderRegPressureForVF(ElementCount VF);
915
916 /// \return The size (in bits) of the smallest and widest types in the code
917 /// that needs to be vectorized. We ignore values that remain scalar such as
918 /// 64 bit loop indices.
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
920
921 /// Memory access instruction may be vectorized in more than one way.
922 /// Form of instruction after vectorization depends on cost.
923 /// This function takes cost-based decisions for Load/Store instructions
924 /// and collects them in a map. This decisions map is used for building
925 /// the lists of loop-uniform and loop-scalar instructions.
926 /// The calculated cost is saved with widening decision in order to
927 /// avoid redundant calculations.
928 void setCostBasedWideningDecision(ElementCount VF);
929
930 /// A call may be vectorized in different ways depending on whether we have
931 /// vectorized variants available and whether the target supports masking.
932 /// This function analyzes all calls in the function at the supplied VF,
933 /// makes a decision based on the costs of available options, and stores that
934 /// decision in a map for use in planning and plan execution.
935 void setVectorizedCallDecision(ElementCount VF);
936
937 /// Collect values we want to ignore in the cost model.
938 void collectValuesToIgnore();
939
940 /// Collect all element types in the loop for which widening is needed.
941 void collectElementTypesForWidening();
942
943 /// Split reductions into those that happen in the loop, and those that happen
944 /// outside. In loop reductions are collected into InLoopReductions.
945 void collectInLoopReductions();
946
947 /// Returns true if we should use strict in-order reductions for the given
948 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
949 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
950 /// of FP operations.
951 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
952 return !Hints->allowReordering() && RdxDesc.isOrdered();
953 }
954
955 /// \returns The smallest bitwidth each instruction can be represented with.
956 /// The vector equivalents of these instructions should be truncated to this
957 /// type.
959 return MinBWs;
960 }
961
962 /// \returns True if it is more profitable to scalarize instruction \p I for
963 /// vectorization factor \p VF.
965 assert(VF.isVector() &&
966 "Profitable to scalarize relevant only for VF > 1.");
967 assert(
968 TheLoop->isInnermost() &&
969 "cost-model should not be used for outer loops (in VPlan-native path)");
970
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(I);
975 }
976
977 /// Returns true if \p I is known to be uniform after vectorization.
979 assert(
980 TheLoop->isInnermost() &&
981 "cost-model should not be used for outer loops (in VPlan-native path)");
982 // Pseudo probe needs to be duplicated for each unrolled iteration and
983 // vector lane so that profiled loop trip count can be accurately
984 // accumulated instead of being under counted.
986 return false;
987
988 if (VF.isScalar())
989 return true;
990
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(I);
995 }
996
997 /// Returns true if \p I is known to be scalar after vectorization.
999 assert(
1000 TheLoop->isInnermost() &&
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 if (VF.isScalar())
1003 return true;
1004
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(I);
1009 }
1010
1011 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1012 /// for vectorization factor \p VF.
1014 return VF.isVector() && MinBWs.contains(I) &&
1015 !isProfitableToScalarize(I, VF) &&
1017 }
1018
1019 /// Decision that was taken during cost calculation for memory instruction.
1022 CM_Widen, // For consecutive accesses with stride +1.
1023 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1029 };
1030
1031 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1032 /// instruction \p I and vector width \p VF.
1035 assert(VF.isVector() && "Expected VF >=2");
1036 WideningDecisions[{I, VF}] = {W, Cost};
1037 }
1038
1039 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1040 /// interleaving group \p Grp and vector width \p VF.
1044 assert(VF.isVector() && "Expected VF >=2");
1045 /// Broadcast this decicion to all instructions inside the group.
1046 /// When interleaving, the cost will only be assigned one instruction, the
1047 /// insert position. For other cases, add the appropriate fraction of the
1048 /// total cost to each instruction. This ensures accurate costs are used,
1049 /// even if the insert position instruction is not used.
1050 InstructionCost InsertPosCost = Cost;
1051 InstructionCost OtherMemberCost = 0;
1052 if (W != CM_Interleave)
1053 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1054 ;
1055 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1056 if (auto *I = Grp->getMember(Idx)) {
1057 if (Grp->getInsertPos() == I)
1058 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1059 else
1060 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1061 }
1062 }
1063 }
1064
1065 /// Return the cost model decision for the given instruction \p I and vector
1066 /// width \p VF. Return CM_Unknown if this instruction did not pass
1067 /// through the cost modeling.
1069 assert(VF.isVector() && "Expected VF to be a vector VF");
1070 assert(
1071 TheLoop->isInnermost() &&
1072 "cost-model should not be used for outer loops (in VPlan-native path)");
1073
1074 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1075 auto Itr = WideningDecisions.find(InstOnVF);
1076 if (Itr == WideningDecisions.end())
1077 return CM_Unknown;
1078 return Itr->second.first;
1079 }
1080
1081 /// Return the vectorization cost for the given instruction \p I and vector
1082 /// width \p VF.
1084 assert(VF.isVector() && "Expected VF >=2");
1085 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1086 assert(WideningDecisions.contains(InstOnVF) &&
1087 "The cost is not calculated");
1088 return WideningDecisions[InstOnVF].second;
1089 }
1090
1098
1100 Function *Variant, Intrinsic::ID IID,
1101 std::optional<unsigned> MaskPos,
1103 assert(!VF.isScalar() && "Expected vector VF");
1104 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1105 }
1106
1108 ElementCount VF) const {
1109 assert(!VF.isScalar() && "Expected vector VF");
1110 auto I = CallWideningDecisions.find({CI, VF});
1111 if (I == CallWideningDecisions.end())
1112 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1113 return I->second;
1114 }
1115
1116 /// Return True if instruction \p I is an optimizable truncate whose operand
1117 /// is an induction variable. Such a truncate will be removed by adding a new
1118 /// induction variable with the destination type.
1120 // If the instruction is not a truncate, return false.
1121 auto *Trunc = dyn_cast<TruncInst>(I);
1122 if (!Trunc)
1123 return false;
1124
1125 // Get the source and destination types of the truncate.
1126 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1127 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1128
1129 // If the truncate is free for the given types, return false. Replacing a
1130 // free truncate with an induction variable would add an induction variable
1131 // update instruction to each iteration of the loop. We exclude from this
1132 // check the primary induction variable since it will need an update
1133 // instruction regardless.
1134 Value *Op = Trunc->getOperand(0);
1135 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1136 return false;
1137
1138 // If the truncated value is not an induction variable, return false.
1139 return Legal->isInductionPhi(Op);
1140 }
1141
1142 /// Collects the instructions to scalarize for each predicated instruction in
1143 /// the loop.
1144 void collectInstsToScalarize(ElementCount VF);
1145
1146 /// Collect values that will not be widened, including Uniforms, Scalars, and
1147 /// Instructions to Scalarize for the given \p VF.
1148 /// The sets depend on CM decision for Load/Store instructions
1149 /// that may be vectorized as interleave, gather-scatter or scalarized.
1150 /// Also make a decision on what to do about call instructions in the loop
1151 /// at that VF -- scalarize, call a known vector routine, or call a
1152 /// vector intrinsic.
1154 // Do the analysis once.
1155 if (VF.isScalar() || Uniforms.contains(VF))
1156 return;
1158 collectLoopUniforms(VF);
1160 collectLoopScalars(VF);
1162 }
1163
1164 /// Returns true if the target machine supports masked store operation
1165 /// for the given \p DataType and kind of access to \p Ptr.
1166 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1167 unsigned AddressSpace) const {
1168 return Legal->isConsecutivePtr(DataType, Ptr) &&
1169 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1170 }
1171
1172 /// Returns true if the target machine supports masked load operation
1173 /// for the given \p DataType and kind of access to \p Ptr.
1174 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1175 unsigned AddressSpace) const {
1176 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1178 }
1179
1180 /// Returns true if the target machine can represent \p V as a masked gather
1181 /// or scatter operation.
1183 bool LI = isa<LoadInst>(V);
1184 bool SI = isa<StoreInst>(V);
1185 if (!LI && !SI)
1186 return false;
1187 auto *Ty = getLoadStoreType(V);
1189 if (VF.isVector())
1190 Ty = VectorType::get(Ty, VF);
1191 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1192 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1193 }
1194
1195 /// Returns true if the target machine supports all of the reduction
1196 /// variables found for the given VF.
1198 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1199 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1200 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1201 }));
1202 }
1203
1204 /// Given costs for both strategies, return true if the scalar predication
1205 /// lowering should be used for div/rem. This incorporates an override
1206 /// option so it is not simply a cost comparison.
1208 InstructionCost SafeDivisorCost) const {
1209 switch (ForceSafeDivisor) {
1210 case cl::BOU_UNSET:
1211 return ScalarCost < SafeDivisorCost;
1212 case cl::BOU_TRUE:
1213 return false;
1214 case cl::BOU_FALSE:
1215 return true;
1216 }
1217 llvm_unreachable("impossible case value");
1218 }
1219
1220 /// Returns true if \p I is an instruction which requires predication and
1221 /// for which our chosen predication strategy is scalarization (i.e. we
1222 /// don't have an alternate strategy such as masking available).
1223 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1224 bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1225
1226 /// Returns true if \p I is an instruction that needs to be predicated
1227 /// at runtime. The result is independent of the predication mechanism.
1228 /// Superset of instructions that return true for isScalarWithPredication.
1229 bool isPredicatedInst(Instruction *I) const;
1230
1231 /// Return the costs for our two available strategies for lowering a
1232 /// div/rem operation which requires speculating at least one lane.
1233 /// First result is for scalarization (will be invalid for scalable
1234 /// vectors); second is for the safe-divisor strategy.
1235 std::pair<InstructionCost, InstructionCost>
1236 getDivRemSpeculationCost(Instruction *I,
1237 ElementCount VF) const;
1238
1239 /// Returns true if \p I is a memory instruction with consecutive memory
1240 /// access that can be widened.
1241 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1242
1243 /// Returns true if \p I is a memory instruction in an interleaved-group
1244 /// of memory accesses that can be vectorized with wide vector loads/stores
1245 /// and shuffles.
1246 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1247
1248 /// Check if \p Instr belongs to any interleaved access group.
1250 return InterleaveInfo.isInterleaved(Instr);
1251 }
1252
1253 /// Get the interleaved access group that \p Instr belongs to.
1256 return InterleaveInfo.getInterleaveGroup(Instr);
1257 }
1258
1259 /// Returns true if we're required to use a scalar epilogue for at least
1260 /// the final iteration of the original loop.
1261 bool requiresScalarEpilogue(bool IsVectorizing) const {
1262 if (!isScalarEpilogueAllowed()) {
1263 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1264 return false;
1265 }
1266 // If we might exit from anywhere but the latch and early exit vectorization
1267 // is disabled, we must run the exiting iteration in scalar form.
1268 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1269 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1270 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1271 "from latch block\n");
1272 return true;
1273 }
1274 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1275 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1276 "interleaved group requires scalar epilogue\n");
1277 return true;
1278 }
1279 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1280 return false;
1281 }
1282
1283 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1284 /// loop hint annotation.
1286 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1287 }
1288
1289 /// Returns the TailFoldingStyle that is best for the current loop.
1290 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1291 if (!ChosenTailFoldingStyle)
1293 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1294 : ChosenTailFoldingStyle->second;
1295 }
1296
1297 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1298 /// overflow or not.
1299 /// \param IsScalableVF true if scalable vector factors enabled.
1300 /// \param UserIC User specific interleave count.
1301 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1302 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1303 if (!Legal->canFoldTailByMasking()) {
1304 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1305 return;
1306 }
1307
1308 // Default to TTI preference, but allow command line override.
1309 ChosenTailFoldingStyle = {
1310 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1311 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1312 if (ForceTailFoldingStyle.getNumOccurrences())
1313 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1314 ForceTailFoldingStyle.getValue()};
1315
1316 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1317 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1318 return;
1319 // Override EVL styles if needed.
1320 // FIXME: Investigate opportunity for fixed vector factor.
1321 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1322 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1323 if (EVLIsLegal)
1324 return;
1325 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1326 // if it's allowed, or DataWithoutLaneMask otherwise.
1327 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1328 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1329 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1330 else
1331 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1333
1334 LLVM_DEBUG(
1335 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1336 "not try to generate VP Intrinsics "
1337 << (UserIC > 1
1338 ? "since interleave count specified is greater than 1.\n"
1339 : "due to non-interleaving reasons.\n"));
1340 }
1341
1342 /// Returns true if all loop blocks should be masked to fold tail loop.
1343 bool foldTailByMasking() const {
1344 // TODO: check if it is possible to check for None style independent of
1345 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1347 }
1348
1349 /// Return maximum safe number of elements to be processed per vector
1350 /// iteration, which do not prevent store-load forwarding and are safe with
1351 /// regard to the memory dependencies. Required for EVL-based VPlans to
1352 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1353 /// MaxSafeElements).
1354 /// TODO: need to consider adjusting cost model to use this value as a
1355 /// vectorization factor for EVL-based vectorization.
1356 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1357
1358 /// Returns true if the instructions in this block requires predication
1359 /// for any reason, e.g. because tail folding now requires a predicate
1360 /// or because the block in the original loop was predicated.
1362 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1363 }
1364
1365 /// Returns true if VP intrinsics with explicit vector length support should
1366 /// be generated in the tail folded loop.
1370
1371 /// Returns true if the Phi is part of an inloop reduction.
1372 bool isInLoopReduction(PHINode *Phi) const {
1373 return InLoopReductions.contains(Phi);
1374 }
1375
1376 /// Returns true if the predicated reduction select should be used to set the
1377 /// incoming value for the reduction phi.
1379 // Force to use predicated reduction select since the EVL of the
1380 // second-to-last iteration might not be VF*UF.
1381 if (foldTailWithEVL())
1382 return true;
1384 TTI.preferPredicatedReductionSelect();
1385 }
1386
1387 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1388 /// with factor VF. Return the cost of the instruction, including
1389 /// scalarization overhead if it's needed.
1390 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1391
1392 /// Estimate cost of a call instruction CI if it were vectorized with factor
1393 /// VF. Return the cost of the instruction, including scalarization overhead
1394 /// if it's needed.
1395 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1396
1397 /// Invalidates decisions already taken by the cost model.
1399 WideningDecisions.clear();
1400 CallWideningDecisions.clear();
1401 Uniforms.clear();
1402 Scalars.clear();
1403 }
1404
1405 /// Returns the expected execution cost. The unit of the cost does
1406 /// not matter because we use the 'cost' units to compare different
1407 /// vector widths. The cost that is returned is *not* normalized by
1408 /// the factor width.
1409 InstructionCost expectedCost(ElementCount VF);
1410
1411 bool hasPredStores() const { return NumPredStores > 0; }
1412
1413 /// Returns true if epilogue vectorization is considered profitable, and
1414 /// false otherwise.
1415 /// \p VF is the vectorization factor chosen for the original loop.
1416 /// \p Multiplier is an aditional scaling factor applied to VF before
1417 /// comparing to EpilogueVectorizationMinVF.
1418 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1419 const unsigned IC) const;
1420
1421 /// Returns the execution time cost of an instruction for a given vector
1422 /// width. Vector width of one means scalar.
1423 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1424
1425 /// Return the cost of instructions in an inloop reduction pattern, if I is
1426 /// part of that pattern.
1427 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1428 ElementCount VF,
1429 Type *VectorTy) const;
1430
1431 /// Returns true if \p Op should be considered invariant and if it is
1432 /// trivially hoistable.
1433 bool shouldConsiderInvariant(Value *Op);
1434
1435 /// Return the value of vscale used for tuning the cost model.
1436 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1437
1438private:
1439 unsigned NumPredStores = 0;
1440
1441 /// Used to store the value of vscale used for tuning the cost model. It is
1442 /// initialized during object construction.
1443 std::optional<unsigned> VScaleForTuning;
1444
1445 /// Initializes the value of vscale used for tuning the cost model. If
1446 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1447 /// return the value returned by the corresponding TTI method.
1448 void initializeVScaleForTuning() {
1449 const Function *Fn = TheLoop->getHeader()->getParent();
1450 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1451 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1452 auto Min = Attr.getVScaleRangeMin();
1453 auto Max = Attr.getVScaleRangeMax();
1454 if (Max && Min == Max) {
1455 VScaleForTuning = Max;
1456 return;
1457 }
1458 }
1459
1460 VScaleForTuning = TTI.getVScaleForTuning();
1461 }
1462
1463 /// \return An upper bound for the vectorization factors for both
1464 /// fixed and scalable vectorization, where the minimum-known number of
1465 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1466 /// disabled or unsupported, then the scalable part will be equal to
1467 /// ElementCount::getScalable(0).
1468 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1469 ElementCount UserVF,
1470 bool FoldTailByMasking);
1471
1472 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1473 /// MaxTripCount.
1474 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1475 bool FoldTailByMasking) const;
1476
1477 /// \return the maximized element count based on the targets vector
1478 /// registers and the loop trip-count, but limited to a maximum safe VF.
1479 /// This is a helper function of computeFeasibleMaxVF.
1480 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1481 unsigned SmallestType,
1482 unsigned WidestType,
1483 ElementCount MaxSafeVF,
1484 bool FoldTailByMasking);
1485
1486 /// Checks if scalable vectorization is supported and enabled. Caches the
1487 /// result to avoid repeated debug dumps for repeated queries.
1488 bool isScalableVectorizationAllowed();
1489
1490 /// \return the maximum legal scalable VF, based on the safe max number
1491 /// of elements.
1492 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1493
1494 /// Calculate vectorization cost of memory instruction \p I.
1495 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1496
1497 /// The cost computation for scalarized memory instruction.
1498 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1499
1500 /// The cost computation for interleaving group of memory instructions.
1501 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1502
1503 /// The cost computation for Gather/Scatter instruction.
1504 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1505
1506 /// The cost computation for widening instruction \p I with consecutive
1507 /// memory access.
1508 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1509
1510 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1511 /// Load: scalar load + broadcast.
1512 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1513 /// element)
1514 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1515
1516 /// Estimate the overhead of scalarizing an instruction. This is a
1517 /// convenience wrapper for the type-based getScalarizationOverhead API.
1519 ElementCount VF) const;
1520
1521 /// Returns true if an artificially high cost for emulated masked memrefs
1522 /// should be used.
1523 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1524
1525 /// Map of scalar integer values to the smallest bitwidth they can be legally
1526 /// represented as. The vector equivalents of these values should be truncated
1527 /// to this type.
1528 MapVector<Instruction *, uint64_t> MinBWs;
1529
1530 /// A type representing the costs for instructions if they were to be
1531 /// scalarized rather than vectorized. The entries are Instruction-Cost
1532 /// pairs.
1533 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1534
1535 /// A set containing all BasicBlocks that are known to present after
1536 /// vectorization as a predicated block.
1537 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1538 PredicatedBBsAfterVectorization;
1539
1540 /// Records whether it is allowed to have the original scalar loop execute at
1541 /// least once. This may be needed as a fallback loop in case runtime
1542 /// aliasing/dependence checks fail, or to handle the tail/remainder
1543 /// iterations when the trip count is unknown or doesn't divide by the VF,
1544 /// or as a peel-loop to handle gaps in interleave-groups.
1545 /// Under optsize and when the trip count is very small we don't allow any
1546 /// iterations to execute in the scalar loop.
1547 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1548
1549 /// Control finally chosen tail folding style. The first element is used if
1550 /// the IV update may overflow, the second element - if it does not.
1551 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1552 ChosenTailFoldingStyle;
1553
1554 /// true if scalable vectorization is supported and enabled.
1555 std::optional<bool> IsScalableVectorizationAllowed;
1556
1557 /// Maximum safe number of elements to be processed per vector iteration,
1558 /// which do not prevent store-load forwarding and are safe with regard to the
1559 /// memory dependencies. Required for EVL-based veectorization, where this
1560 /// value is used as the upper bound of the safe AVL.
1561 std::optional<unsigned> MaxSafeElements;
1562
1563 /// A map holding scalar costs for different vectorization factors. The
1564 /// presence of a cost for an instruction in the mapping indicates that the
1565 /// instruction will be scalarized when vectorizing with the associated
1566 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1567 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1568
1569 /// Holds the instructions known to be uniform after vectorization.
1570 /// The data is collected per VF.
1571 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1572
1573 /// Holds the instructions known to be scalar after vectorization.
1574 /// The data is collected per VF.
1575 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1576
1577 /// Holds the instructions (address computations) that are forced to be
1578 /// scalarized.
1579 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1580
1581 /// PHINodes of the reductions that should be expanded in-loop.
1582 SmallPtrSet<PHINode *, 4> InLoopReductions;
1583
1584 /// A Map of inloop reduction operations and their immediate chain operand.
1585 /// FIXME: This can be removed once reductions can be costed correctly in
1586 /// VPlan. This was added to allow quick lookup of the inloop operations.
1587 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1588
1589 /// Returns the expected difference in cost from scalarizing the expression
1590 /// feeding a predicated instruction \p PredInst. The instructions to
1591 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1592 /// non-negative return value implies the expression will be scalarized.
1593 /// Currently, only single-use chains are considered for scalarization.
1594 InstructionCost computePredInstDiscount(Instruction *PredInst,
1595 ScalarCostsTy &ScalarCosts,
1596 ElementCount VF);
1597
1598 /// Collect the instructions that are uniform after vectorization. An
1599 /// instruction is uniform if we represent it with a single scalar value in
1600 /// the vectorized loop corresponding to each vector iteration. Examples of
1601 /// uniform instructions include pointer operands of consecutive or
1602 /// interleaved memory accesses. Note that although uniformity implies an
1603 /// instruction will be scalar, the reverse is not true. In general, a
1604 /// scalarized instruction will be represented by VF scalar values in the
1605 /// vectorized loop, each corresponding to an iteration of the original
1606 /// scalar loop.
1607 void collectLoopUniforms(ElementCount VF);
1608
1609 /// Collect the instructions that are scalar after vectorization. An
1610 /// instruction is scalar if it is known to be uniform or will be scalarized
1611 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1612 /// to the list if they are used by a load/store instruction that is marked as
1613 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1614 /// VF values in the vectorized loop, each corresponding to an iteration of
1615 /// the original scalar loop.
1616 void collectLoopScalars(ElementCount VF);
1617
1618 /// Keeps cost model vectorization decision and cost for instructions.
1619 /// Right now it is used for memory instructions only.
1620 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1621 std::pair<InstWidening, InstructionCost>>;
1622
1623 DecisionList WideningDecisions;
1624
1625 using CallDecisionList =
1626 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1627
1628 CallDecisionList CallWideningDecisions;
1629
1630 /// Returns true if \p V is expected to be vectorized and it needs to be
1631 /// extracted.
1632 bool needsExtract(Value *V, ElementCount VF) const {
1634 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1635 TheLoop->isLoopInvariant(I) ||
1636 getWideningDecision(I, VF) == CM_Scalarize ||
1637 (isa<CallInst>(I) &&
1638 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1639 return false;
1640
1641 // Assume we can vectorize V (and hence we need extraction) if the
1642 // scalars are not computed yet. This can happen, because it is called
1643 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1644 // the scalars are collected. That should be a safe assumption in most
1645 // cases, because we check if the operands have vectorizable types
1646 // beforehand in LoopVectorizationLegality.
1647 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1648 };
1649
1650 /// Returns a range containing only operands needing to be extracted.
1651 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1652 ElementCount VF) const {
1653
1654 SmallPtrSet<const Value *, 4> UniqueOperands;
1656 for (Value *Op : Ops) {
1657 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1658 !needsExtract(Op, VF))
1659 continue;
1660 Res.push_back(Op);
1661 }
1662 return Res;
1663 }
1664
1665public:
1666 /// The loop that we evaluate.
1668
1669 /// Predicated scalar evolution analysis.
1671
1672 /// Loop Info analysis.
1674
1675 /// Vectorization legality.
1677
1678 /// Vector target information.
1680
1681 /// Target Library Info.
1683
1684 /// Demanded bits analysis.
1686
1687 /// Assumption cache.
1689
1690 /// Interface to emit optimization remarks.
1692
1694
1695 /// Loop Vectorize Hint.
1697
1698 /// The interleave access information contains groups of interleaved accesses
1699 /// with the same stride and close to each other.
1701
1702 /// Values to ignore in the cost model.
1704
1705 /// Values to ignore in the cost model when VF > 1.
1707
1708 /// All element types found in the loop.
1710
1711 /// The kind of cost that we are calculating
1713
1714 /// Whether this loop should be optimized for size based on function attribute
1715 /// or profile information.
1717
1718 /// The highest VF possible for this loop, without using MaxBandwidth.
1720};
1721} // end namespace llvm
1722
1723namespace {
1724/// Helper struct to manage generating runtime checks for vectorization.
1725///
1726/// The runtime checks are created up-front in temporary blocks to allow better
1727/// estimating the cost and un-linked from the existing IR. After deciding to
1728/// vectorize, the checks are moved back. If deciding not to vectorize, the
1729/// temporary blocks are completely removed.
1730class GeneratedRTChecks {
1731 /// Basic block which contains the generated SCEV checks, if any.
1732 BasicBlock *SCEVCheckBlock = nullptr;
1733
1734 /// The value representing the result of the generated SCEV checks. If it is
1735 /// nullptr no SCEV checks have been generated.
1736 Value *SCEVCheckCond = nullptr;
1737
1738 /// Basic block which contains the generated memory runtime checks, if any.
1739 BasicBlock *MemCheckBlock = nullptr;
1740
1741 /// The value representing the result of the generated memory runtime checks.
1742 /// If it is nullptr no memory runtime checks have been generated.
1743 Value *MemRuntimeCheckCond = nullptr;
1744
1745 DominatorTree *DT;
1746 LoopInfo *LI;
1748
1749 SCEVExpander SCEVExp;
1750 SCEVExpander MemCheckExp;
1751
1752 bool CostTooHigh = false;
1753
1754 Loop *OuterLoop = nullptr;
1755
1757
1758 /// The kind of cost that we are calculating
1760
1761public:
1762 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1765 : DT(DT), LI(LI), TTI(TTI), SCEVExp(*PSE.getSE(), DL, "scev.check"),
1766 MemCheckExp(*PSE.getSE(), DL, "scev.check"), PSE(PSE),
1767 CostKind(CostKind) {}
1768
1769 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1770 /// accurately estimate the cost of the runtime checks. The blocks are
1771 /// un-linked from the IR and are added back during vector code generation. If
1772 /// there is no vector code generation, the check blocks are removed
1773 /// completely.
1774 void create(Loop *L, const LoopAccessInfo &LAI,
1775 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1776
1777 // Hard cutoff to limit compile-time increase in case a very large number of
1778 // runtime checks needs to be generated.
1779 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1780 // profile info.
1781 CostTooHigh =
1783 if (CostTooHigh)
1784 return;
1785
1786 BasicBlock *LoopHeader = L->getHeader();
1787 BasicBlock *Preheader = L->getLoopPreheader();
1788
1789 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1790 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1791 // may be used by SCEVExpander. The blocks will be un-linked from their
1792 // predecessors and removed from LI & DT at the end of the function.
1793 if (!UnionPred.isAlwaysTrue()) {
1794 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1795 nullptr, "vector.scevcheck");
1796
1797 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1798 &UnionPred, SCEVCheckBlock->getTerminator());
1799 if (isa<Constant>(SCEVCheckCond)) {
1800 // Clean up directly after expanding the predicate to a constant, to
1801 // avoid further expansions re-using anything left over from SCEVExp.
1802 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1803 SCEVCleaner.cleanup();
1804 }
1805 }
1806
1807 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1808 if (RtPtrChecking.Need) {
1809 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1810 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1811 "vector.memcheck");
1812
1813 auto DiffChecks = RtPtrChecking.getDiffChecks();
1814 if (DiffChecks) {
1815 Value *RuntimeVF = nullptr;
1816 MemRuntimeCheckCond = addDiffRuntimeChecks(
1817 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1818 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1819 if (!RuntimeVF)
1820 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1821 return RuntimeVF;
1822 },
1823 IC);
1824 } else {
1825 MemRuntimeCheckCond = addRuntimeChecks(
1826 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1828 }
1829 assert(MemRuntimeCheckCond &&
1830 "no RT checks generated although RtPtrChecking "
1831 "claimed checks are required");
1832 }
1833
1834 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1835
1836 if (!MemCheckBlock && !SCEVCheckBlock)
1837 return;
1838
1839 // Unhook the temporary block with the checks, update various places
1840 // accordingly.
1841 if (SCEVCheckBlock)
1842 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1843 if (MemCheckBlock)
1844 MemCheckBlock->replaceAllUsesWith(Preheader);
1845
1846 if (SCEVCheckBlock) {
1847 SCEVCheckBlock->getTerminator()->moveBefore(
1848 Preheader->getTerminator()->getIterator());
1849 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1850 UI->setDebugLoc(DebugLoc::getTemporary());
1851 Preheader->getTerminator()->eraseFromParent();
1852 }
1853 if (MemCheckBlock) {
1854 MemCheckBlock->getTerminator()->moveBefore(
1855 Preheader->getTerminator()->getIterator());
1856 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1857 UI->setDebugLoc(DebugLoc::getTemporary());
1858 Preheader->getTerminator()->eraseFromParent();
1859 }
1860
1861 DT->changeImmediateDominator(LoopHeader, Preheader);
1862 if (MemCheckBlock) {
1863 DT->eraseNode(MemCheckBlock);
1864 LI->removeBlock(MemCheckBlock);
1865 }
1866 if (SCEVCheckBlock) {
1867 DT->eraseNode(SCEVCheckBlock);
1868 LI->removeBlock(SCEVCheckBlock);
1869 }
1870
1871 // Outer loop is used as part of the later cost calculations.
1872 OuterLoop = L->getParentLoop();
1873 }
1874
1876 if (SCEVCheckBlock || MemCheckBlock)
1877 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1878
1879 if (CostTooHigh) {
1881 Cost.setInvalid();
1882 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1883 return Cost;
1884 }
1885
1886 InstructionCost RTCheckCost = 0;
1887 if (SCEVCheckBlock)
1888 for (Instruction &I : *SCEVCheckBlock) {
1889 if (SCEVCheckBlock->getTerminator() == &I)
1890 continue;
1892 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1893 RTCheckCost += C;
1894 }
1895 if (MemCheckBlock) {
1896 InstructionCost MemCheckCost = 0;
1897 for (Instruction &I : *MemCheckBlock) {
1898 if (MemCheckBlock->getTerminator() == &I)
1899 continue;
1901 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1902 MemCheckCost += C;
1903 }
1904
1905 // If the runtime memory checks are being created inside an outer loop
1906 // we should find out if these checks are outer loop invariant. If so,
1907 // the checks will likely be hoisted out and so the effective cost will
1908 // reduce according to the outer loop trip count.
1909 if (OuterLoop) {
1910 ScalarEvolution *SE = MemCheckExp.getSE();
1911 // TODO: If profitable, we could refine this further by analysing every
1912 // individual memory check, since there could be a mixture of loop
1913 // variant and invariant checks that mean the final condition is
1914 // variant.
1915 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1916 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1917 // It seems reasonable to assume that we can reduce the effective
1918 // cost of the checks even when we know nothing about the trip
1919 // count. Assume that the outer loop executes at least twice.
1920 unsigned BestTripCount = 2;
1921
1922 // Get the best known TC estimate.
1923 if (auto EstimatedTC = getSmallBestKnownTC(
1924 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1925 if (EstimatedTC->isFixed())
1926 BestTripCount = EstimatedTC->getFixedValue();
1927
1928 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1929
1930 // Let's ensure the cost is always at least 1.
1931 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1932 (InstructionCost::CostType)1);
1933
1934 if (BestTripCount > 1)
1936 << "We expect runtime memory checks to be hoisted "
1937 << "out of the outer loop. Cost reduced from "
1938 << MemCheckCost << " to " << NewMemCheckCost << '\n');
1939
1940 MemCheckCost = NewMemCheckCost;
1941 }
1942 }
1943
1944 RTCheckCost += MemCheckCost;
1945 }
1946
1947 if (SCEVCheckBlock || MemCheckBlock)
1948 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
1949 << "\n");
1950
1951 return RTCheckCost;
1952 }
1953
1954 /// Remove the created SCEV & memory runtime check blocks & instructions, if
1955 /// unused.
1956 ~GeneratedRTChecks() {
1957 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1958 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1959 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
1960 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
1961 if (SCEVChecksUsed)
1962 SCEVCleaner.markResultUsed();
1963
1964 if (MemChecksUsed) {
1965 MemCheckCleaner.markResultUsed();
1966 } else {
1967 auto &SE = *MemCheckExp.getSE();
1968 // Memory runtime check generation creates compares that use expanded
1969 // values. Remove them before running the SCEVExpanderCleaners.
1970 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1971 if (MemCheckExp.isInsertedInstruction(&I))
1972 continue;
1973 SE.forgetValue(&I);
1974 I.eraseFromParent();
1975 }
1976 }
1977 MemCheckCleaner.cleanup();
1978 SCEVCleaner.cleanup();
1979
1980 if (!SCEVChecksUsed)
1981 SCEVCheckBlock->eraseFromParent();
1982 if (!MemChecksUsed)
1983 MemCheckBlock->eraseFromParent();
1984 }
1985
1986 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
1987 /// outside VPlan.
1988 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
1989 using namespace llvm::PatternMatch;
1990 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
1991 return {nullptr, nullptr};
1992
1993 return {SCEVCheckCond, SCEVCheckBlock};
1994 }
1995
1996 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
1997 /// outside VPlan.
1998 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
1999 using namespace llvm::PatternMatch;
2000 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2001 return {nullptr, nullptr};
2002 return {MemRuntimeCheckCond, MemCheckBlock};
2003 }
2004
2005 /// Return true if any runtime checks have been added
2006 bool hasChecks() const {
2007 return getSCEVChecks().first || getMemRuntimeChecks().first;
2008 }
2009};
2010} // namespace
2011
2017
2022
2023// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2024// vectorization. The loop needs to be annotated with #pragma omp simd
2025// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2026// vector length information is not provided, vectorization is not considered
2027// explicit. Interleave hints are not allowed either. These limitations will be
2028// relaxed in the future.
2029// Please, note that we are currently forced to abuse the pragma 'clang
2030// vectorize' semantics. This pragma provides *auto-vectorization hints*
2031// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2032// provides *explicit vectorization hints* (LV can bypass legal checks and
2033// assume that vectorization is legal). However, both hints are implemented
2034// using the same metadata (llvm.loop.vectorize, processed by
2035// LoopVectorizeHints). This will be fixed in the future when the native IR
2036// representation for pragma 'omp simd' is introduced.
2037static bool isExplicitVecOuterLoop(Loop *OuterLp,
2039 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2040 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2041
2042 // Only outer loops with an explicit vectorization hint are supported.
2043 // Unannotated outer loops are ignored.
2045 return false;
2046
2047 Function *Fn = OuterLp->getHeader()->getParent();
2048 if (!Hints.allowVectorization(Fn, OuterLp,
2049 true /*VectorizeOnlyWhenForced*/)) {
2050 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2051 return false;
2052 }
2053
2054 if (Hints.getInterleave() > 1) {
2055 // TODO: Interleave support is future work.
2056 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2057 "outer loops.\n");
2058 Hints.emitRemarkWithHints();
2059 return false;
2060 }
2061
2062 return true;
2063}
2064
2068 // Collect inner loops and outer loops without irreducible control flow. For
2069 // now, only collect outer loops that have explicit vectorization hints. If we
2070 // are stress testing the VPlan H-CFG construction, we collect the outermost
2071 // loop of every loop nest.
2072 if (L.isInnermost() || VPlanBuildStressTest ||
2074 LoopBlocksRPO RPOT(&L);
2075 RPOT.perform(LI);
2077 V.push_back(&L);
2078 // TODO: Collect inner loops inside marked outer loops in case
2079 // vectorization fails for the outer loop. Do not invoke
2080 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2081 // already known to be reducible. We can use an inherited attribute for
2082 // that.
2083 return;
2084 }
2085 }
2086 for (Loop *InnerL : L)
2087 collectSupportedLoops(*InnerL, LI, ORE, V);
2088}
2089
2090//===----------------------------------------------------------------------===//
2091// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2092// LoopVectorizationCostModel and LoopVectorizationPlanner.
2093//===----------------------------------------------------------------------===//
2094
2095/// Compute the transformed value of Index at offset StartValue using step
2096/// StepValue.
2097/// For integer induction, returns StartValue + Index * StepValue.
2098/// For pointer induction, returns StartValue[Index * StepValue].
2099/// FIXME: The newly created binary instructions should contain nsw/nuw
2100/// flags, which can be found from the original scalar operations.
2101static Value *
2103 Value *Step,
2105 const BinaryOperator *InductionBinOp) {
2106 using namespace llvm::PatternMatch;
2107 Type *StepTy = Step->getType();
2108 Value *CastedIndex = StepTy->isIntegerTy()
2109 ? B.CreateSExtOrTrunc(Index, StepTy)
2110 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2111 if (CastedIndex != Index) {
2112 CastedIndex->setName(CastedIndex->getName() + ".cast");
2113 Index = CastedIndex;
2114 }
2115
2116 // Note: the IR at this point is broken. We cannot use SE to create any new
2117 // SCEV and then expand it, hoping that SCEV's simplification will give us
2118 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2119 // lead to various SCEV crashes. So all we can do is to use builder and rely
2120 // on InstCombine for future simplifications. Here we handle some trivial
2121 // cases only.
2122 auto CreateAdd = [&B](Value *X, Value *Y) {
2123 assert(X->getType() == Y->getType() && "Types don't match!");
2124 if (match(X, m_ZeroInt()))
2125 return Y;
2126 if (match(Y, m_ZeroInt()))
2127 return X;
2128 return B.CreateAdd(X, Y);
2129 };
2130
2131 // We allow X to be a vector type, in which case Y will potentially be
2132 // splatted into a vector with the same element count.
2133 auto CreateMul = [&B](Value *X, Value *Y) {
2134 assert(X->getType()->getScalarType() == Y->getType() &&
2135 "Types don't match!");
2136 if (match(X, m_One()))
2137 return Y;
2138 if (match(Y, m_One()))
2139 return X;
2140 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2141 if (XVTy && !isa<VectorType>(Y->getType()))
2142 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2143 return B.CreateMul(X, Y);
2144 };
2145
2146 switch (InductionKind) {
2148 assert(!isa<VectorType>(Index->getType()) &&
2149 "Vector indices not supported for integer inductions yet");
2150 assert(Index->getType() == StartValue->getType() &&
2151 "Index type does not match StartValue type");
2152 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2153 return B.CreateSub(StartValue, Index);
2154 auto *Offset = CreateMul(Index, Step);
2155 return CreateAdd(StartValue, Offset);
2156 }
2158 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2160 assert(!isa<VectorType>(Index->getType()) &&
2161 "Vector indices not supported for FP inductions yet");
2162 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2163 assert(InductionBinOp &&
2164 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2165 InductionBinOp->getOpcode() == Instruction::FSub) &&
2166 "Original bin op should be defined for FP induction");
2167
2168 Value *MulExp = B.CreateFMul(Step, Index);
2169 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2170 "induction");
2171 }
2173 return nullptr;
2174 }
2175 llvm_unreachable("invalid enum");
2176}
2177
2178static std::optional<unsigned> getMaxVScale(const Function &F,
2179 const TargetTransformInfo &TTI) {
2180 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2181 return MaxVScale;
2182
2183 if (F.hasFnAttribute(Attribute::VScaleRange))
2184 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2185
2186 return std::nullopt;
2187}
2188
2189/// For the given VF and UF and maximum trip count computed for the loop, return
2190/// whether the induction variable might overflow in the vectorized loop. If not,
2191/// then we know a runtime overflow check always evaluates to false and can be
2192/// removed.
2194 const LoopVectorizationCostModel *Cost,
2195 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2196 // Always be conservative if we don't know the exact unroll factor.
2197 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2198
2199 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2200 APInt MaxUIntTripCount = IdxTy->getMask();
2201
2202 // We know the runtime overflow check is known false iff the (max) trip-count
2203 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2204 // the vector loop induction variable.
2205 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2206 uint64_t MaxVF = VF.getKnownMinValue();
2207 if (VF.isScalable()) {
2208 std::optional<unsigned> MaxVScale =
2209 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2210 if (!MaxVScale)
2211 return false;
2212 MaxVF *= *MaxVScale;
2213 }
2214
2215 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2216 }
2217
2218 return false;
2219}
2220
2221// Return whether we allow using masked interleave-groups (for dealing with
2222// strided loads/stores that reside in predicated blocks, or for dealing
2223// with gaps).
2225 // If an override option has been passed in for interleaved accesses, use it.
2226 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2228
2229 return TTI.enableMaskedInterleavedAccessVectorization();
2230}
2231
2233 BasicBlock *CheckIRBB) {
2234 // Note: The block with the minimum trip-count check is already connected
2235 // during earlier VPlan construction.
2236 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2237 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2238 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2239 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2240 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2241 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2242 PreVectorPH = CheckVPIRBB;
2243 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2244 PreVectorPH->swapSuccessors();
2245
2246 // We just connected a new block to the scalar preheader. Update all
2247 // VPPhis by adding an incoming value for it, replicating the last value.
2248 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2249 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2250 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2251 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2252 "must have incoming values for all operands");
2253 R.addOperand(R.getOperand(NumPredecessors - 2));
2254 }
2255}
2256
2258 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2259 // Generate code to check if the loop's trip count is less than VF * UF, or
2260 // equal to it in case a scalar epilogue is required; this implies that the
2261 // vector trip count is zero. This check also covers the case where adding one
2262 // to the backedge-taken count overflowed leading to an incorrect trip count
2263 // of zero. In this case we will also jump to the scalar loop.
2264 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2266
2267 // Reuse existing vector loop preheader for TC checks.
2268 // Note that new preheader block is generated for vector loop.
2269 BasicBlock *const TCCheckBlock = VectorPH;
2271 TCCheckBlock->getContext(),
2272 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2273 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2274
2275 // If tail is to be folded, vector loop takes care of all iterations.
2277 Type *CountTy = Count->getType();
2278 Value *CheckMinIters = Builder.getFalse();
2279 auto CreateStep = [&]() -> Value * {
2280 // Create step with max(MinProTripCount, UF * VF).
2281 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2282 return createStepForVF(Builder, CountTy, VF, UF);
2283
2284 Value *MinProfTC =
2285 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2286 if (!VF.isScalable())
2287 return MinProfTC;
2288 return Builder.CreateBinaryIntrinsic(
2289 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2290 };
2291
2292 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2293 if (Style == TailFoldingStyle::None) {
2294 Value *Step = CreateStep();
2295 ScalarEvolution &SE = *PSE.getSE();
2296 // TODO: Emit unconditional branch to vector preheader instead of
2297 // conditional branch with known condition.
2298 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2299 // Check if the trip count is < the step.
2300 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2301 // TODO: Ensure step is at most the trip count when determining max VF and
2302 // UF, w/o tail folding.
2303 CheckMinIters = Builder.getTrue();
2305 TripCountSCEV, SE.getSCEV(Step))) {
2306 // Generate the minimum iteration check only if we cannot prove the
2307 // check is known to be true, or known to be false.
2308 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2309 } // else step known to be < trip count, use CheckMinIters preset to false.
2310 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2313 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2314 // an overflow to zero when updating induction variables and so an
2315 // additional overflow check is required before entering the vector loop.
2316
2317 // Get the maximum unsigned value for the type.
2318 Value *MaxUIntTripCount =
2319 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2320 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2321
2322 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2323 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2324 }
2325 return CheckMinIters;
2326}
2327
2328/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2329/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2330/// predecessors and successors of VPBB, if any, are rewired to the new
2331/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2333 BasicBlock *IRBB,
2334 VPlan *Plan = nullptr) {
2335 if (!Plan)
2336 Plan = VPBB->getPlan();
2337 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2338 auto IP = IRVPBB->begin();
2339 for (auto &R : make_early_inc_range(VPBB->phis()))
2340 R.moveBefore(*IRVPBB, IP);
2341
2342 for (auto &R :
2344 R.moveBefore(*IRVPBB, IRVPBB->end());
2345
2346 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2347 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2348 return IRVPBB;
2349}
2350
2352 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2353 assert(VectorPH && "Invalid loop structure");
2354 assert((OrigLoop->getUniqueLatchExitBlock() ||
2355 Cost->requiresScalarEpilogue(VF.isVector())) &&
2356 "loops not exiting via the latch without required epilogue?");
2357
2358 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2359 // wrapping the newly created scalar preheader here at the moment, because the
2360 // Plan's scalar preheader may be unreachable at this point. Instead it is
2361 // replaced in executePlan.
2362 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2363 Twine(Prefix) + "scalar.ph");
2364}
2365
2366/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2367/// expansion results.
2369 const SCEV2ValueTy &ExpandedSCEVs) {
2370 const SCEV *Step = ID.getStep();
2371 if (auto *C = dyn_cast<SCEVConstant>(Step))
2372 return C->getValue();
2373 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2374 return U->getValue();
2375 Value *V = ExpandedSCEVs.lookup(Step);
2376 assert(V && "SCEV must be expanded at this point");
2377 return V;
2378}
2379
2380/// Knowing that loop \p L executes a single vector iteration, add instructions
2381/// that will get simplified and thus should not have any cost to \p
2382/// InstsToIgnore.
2385 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2386 auto *Cmp = L->getLatchCmpInst();
2387 if (Cmp)
2388 InstsToIgnore.insert(Cmp);
2389 for (const auto &KV : IL) {
2390 // Extract the key by hand so that it can be used in the lambda below. Note
2391 // that captured structured bindings are a C++20 extension.
2392 const PHINode *IV = KV.first;
2393
2394 // Get next iteration value of the induction variable.
2395 Instruction *IVInst =
2396 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2397 if (all_of(IVInst->users(),
2398 [&](const User *U) { return U == IV || U == Cmp; }))
2399 InstsToIgnore.insert(IVInst);
2400 }
2401}
2402
2404 // Create a new IR basic block for the scalar preheader.
2405 BasicBlock *ScalarPH = createScalarPreheader("");
2406 return ScalarPH->getSinglePredecessor();
2407}
2408
2409namespace {
2410
2411struct CSEDenseMapInfo {
2412 static bool canHandle(const Instruction *I) {
2415 }
2416
2417 static inline Instruction *getEmptyKey() {
2419 }
2420
2421 static inline Instruction *getTombstoneKey() {
2422 return DenseMapInfo<Instruction *>::getTombstoneKey();
2423 }
2424
2425 static unsigned getHashValue(const Instruction *I) {
2426 assert(canHandle(I) && "Unknown instruction!");
2427 return hash_combine(I->getOpcode(),
2428 hash_combine_range(I->operand_values()));
2429 }
2430
2431 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2432 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2433 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2434 return LHS == RHS;
2435 return LHS->isIdenticalTo(RHS);
2436 }
2437};
2438
2439} // end anonymous namespace
2440
2441///Perform cse of induction variable instructions.
2442static void cse(BasicBlock *BB) {
2443 // Perform simple cse.
2445 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2446 if (!CSEDenseMapInfo::canHandle(&In))
2447 continue;
2448
2449 // Check if we can replace this instruction with any of the
2450 // visited instructions.
2451 if (Instruction *V = CSEMap.lookup(&In)) {
2452 In.replaceAllUsesWith(V);
2453 In.eraseFromParent();
2454 continue;
2455 }
2456
2457 CSEMap[&In] = &In;
2458 }
2459}
2460
2461/// This function attempts to return a value that represents the ElementCount
2462/// at runtime. For fixed-width VFs we know this precisely at compile
2463/// time, but for scalable VFs we calculate it based on an estimate of the
2464/// vscale value.
2466 std::optional<unsigned> VScale) {
2467 unsigned EstimatedVF = VF.getKnownMinValue();
2468 if (VF.isScalable())
2469 if (VScale)
2470 EstimatedVF *= *VScale;
2471 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2472 return EstimatedVF;
2473}
2474
2477 ElementCount VF) const {
2478 // We only need to calculate a cost if the VF is scalar; for actual vectors
2479 // we should already have a pre-calculated cost at each VF.
2480 if (!VF.isScalar())
2481 return getCallWideningDecision(CI, VF).Cost;
2482
2483 Type *RetTy = CI->getType();
2485 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2486 return *RedCost;
2487
2489 for (auto &ArgOp : CI->args())
2490 Tys.push_back(ArgOp->getType());
2491
2492 InstructionCost ScalarCallCost =
2493 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2494
2495 // If this is an intrinsic we may have a lower cost for it.
2498 return std::min(ScalarCallCost, IntrinsicCost);
2499 }
2500 return ScalarCallCost;
2501}
2502
2504 if (VF.isScalar() || !canVectorizeTy(Ty))
2505 return Ty;
2506 return toVectorizedTy(Ty, VF);
2507}
2508
2511 ElementCount VF) const {
2513 assert(ID && "Expected intrinsic call!");
2514 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2515 FastMathFlags FMF;
2516 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2517 FMF = FPMO->getFastMathFlags();
2518
2521 SmallVector<Type *> ParamTys;
2522 std::transform(FTy->param_begin(), FTy->param_end(),
2523 std::back_inserter(ParamTys),
2524 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2525
2526 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2529 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2530}
2531
2533 // Fix widened non-induction PHIs by setting up the PHI operands.
2534 fixNonInductionPHIs(State);
2535
2536 // Don't apply optimizations below when no (vector) loop remains, as they all
2537 // require one at the moment.
2538 VPBasicBlock *HeaderVPBB =
2539 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2540 if (!HeaderVPBB)
2541 return;
2542
2543 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2544
2545 // Remove redundant induction instructions.
2546 cse(HeaderBB);
2547}
2548
2550 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2552 for (VPRecipeBase &P : VPBB->phis()) {
2554 if (!VPPhi)
2555 continue;
2556 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2557 // Make sure the builder has a valid insert point.
2558 Builder.SetInsertPoint(NewPhi);
2559 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2560 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2561 }
2562 }
2563}
2564
2565void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2566 // We should not collect Scalars more than once per VF. Right now, this
2567 // function is called from collectUniformsAndScalars(), which already does
2568 // this check. Collecting Scalars for VF=1 does not make any sense.
2569 assert(VF.isVector() && !Scalars.contains(VF) &&
2570 "This function should not be visited twice for the same VF");
2571
2572 // This avoids any chances of creating a REPLICATE recipe during planning
2573 // since that would result in generation of scalarized code during execution,
2574 // which is not supported for scalable vectors.
2575 if (VF.isScalable()) {
2576 Scalars[VF].insert_range(Uniforms[VF]);
2577 return;
2578 }
2579
2581
2582 // These sets are used to seed the analysis with pointers used by memory
2583 // accesses that will remain scalar.
2585 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2586 auto *Latch = TheLoop->getLoopLatch();
2587
2588 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2589 // The pointer operands of loads and stores will be scalar as long as the
2590 // memory access is not a gather or scatter operation. The value operand of a
2591 // store will remain scalar if the store is scalarized.
2592 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2593 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2594 assert(WideningDecision != CM_Unknown &&
2595 "Widening decision should be ready at this moment");
2596 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2597 if (Ptr == Store->getValueOperand())
2598 return WideningDecision == CM_Scalarize;
2599 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2600 "Ptr is neither a value or pointer operand");
2601 return WideningDecision != CM_GatherScatter;
2602 };
2603
2604 // A helper that returns true if the given value is a getelementptr
2605 // instruction contained in the loop.
2606 auto IsLoopVaryingGEP = [&](Value *V) {
2607 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2608 };
2609
2610 // A helper that evaluates a memory access's use of a pointer. If the use will
2611 // be a scalar use and the pointer is only used by memory accesses, we place
2612 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2613 // PossibleNonScalarPtrs.
2614 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2615 // We only care about bitcast and getelementptr instructions contained in
2616 // the loop.
2617 if (!IsLoopVaryingGEP(Ptr))
2618 return;
2619
2620 // If the pointer has already been identified as scalar (e.g., if it was
2621 // also identified as uniform), there's nothing to do.
2622 auto *I = cast<Instruction>(Ptr);
2623 if (Worklist.count(I))
2624 return;
2625
2626 // If the use of the pointer will be a scalar use, and all users of the
2627 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2628 // place the pointer in PossibleNonScalarPtrs.
2629 if (IsScalarUse(MemAccess, Ptr) &&
2631 ScalarPtrs.insert(I);
2632 else
2633 PossibleNonScalarPtrs.insert(I);
2634 };
2635
2636 // We seed the scalars analysis with three classes of instructions: (1)
2637 // instructions marked uniform-after-vectorization and (2) bitcast,
2638 // getelementptr and (pointer) phi instructions used by memory accesses
2639 // requiring a scalar use.
2640 //
2641 // (1) Add to the worklist all instructions that have been identified as
2642 // uniform-after-vectorization.
2643 Worklist.insert_range(Uniforms[VF]);
2644
2645 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2646 // memory accesses requiring a scalar use. The pointer operands of loads and
2647 // stores will be scalar unless the operation is a gather or scatter.
2648 // The value operand of a store will remain scalar if the store is scalarized.
2649 for (auto *BB : TheLoop->blocks())
2650 for (auto &I : *BB) {
2651 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2652 EvaluatePtrUse(Load, Load->getPointerOperand());
2653 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2654 EvaluatePtrUse(Store, Store->getPointerOperand());
2655 EvaluatePtrUse(Store, Store->getValueOperand());
2656 }
2657 }
2658 for (auto *I : ScalarPtrs)
2659 if (!PossibleNonScalarPtrs.count(I)) {
2660 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2661 Worklist.insert(I);
2662 }
2663
2664 // Insert the forced scalars.
2665 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2666 // induction variable when the PHI user is scalarized.
2667 auto ForcedScalar = ForcedScalars.find(VF);
2668 if (ForcedScalar != ForcedScalars.end())
2669 for (auto *I : ForcedScalar->second) {
2670 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2671 Worklist.insert(I);
2672 }
2673
2674 // Expand the worklist by looking through any bitcasts and getelementptr
2675 // instructions we've already identified as scalar. This is similar to the
2676 // expansion step in collectLoopUniforms(); however, here we're only
2677 // expanding to include additional bitcasts and getelementptr instructions.
2678 unsigned Idx = 0;
2679 while (Idx != Worklist.size()) {
2680 Instruction *Dst = Worklist[Idx++];
2681 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2682 continue;
2683 auto *Src = cast<Instruction>(Dst->getOperand(0));
2684 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2685 auto *J = cast<Instruction>(U);
2686 return !TheLoop->contains(J) || Worklist.count(J) ||
2687 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2688 IsScalarUse(J, Src));
2689 })) {
2690 Worklist.insert(Src);
2691 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2692 }
2693 }
2694
2695 // An induction variable will remain scalar if all users of the induction
2696 // variable and induction variable update remain scalar.
2697 for (const auto &Induction : Legal->getInductionVars()) {
2698 auto *Ind = Induction.first;
2699 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2700
2701 // If tail-folding is applied, the primary induction variable will be used
2702 // to feed a vector compare.
2703 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2704 continue;
2705
2706 // Returns true if \p Indvar is a pointer induction that is used directly by
2707 // load/store instruction \p I.
2708 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2709 Instruction *I) {
2710 return Induction.second.getKind() ==
2713 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2714 };
2715
2716 // Determine if all users of the induction variable are scalar after
2717 // vectorization.
2718 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2719 auto *I = cast<Instruction>(U);
2720 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2721 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2722 });
2723 if (!ScalarInd)
2724 continue;
2725
2726 // If the induction variable update is a fixed-order recurrence, neither the
2727 // induction variable or its update should be marked scalar after
2728 // vectorization.
2729 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2730 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2731 continue;
2732
2733 // Determine if all users of the induction variable update instruction are
2734 // scalar after vectorization.
2735 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2736 auto *I = cast<Instruction>(U);
2737 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2738 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2739 });
2740 if (!ScalarIndUpdate)
2741 continue;
2742
2743 // The induction variable and its update instruction will remain scalar.
2744 Worklist.insert(Ind);
2745 Worklist.insert(IndUpdate);
2746 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2747 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2748 << "\n");
2749 }
2750
2751 Scalars[VF].insert_range(Worklist);
2752}
2753
2755 Instruction *I, ElementCount VF) const {
2756 if (!isPredicatedInst(I))
2757 return false;
2758
2759 // Do we have a non-scalar lowering for this predicated
2760 // instruction? No - it is scalar with predication.
2761 switch(I->getOpcode()) {
2762 default:
2763 return true;
2764 case Instruction::Call:
2765 if (VF.isScalar())
2766 return true;
2768 case Instruction::Load:
2769 case Instruction::Store: {
2771 auto *Ty = getLoadStoreType(I);
2772 unsigned AS = getLoadStoreAddressSpace(I);
2773 Type *VTy = Ty;
2774 if (VF.isVector())
2775 VTy = VectorType::get(Ty, VF);
2776 const Align Alignment = getLoadStoreAlignment(I);
2777 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2778 TTI.isLegalMaskedGather(VTy, Alignment))
2779 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2780 TTI.isLegalMaskedScatter(VTy, Alignment));
2781 }
2782 case Instruction::UDiv:
2783 case Instruction::SDiv:
2784 case Instruction::SRem:
2785 case Instruction::URem: {
2786 // We have the option to use the safe-divisor idiom to avoid predication.
2787 // The cost based decision here will always select safe-divisor for
2788 // scalable vectors as scalarization isn't legal.
2789 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2790 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2791 }
2792 }
2793}
2794
2795// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2797 // TODO: We can use the loop-preheader as context point here and get
2798 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2800 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2802 return false;
2803
2804 // If the instruction was executed conditionally in the original scalar loop,
2805 // predication is needed with a mask whose lanes are all possibly inactive.
2806 if (Legal->blockNeedsPredication(I->getParent()))
2807 return true;
2808
2809 // If we're not folding the tail by masking, predication is unnecessary.
2810 if (!foldTailByMasking())
2811 return false;
2812
2813 // All that remain are instructions with side-effects originally executed in
2814 // the loop unconditionally, but now execute under a tail-fold mask (only)
2815 // having at least one active lane (the first). If the side-effects of the
2816 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2817 // - it will cause the same side-effects as when masked.
2818 switch(I->getOpcode()) {
2819 default:
2821 "instruction should have been considered by earlier checks");
2822 case Instruction::Call:
2823 // Side-effects of a Call are assumed to be non-invariant, needing a
2824 // (fold-tail) mask.
2825 assert(Legal->isMaskRequired(I) &&
2826 "should have returned earlier for calls not needing a mask");
2827 return true;
2828 case Instruction::Load:
2829 // If the address is loop invariant no predication is needed.
2830 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2831 case Instruction::Store: {
2832 // For stores, we need to prove both speculation safety (which follows from
2833 // the same argument as loads), but also must prove the value being stored
2834 // is correct. The easiest form of the later is to require that all values
2835 // stored are the same.
2836 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2837 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2838 }
2839 case Instruction::UDiv:
2840 case Instruction::SDiv:
2841 case Instruction::SRem:
2842 case Instruction::URem:
2843 // If the divisor is loop-invariant no predication is needed.
2844 return !Legal->isInvariant(I->getOperand(1));
2845 }
2846}
2847
2848std::pair<InstructionCost, InstructionCost>
2850 ElementCount VF) const {
2851 assert(I->getOpcode() == Instruction::UDiv ||
2852 I->getOpcode() == Instruction::SDiv ||
2853 I->getOpcode() == Instruction::SRem ||
2854 I->getOpcode() == Instruction::URem);
2856
2857 // Scalarization isn't legal for scalable vector types
2858 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2859 if (!VF.isScalable()) {
2860 // Get the scalarization cost and scale this amount by the probability of
2861 // executing the predicated block. If the instruction is not predicated,
2862 // we fall through to the next case.
2863 ScalarizationCost = 0;
2864
2865 // These instructions have a non-void type, so account for the phi nodes
2866 // that we will create. This cost is likely to be zero. The phi node
2867 // cost, if any, should be scaled by the block probability because it
2868 // models a copy at the end of each predicated block.
2869 ScalarizationCost +=
2870 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2871
2872 // The cost of the non-predicated instruction.
2873 ScalarizationCost +=
2874 VF.getFixedValue() *
2875 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2876
2877 // The cost of insertelement and extractelement instructions needed for
2878 // scalarization.
2879 ScalarizationCost += getScalarizationOverhead(I, VF);
2880
2881 // Scale the cost by the probability of executing the predicated blocks.
2882 // This assumes the predicated block for each vector lane is equally
2883 // likely.
2884 ScalarizationCost = ScalarizationCost / getPredBlockCostDivisor(CostKind);
2885 }
2886
2887 InstructionCost SafeDivisorCost = 0;
2888 auto *VecTy = toVectorTy(I->getType(), VF);
2889 // The cost of the select guard to ensure all lanes are well defined
2890 // after we speculate above any internal control flow.
2891 SafeDivisorCost +=
2892 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2893 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2895
2896 SmallVector<const Value *, 4> Operands(I->operand_values());
2897 SafeDivisorCost += TTI.getArithmeticInstrCost(
2898 I->getOpcode(), VecTy, CostKind,
2899 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2900 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2901 Operands, I);
2902 return {ScalarizationCost, SafeDivisorCost};
2903}
2904
2906 Instruction *I, ElementCount VF) const {
2907 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2909 "Decision should not be set yet.");
2910 auto *Group = getInterleavedAccessGroup(I);
2911 assert(Group && "Must have a group.");
2912 unsigned InterleaveFactor = Group->getFactor();
2913
2914 // If the instruction's allocated size doesn't equal its type size, it
2915 // requires padding and will be scalarized.
2916 auto &DL = I->getDataLayout();
2917 auto *ScalarTy = getLoadStoreType(I);
2918 if (hasIrregularType(ScalarTy, DL))
2919 return false;
2920
2921 // For scalable vectors, the interleave factors must be <= 8 since we require
2922 // the (de)interleaveN intrinsics instead of shufflevectors.
2923 if (VF.isScalable() && InterleaveFactor > 8)
2924 return false;
2925
2926 // If the group involves a non-integral pointer, we may not be able to
2927 // losslessly cast all values to a common type.
2928 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
2929 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2930 Instruction *Member = Group->getMember(Idx);
2931 if (!Member)
2932 continue;
2933 auto *MemberTy = getLoadStoreType(Member);
2934 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
2935 // Don't coerce non-integral pointers to integers or vice versa.
2936 if (MemberNI != ScalarNI)
2937 // TODO: Consider adding special nullptr value case here
2938 return false;
2939 if (MemberNI && ScalarNI &&
2940 ScalarTy->getPointerAddressSpace() !=
2941 MemberTy->getPointerAddressSpace())
2942 return false;
2943 }
2944
2945 // Check if masking is required.
2946 // A Group may need masking for one of two reasons: it resides in a block that
2947 // needs predication, or it was decided to use masking to deal with gaps
2948 // (either a gap at the end of a load-access that may result in a speculative
2949 // load, or any gaps in a store-access).
2950 bool PredicatedAccessRequiresMasking =
2951 blockNeedsPredicationForAnyReason(I->getParent()) &&
2952 Legal->isMaskRequired(I);
2953 bool LoadAccessWithGapsRequiresEpilogMasking =
2954 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
2956 bool StoreAccessWithGapsRequiresMasking =
2957 isa<StoreInst>(I) && !Group->isFull();
2958 if (!PredicatedAccessRequiresMasking &&
2959 !LoadAccessWithGapsRequiresEpilogMasking &&
2960 !StoreAccessWithGapsRequiresMasking)
2961 return true;
2962
2963 // If masked interleaving is required, we expect that the user/target had
2964 // enabled it, because otherwise it either wouldn't have been created or
2965 // it should have been invalidated by the CostModel.
2967 "Masked interleave-groups for predicated accesses are not enabled.");
2968
2969 if (Group->isReverse())
2970 return false;
2971
2972 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
2973 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2974 StoreAccessWithGapsRequiresMasking;
2975 if (VF.isScalable() && NeedsMaskForGaps)
2976 return false;
2977
2978 auto *Ty = getLoadStoreType(I);
2979 const Align Alignment = getLoadStoreAlignment(I);
2980 unsigned AS = getLoadStoreAddressSpace(I);
2981 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
2982 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
2983}
2984
2986 Instruction *I, ElementCount VF) {
2987 // Get and ensure we have a valid memory instruction.
2988 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
2989
2991 auto *ScalarTy = getLoadStoreType(I);
2992
2993 // In order to be widened, the pointer should be consecutive, first of all.
2994 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
2995 return false;
2996
2997 // If the instruction is a store located in a predicated block, it will be
2998 // scalarized.
2999 if (isScalarWithPredication(I, VF))
3000 return false;
3001
3002 // If the instruction's allocated size doesn't equal it's type size, it
3003 // requires padding and will be scalarized.
3004 auto &DL = I->getDataLayout();
3005 if (hasIrregularType(ScalarTy, DL))
3006 return false;
3007
3008 return true;
3009}
3010
3011void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3012 // We should not collect Uniforms more than once per VF. Right now,
3013 // this function is called from collectUniformsAndScalars(), which
3014 // already does this check. Collecting Uniforms for VF=1 does not make any
3015 // sense.
3016
3017 assert(VF.isVector() && !Uniforms.contains(VF) &&
3018 "This function should not be visited twice for the same VF");
3019
3020 // Visit the list of Uniforms. If we find no uniform value, we won't
3021 // analyze again. Uniforms.count(VF) will return 1.
3022 Uniforms[VF].clear();
3023
3024 // Now we know that the loop is vectorizable!
3025 // Collect instructions inside the loop that will remain uniform after
3026 // vectorization.
3027
3028 // Global values, params and instructions outside of current loop are out of
3029 // scope.
3030 auto IsOutOfScope = [&](Value *V) -> bool {
3032 return (!I || !TheLoop->contains(I));
3033 };
3034
3035 // Worklist containing uniform instructions demanding lane 0.
3036 SetVector<Instruction *> Worklist;
3037
3038 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3039 // that require predication must not be considered uniform after
3040 // vectorization, because that would create an erroneous replicating region
3041 // where only a single instance out of VF should be formed.
3042 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3043 if (IsOutOfScope(I)) {
3044 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3045 << *I << "\n");
3046 return;
3047 }
3048 if (isPredicatedInst(I)) {
3049 LLVM_DEBUG(
3050 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3051 << "\n");
3052 return;
3053 }
3054 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3055 Worklist.insert(I);
3056 };
3057
3058 // Start with the conditional branches exiting the loop. If the branch
3059 // condition is an instruction contained in the loop that is only used by the
3060 // branch, it is uniform. Note conditions from uncountable early exits are not
3061 // uniform.
3063 TheLoop->getExitingBlocks(Exiting);
3064 for (BasicBlock *E : Exiting) {
3065 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3066 continue;
3067 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3068 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3069 AddToWorklistIfAllowed(Cmp);
3070 }
3071
3072 auto PrevVF = VF.divideCoefficientBy(2);
3073 // Return true if all lanes perform the same memory operation, and we can
3074 // thus choose to execute only one.
3075 auto IsUniformMemOpUse = [&](Instruction *I) {
3076 // If the value was already known to not be uniform for the previous
3077 // (smaller VF), it cannot be uniform for the larger VF.
3078 if (PrevVF.isVector()) {
3079 auto Iter = Uniforms.find(PrevVF);
3080 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3081 return false;
3082 }
3083 if (!Legal->isUniformMemOp(*I, VF))
3084 return false;
3085 if (isa<LoadInst>(I))
3086 // Loading the same address always produces the same result - at least
3087 // assuming aliasing and ordering which have already been checked.
3088 return true;
3089 // Storing the same value on every iteration.
3090 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3091 };
3092
3093 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3094 InstWidening WideningDecision = getWideningDecision(I, VF);
3095 assert(WideningDecision != CM_Unknown &&
3096 "Widening decision should be ready at this moment");
3097
3098 if (IsUniformMemOpUse(I))
3099 return true;
3100
3101 return (WideningDecision == CM_Widen ||
3102 WideningDecision == CM_Widen_Reverse ||
3103 WideningDecision == CM_Interleave);
3104 };
3105
3106 // Returns true if Ptr is the pointer operand of a memory access instruction
3107 // I, I is known to not require scalarization, and the pointer is not also
3108 // stored.
3109 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3110 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3111 return false;
3112 return getLoadStorePointerOperand(I) == Ptr &&
3113 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3114 };
3115
3116 // Holds a list of values which are known to have at least one uniform use.
3117 // Note that there may be other uses which aren't uniform. A "uniform use"
3118 // here is something which only demands lane 0 of the unrolled iterations;
3119 // it does not imply that all lanes produce the same value (e.g. this is not
3120 // the usual meaning of uniform)
3121 SetVector<Value *> HasUniformUse;
3122
3123 // Scan the loop for instructions which are either a) known to have only
3124 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3125 for (auto *BB : TheLoop->blocks())
3126 for (auto &I : *BB) {
3127 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3128 switch (II->getIntrinsicID()) {
3129 case Intrinsic::sideeffect:
3130 case Intrinsic::experimental_noalias_scope_decl:
3131 case Intrinsic::assume:
3132 case Intrinsic::lifetime_start:
3133 case Intrinsic::lifetime_end:
3134 if (TheLoop->hasLoopInvariantOperands(&I))
3135 AddToWorklistIfAllowed(&I);
3136 break;
3137 default:
3138 break;
3139 }
3140 }
3141
3142 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3143 if (IsOutOfScope(EVI->getAggregateOperand())) {
3144 AddToWorklistIfAllowed(EVI);
3145 continue;
3146 }
3147 // Only ExtractValue instructions where the aggregate value comes from a
3148 // call are allowed to be non-uniform.
3149 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3150 "Expected aggregate value to be call return value");
3151 }
3152
3153 // If there's no pointer operand, there's nothing to do.
3155 if (!Ptr)
3156 continue;
3157
3158 // If the pointer can be proven to be uniform, always add it to the
3159 // worklist.
3160 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3161 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3162
3163 if (IsUniformMemOpUse(&I))
3164 AddToWorklistIfAllowed(&I);
3165
3166 if (IsVectorizedMemAccessUse(&I, Ptr))
3167 HasUniformUse.insert(Ptr);
3168 }
3169
3170 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3171 // demanding) users. Since loops are assumed to be in LCSSA form, this
3172 // disallows uses outside the loop as well.
3173 for (auto *V : HasUniformUse) {
3174 if (IsOutOfScope(V))
3175 continue;
3176 auto *I = cast<Instruction>(V);
3177 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3178 auto *UI = cast<Instruction>(U);
3179 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3180 });
3181 if (UsersAreMemAccesses)
3182 AddToWorklistIfAllowed(I);
3183 }
3184
3185 // Expand Worklist in topological order: whenever a new instruction
3186 // is added , its users should be already inside Worklist. It ensures
3187 // a uniform instruction will only be used by uniform instructions.
3188 unsigned Idx = 0;
3189 while (Idx != Worklist.size()) {
3190 Instruction *I = Worklist[Idx++];
3191
3192 for (auto *OV : I->operand_values()) {
3193 // isOutOfScope operands cannot be uniform instructions.
3194 if (IsOutOfScope(OV))
3195 continue;
3196 // First order recurrence Phi's should typically be considered
3197 // non-uniform.
3198 auto *OP = dyn_cast<PHINode>(OV);
3199 if (OP && Legal->isFixedOrderRecurrence(OP))
3200 continue;
3201 // If all the users of the operand are uniform, then add the
3202 // operand into the uniform worklist.
3203 auto *OI = cast<Instruction>(OV);
3204 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3205 auto *J = cast<Instruction>(U);
3206 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3207 }))
3208 AddToWorklistIfAllowed(OI);
3209 }
3210 }
3211
3212 // For an instruction to be added into Worklist above, all its users inside
3213 // the loop should also be in Worklist. However, this condition cannot be
3214 // true for phi nodes that form a cyclic dependence. We must process phi
3215 // nodes separately. An induction variable will remain uniform if all users
3216 // of the induction variable and induction variable update remain uniform.
3217 // The code below handles both pointer and non-pointer induction variables.
3218 BasicBlock *Latch = TheLoop->getLoopLatch();
3219 for (const auto &Induction : Legal->getInductionVars()) {
3220 auto *Ind = Induction.first;
3221 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3222
3223 // Determine if all users of the induction variable are uniform after
3224 // vectorization.
3225 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3226 auto *I = cast<Instruction>(U);
3227 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3228 IsVectorizedMemAccessUse(I, Ind);
3229 });
3230 if (!UniformInd)
3231 continue;
3232
3233 // Determine if all users of the induction variable update instruction are
3234 // uniform after vectorization.
3235 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3236 auto *I = cast<Instruction>(U);
3237 return I == Ind || Worklist.count(I) ||
3238 IsVectorizedMemAccessUse(I, IndUpdate);
3239 });
3240 if (!UniformIndUpdate)
3241 continue;
3242
3243 // The induction variable and its update instruction will remain uniform.
3244 AddToWorklistIfAllowed(Ind);
3245 AddToWorklistIfAllowed(IndUpdate);
3246 }
3247
3248 Uniforms[VF].insert_range(Worklist);
3249}
3250
3252 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3253
3254 if (Legal->getRuntimePointerChecking()->Need) {
3255 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3256 "runtime pointer checks needed. Enable vectorization of this "
3257 "loop with '#pragma clang loop vectorize(enable)' when "
3258 "compiling with -Os/-Oz",
3259 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3260 return true;
3261 }
3262
3263 if (!PSE.getPredicate().isAlwaysTrue()) {
3264 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3265 "runtime SCEV checks needed. Enable vectorization of this "
3266 "loop with '#pragma clang loop vectorize(enable)' when "
3267 "compiling with -Os/-Oz",
3268 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3269 return true;
3270 }
3271
3272 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3273 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3274 reportVectorizationFailure("Runtime stride check for small trip count",
3275 "runtime stride == 1 checks needed. Enable vectorization of "
3276 "this loop without such check by compiling with -Os/-Oz",
3277 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3278 return true;
3279 }
3280
3281 return false;
3282}
3283
3284bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3285 if (IsScalableVectorizationAllowed)
3286 return *IsScalableVectorizationAllowed;
3287
3288 IsScalableVectorizationAllowed = false;
3289 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3290 return false;
3291
3292 if (Hints->isScalableVectorizationDisabled()) {
3293 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3294 "ScalableVectorizationDisabled", ORE, TheLoop);
3295 return false;
3296 }
3297
3298 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3299
3300 auto MaxScalableVF = ElementCount::getScalable(
3301 std::numeric_limits<ElementCount::ScalarTy>::max());
3302
3303 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3304 // FIXME: While for scalable vectors this is currently sufficient, this should
3305 // be replaced by a more detailed mechanism that filters out specific VFs,
3306 // instead of invalidating vectorization for a whole set of VFs based on the
3307 // MaxVF.
3308
3309 // Disable scalable vectorization if the loop contains unsupported reductions.
3310 if (!canVectorizeReductions(MaxScalableVF)) {
3312 "Scalable vectorization not supported for the reduction "
3313 "operations found in this loop.",
3314 "ScalableVFUnfeasible", ORE, TheLoop);
3315 return false;
3316 }
3317
3318 // Disable scalable vectorization if the loop contains any instructions
3319 // with element types not supported for scalable vectors.
3320 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3321 return !Ty->isVoidTy() &&
3323 })) {
3324 reportVectorizationInfo("Scalable vectorization is not supported "
3325 "for all element types found in this loop.",
3326 "ScalableVFUnfeasible", ORE, TheLoop);
3327 return false;
3328 }
3329
3330 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3331 reportVectorizationInfo("The target does not provide maximum vscale value "
3332 "for safe distance analysis.",
3333 "ScalableVFUnfeasible", ORE, TheLoop);
3334 return false;
3335 }
3336
3337 IsScalableVectorizationAllowed = true;
3338 return true;
3339}
3340
3341ElementCount
3342LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3343 if (!isScalableVectorizationAllowed())
3344 return ElementCount::getScalable(0);
3345
3346 auto MaxScalableVF = ElementCount::getScalable(
3347 std::numeric_limits<ElementCount::ScalarTy>::max());
3348 if (Legal->isSafeForAnyVectorWidth())
3349 return MaxScalableVF;
3350
3351 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3352 // Limit MaxScalableVF by the maximum safe dependence distance.
3353 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3354
3355 if (!MaxScalableVF)
3357 "Max legal vector width too small, scalable vectorization "
3358 "unfeasible.",
3359 "ScalableVFUnfeasible", ORE, TheLoop);
3360
3361 return MaxScalableVF;
3362}
3363
3364FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3365 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3366 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3367 unsigned SmallestType, WidestType;
3368 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3369
3370 // Get the maximum safe dependence distance in bits computed by LAA.
3371 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3372 // the memory accesses that is most restrictive (involved in the smallest
3373 // dependence distance).
3374 unsigned MaxSafeElementsPowerOf2 =
3375 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3376 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3377 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3378 MaxSafeElementsPowerOf2 =
3379 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3380 }
3381 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3382 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3383
3384 if (!Legal->isSafeForAnyVectorWidth())
3385 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3386
3387 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3388 << ".\n");
3389 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3390 << ".\n");
3391
3392 // First analyze the UserVF, fall back if the UserVF should be ignored.
3393 if (UserVF) {
3394 auto MaxSafeUserVF =
3395 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3396
3397 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3398 // If `VF=vscale x N` is safe, then so is `VF=N`
3399 if (UserVF.isScalable())
3400 return FixedScalableVFPair(
3401 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3402
3403 return UserVF;
3404 }
3405
3406 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3407
3408 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3409 // is better to ignore the hint and let the compiler choose a suitable VF.
3410 if (!UserVF.isScalable()) {
3411 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3412 << " is unsafe, clamping to max safe VF="
3413 << MaxSafeFixedVF << ".\n");
3414 ORE->emit([&]() {
3415 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3416 TheLoop->getStartLoc(),
3417 TheLoop->getHeader())
3418 << "User-specified vectorization factor "
3419 << ore::NV("UserVectorizationFactor", UserVF)
3420 << " is unsafe, clamping to maximum safe vectorization factor "
3421 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3422 });
3423 return MaxSafeFixedVF;
3424 }
3425
3427 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3428 << " is ignored because scalable vectors are not "
3429 "available.\n");
3430 ORE->emit([&]() {
3431 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3432 TheLoop->getStartLoc(),
3433 TheLoop->getHeader())
3434 << "User-specified vectorization factor "
3435 << ore::NV("UserVectorizationFactor", UserVF)
3436 << " is ignored because the target does not support scalable "
3437 "vectors. The compiler will pick a more suitable value.";
3438 });
3439 } else {
3440 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3441 << " is unsafe. Ignoring scalable UserVF.\n");
3442 ORE->emit([&]() {
3443 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3444 TheLoop->getStartLoc(),
3445 TheLoop->getHeader())
3446 << "User-specified vectorization factor "
3447 << ore::NV("UserVectorizationFactor", UserVF)
3448 << " is unsafe. Ignoring the hint to let the compiler pick a "
3449 "more suitable value.";
3450 });
3451 }
3452 }
3453
3454 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3455 << " / " << WidestType << " bits.\n");
3456
3457 FixedScalableVFPair Result(ElementCount::getFixed(1),
3459 if (auto MaxVF =
3460 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3461 MaxSafeFixedVF, FoldTailByMasking))
3462 Result.FixedVF = MaxVF;
3463
3464 if (auto MaxVF =
3465 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3466 MaxSafeScalableVF, FoldTailByMasking))
3467 if (MaxVF.isScalable()) {
3468 Result.ScalableVF = MaxVF;
3469 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3470 << "\n");
3471 }
3472
3473 return Result;
3474}
3475
3476FixedScalableVFPair
3478 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3479 // TODO: It may be useful to do since it's still likely to be dynamically
3480 // uniform if the target can skip.
3482 "Not inserting runtime ptr check for divergent target",
3483 "runtime pointer checks needed. Not enabled for divergent target",
3484 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3486 }
3487
3488 ScalarEvolution *SE = PSE.getSE();
3490 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3491 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3492 if (TC != ElementCount::getFixed(MaxTC))
3493 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3494 if (TC.isScalar()) {
3495 reportVectorizationFailure("Single iteration (non) loop",
3496 "loop trip count is one, irrelevant for vectorization",
3497 "SingleIterationLoop", ORE, TheLoop);
3499 }
3500
3501 // If BTC matches the widest induction type and is -1 then the trip count
3502 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3503 // to vectorize.
3504 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3505 if (!isa<SCEVCouldNotCompute>(BTC) &&
3506 BTC->getType()->getScalarSizeInBits() >=
3507 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3509 SE->getMinusOne(BTC->getType()))) {
3511 "Trip count computation wrapped",
3512 "backedge-taken count is -1, loop trip count wrapped to 0",
3513 "TripCountWrapped", ORE, TheLoop);
3515 }
3516
3517 switch (ScalarEpilogueStatus) {
3519 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3521 [[fallthrough]];
3523 LLVM_DEBUG(
3524 dbgs() << "LV: vector predicate hint/switch found.\n"
3525 << "LV: Not allowing scalar epilogue, creating predicated "
3526 << "vector loop.\n");
3527 break;
3529 // fallthrough as a special case of OptForSize
3531 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3532 LLVM_DEBUG(
3533 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3534 else
3535 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3536 << "count.\n");
3537
3538 // Bail if runtime checks are required, which are not good when optimising
3539 // for size.
3542
3543 break;
3544 }
3545
3546 // Now try the tail folding
3547
3548 // Invalidate interleave groups that require an epilogue if we can't mask
3549 // the interleave-group.
3551 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3552 "No decisions should have been taken at this point");
3553 // Note: There is no need to invalidate any cost modeling decisions here, as
3554 // none were taken so far.
3555 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3556 }
3557
3558 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3559
3560 // Avoid tail folding if the trip count is known to be a multiple of any VF
3561 // we choose.
3562 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3563 MaxFactors.FixedVF.getFixedValue();
3564 if (MaxFactors.ScalableVF) {
3565 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3566 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3567 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3568 *MaxPowerOf2RuntimeVF,
3569 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3570 } else
3571 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3572 }
3573
3574 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3575 // Return false if the loop is neither a single-latch-exit loop nor an
3576 // early-exit loop as tail-folding is not supported in that case.
3577 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3578 !Legal->hasUncountableEarlyExit())
3579 return false;
3580 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3581 ScalarEvolution *SE = PSE.getSE();
3582 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3583 // with uncountable exits. For countable loops, the symbolic maximum must
3584 // remain identical to the known back-edge taken count.
3585 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3586 assert((Legal->hasUncountableEarlyExit() ||
3587 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3588 "Invalid loop count");
3589 const SCEV *ExitCount = SE->getAddExpr(
3590 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3591 const SCEV *Rem = SE->getURemExpr(
3592 SE->applyLoopGuards(ExitCount, TheLoop),
3593 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3594 return Rem->isZero();
3595 };
3596
3597 if (MaxPowerOf2RuntimeVF > 0u) {
3598 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3599 "MaxFixedVF must be a power of 2");
3600 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3601 // Accept MaxFixedVF if we do not have a tail.
3602 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3603 return MaxFactors;
3604 }
3605 }
3606
3607 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3608 if (ExpectedTC && ExpectedTC->isFixed() &&
3609 ExpectedTC->getFixedValue() <=
3610 TTI.getMinTripCountTailFoldingThreshold()) {
3611 if (MaxPowerOf2RuntimeVF > 0u) {
3612 // If we have a low-trip-count, and the fixed-width VF is known to divide
3613 // the trip count but the scalable factor does not, use the fixed-width
3614 // factor in preference to allow the generation of a non-predicated loop.
3615 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3616 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3617 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3618 "remain for any chosen VF.\n");
3619 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3620 return MaxFactors;
3621 }
3622 }
3623
3625 "The trip count is below the minial threshold value.",
3626 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3627 ORE, TheLoop);
3629 }
3630
3631 // If we don't know the precise trip count, or if the trip count that we
3632 // found modulo the vectorization factor is not zero, try to fold the tail
3633 // by masking.
3634 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3635 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3636 setTailFoldingStyles(ContainsScalableVF, UserIC);
3637 if (foldTailByMasking()) {
3639 LLVM_DEBUG(
3640 dbgs()
3641 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3642 "try to generate VP Intrinsics with scalable vector "
3643 "factors only.\n");
3644 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3645 // for now.
3646 // TODO: extend it for fixed vectors, if required.
3647 assert(ContainsScalableVF && "Expected scalable vector factor.");
3648
3649 MaxFactors.FixedVF = ElementCount::getFixed(1);
3650 }
3651 return MaxFactors;
3652 }
3653
3654 // If there was a tail-folding hint/switch, but we can't fold the tail by
3655 // masking, fallback to a vectorization with a scalar epilogue.
3656 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3657 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3658 "scalar epilogue instead.\n");
3659 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3660 return MaxFactors;
3661 }
3662
3663 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3664 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3666 }
3667
3668 if (TC.isZero()) {
3670 "unable to calculate the loop count due to complex control flow",
3671 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3673 }
3674
3676 "Cannot optimize for size and vectorize at the same time.",
3677 "cannot optimize for size and vectorize at the same time. "
3678 "Enable vectorization of this loop with '#pragma clang loop "
3679 "vectorize(enable)' when compiling with -Os/-Oz",
3680 "NoTailLoopWithOptForSize", ORE, TheLoop);
3682}
3683
3685 ElementCount VF) {
3686 if (ConsiderRegPressure.getNumOccurrences())
3687 return ConsiderRegPressure;
3688
3689 // TODO: We should eventually consider register pressure for all targets. The
3690 // TTI hook is temporary whilst target-specific issues are being fixed.
3691 if (TTI.shouldConsiderVectorizationRegPressure())
3692 return true;
3693
3694 if (!useMaxBandwidth(VF.isScalable()
3697 return false;
3698 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3700 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3702}
3703
3706 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3707 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3709 Legal->hasVectorCallVariants())));
3710}
3711
3712ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3713 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3714 unsigned EstimatedVF = VF.getKnownMinValue();
3715 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3716 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3717 auto Min = Attr.getVScaleRangeMin();
3718 EstimatedVF *= Min;
3719 }
3720
3721 // When a scalar epilogue is required, at least one iteration of the scalar
3722 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3723 // max VF that results in a dead vector loop.
3724 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3725 MaxTripCount -= 1;
3726
3727 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3728 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3729 // If upper bound loop trip count (TC) is known at compile time there is no
3730 // point in choosing VF greater than TC (as done in the loop below). Select
3731 // maximum power of two which doesn't exceed TC. If VF is
3732 // scalable, we only fall back on a fixed VF when the TC is less than or
3733 // equal to the known number of lanes.
3734 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3735 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3736 "exceeding the constant trip count: "
3737 << ClampedUpperTripCount << "\n");
3738 return ElementCount::get(ClampedUpperTripCount,
3739 FoldTailByMasking ? VF.isScalable() : false);
3740 }
3741 return VF;
3742}
3743
3744ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3745 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3746 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3747 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3748 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3749 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3751
3752 // Convenience function to return the minimum of two ElementCounts.
3753 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3754 assert((LHS.isScalable() == RHS.isScalable()) &&
3755 "Scalable flags must match");
3756 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3757 };
3758
3759 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3760 // Note that both WidestRegister and WidestType may not be a powers of 2.
3761 auto MaxVectorElementCount = ElementCount::get(
3762 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3763 ComputeScalableMaxVF);
3764 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3765 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3766 << (MaxVectorElementCount * WidestType) << " bits.\n");
3767
3768 if (!MaxVectorElementCount) {
3769 LLVM_DEBUG(dbgs() << "LV: The target has no "
3770 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3771 << " vector registers.\n");
3772 return ElementCount::getFixed(1);
3773 }
3774
3775 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3776 MaxTripCount, FoldTailByMasking);
3777 // If the MaxVF was already clamped, there's no point in trying to pick a
3778 // larger one.
3779 if (MaxVF != MaxVectorElementCount)
3780 return MaxVF;
3781
3783 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3785
3786 if (MaxVF.isScalable())
3787 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3788 else
3789 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3790
3791 if (useMaxBandwidth(RegKind)) {
3792 auto MaxVectorElementCountMaxBW = ElementCount::get(
3793 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3794 ComputeScalableMaxVF);
3795 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3796
3797 if (ElementCount MinVF =
3798 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3799 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3800 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3801 << ") with target's minimum: " << MinVF << '\n');
3802 MaxVF = MinVF;
3803 }
3804 }
3805
3806 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3807
3808 if (MaxVectorElementCount != MaxVF) {
3809 // Invalidate any widening decisions we might have made, in case the loop
3810 // requires prediction (decided later), but we have already made some
3811 // load/store widening decisions.
3812 invalidateCostModelingDecisions();
3813 }
3814 }
3815 return MaxVF;
3816}
3817
3818bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3819 const VectorizationFactor &B,
3820 const unsigned MaxTripCount,
3821 bool HasTail,
3822 bool IsEpilogue) const {
3823 InstructionCost CostA = A.Cost;
3824 InstructionCost CostB = B.Cost;
3825
3826 // Improve estimate for the vector width if it is scalable.
3827 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3828 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3829 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3830 if (A.Width.isScalable())
3831 EstimatedWidthA *= *VScale;
3832 if (B.Width.isScalable())
3833 EstimatedWidthB *= *VScale;
3834 }
3835
3836 // When optimizing for size choose whichever is smallest, which will be the
3837 // one with the smallest cost for the whole loop. On a tie pick the larger
3838 // vector width, on the assumption that throughput will be greater.
3839 if (CM.CostKind == TTI::TCK_CodeSize)
3840 return CostA < CostB ||
3841 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3842
3843 // Assume vscale may be larger than 1 (or the value being tuned for),
3844 // so that scalable vectorization is slightly favorable over fixed-width
3845 // vectorization.
3846 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3847 A.Width.isScalable() && !B.Width.isScalable();
3848
3849 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3850 const InstructionCost &RHS) {
3851 return PreferScalable ? LHS <= RHS : LHS < RHS;
3852 };
3853
3854 // To avoid the need for FP division:
3855 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3856 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3857 if (!MaxTripCount)
3858 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3859
3860 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3861 InstructionCost VectorCost,
3862 InstructionCost ScalarCost) {
3863 // If the trip count is a known (possibly small) constant, the trip count
3864 // will be rounded up to an integer number of iterations under
3865 // FoldTailByMasking. The total cost in that case will be
3866 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3867 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3868 // some extra overheads, but for the purpose of comparing the costs of
3869 // different VFs we can use this to compare the total loop-body cost
3870 // expected after vectorization.
3871 if (HasTail)
3872 return VectorCost * (MaxTripCount / VF) +
3873 ScalarCost * (MaxTripCount % VF);
3874 return VectorCost * divideCeil(MaxTripCount, VF);
3875 };
3876
3877 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3878 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3879 return CmpFn(RTCostA, RTCostB);
3880}
3881
3882bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3883 const VectorizationFactor &B,
3884 bool HasTail,
3885 bool IsEpilogue) const {
3886 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3887 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3888 IsEpilogue);
3889}
3890
3893 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3894 SmallVector<RecipeVFPair> InvalidCosts;
3895 for (const auto &Plan : VPlans) {
3896 for (ElementCount VF : Plan->vectorFactors()) {
3897 // The VPlan-based cost model is designed for computing vector cost.
3898 // Querying VPlan-based cost model with a scarlar VF will cause some
3899 // errors because we expect the VF is vector for most of the widen
3900 // recipes.
3901 if (VF.isScalar())
3902 continue;
3903
3904 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
3905 precomputeCosts(*Plan, VF, CostCtx);
3906 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3908 for (auto &R : *VPBB) {
3909 if (!R.cost(VF, CostCtx).isValid())
3910 InvalidCosts.emplace_back(&R, VF);
3911 }
3912 }
3913 }
3914 }
3915 if (InvalidCosts.empty())
3916 return;
3917
3918 // Emit a report of VFs with invalid costs in the loop.
3919
3920 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
3922 unsigned I = 0;
3923 for (auto &Pair : InvalidCosts)
3924 if (Numbering.try_emplace(Pair.first, I).second)
3925 ++I;
3926
3927 // Sort the list, first on recipe(number) then on VF.
3928 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
3929 unsigned NA = Numbering[A.first];
3930 unsigned NB = Numbering[B.first];
3931 if (NA != NB)
3932 return NA < NB;
3933 return ElementCount::isKnownLT(A.second, B.second);
3934 });
3935
3936 // For a list of ordered recipe-VF pairs:
3937 // [(load, VF1), (load, VF2), (store, VF1)]
3938 // group the recipes together to emit separate remarks for:
3939 // load (VF1, VF2)
3940 // store (VF1)
3941 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
3942 auto Subset = ArrayRef<RecipeVFPair>();
3943 do {
3944 if (Subset.empty())
3945 Subset = Tail.take_front(1);
3946
3947 VPRecipeBase *R = Subset.front().first;
3948
3949 unsigned Opcode =
3952 [](const auto *R) { return Instruction::PHI; })
3953 .Case<VPWidenSelectRecipe>(
3954 [](const auto *R) { return Instruction::Select; })
3955 .Case<VPWidenStoreRecipe>(
3956 [](const auto *R) { return Instruction::Store; })
3957 .Case<VPWidenLoadRecipe>(
3958 [](const auto *R) { return Instruction::Load; })
3959 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3960 [](const auto *R) { return Instruction::Call; })
3963 [](const auto *R) { return R->getOpcode(); })
3964 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
3965 return R->getStoredValues().empty() ? Instruction::Load
3966 : Instruction::Store;
3967 });
3968
3969 // If the next recipe is different, or if there are no other pairs,
3970 // emit a remark for the collated subset. e.g.
3971 // [(load, VF1), (load, VF2))]
3972 // to emit:
3973 // remark: invalid costs for 'load' at VF=(VF1, VF2)
3974 if (Subset == Tail || Tail[Subset.size()].first != R) {
3975 std::string OutString;
3976 raw_string_ostream OS(OutString);
3977 assert(!Subset.empty() && "Unexpected empty range");
3978 OS << "Recipe with invalid costs prevented vectorization at VF=(";
3979 for (const auto &Pair : Subset)
3980 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
3981 OS << "):";
3982 if (Opcode == Instruction::Call) {
3983 StringRef Name = "";
3984 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
3985 Name = Int->getIntrinsicName();
3986 } else {
3987 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
3988 Function *CalledFn =
3989 WidenCall ? WidenCall->getCalledScalarFunction()
3990 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
3991 ->getLiveInIRValue());
3992 Name = CalledFn->getName();
3993 }
3994 OS << " call to " << Name;
3995 } else
3996 OS << " " << Instruction::getOpcodeName(Opcode);
3997 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
3998 R->getDebugLoc());
3999 Tail = Tail.drop_front(Subset.size());
4000 Subset = {};
4001 } else
4002 // Grow the subset by one element
4003 Subset = Tail.take_front(Subset.size() + 1);
4004 } while (!Tail.empty());
4005}
4006
4007/// Check if any recipe of \p Plan will generate a vector value, which will be
4008/// assigned a vector register.
4010 const TargetTransformInfo &TTI) {
4011 assert(VF.isVector() && "Checking a scalar VF?");
4012 VPTypeAnalysis TypeInfo(Plan);
4013 DenseSet<VPRecipeBase *> EphemeralRecipes;
4014 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4015 // Set of already visited types.
4016 DenseSet<Type *> Visited;
4019 for (VPRecipeBase &R : *VPBB) {
4020 if (EphemeralRecipes.contains(&R))
4021 continue;
4022 // Continue early if the recipe is considered to not produce a vector
4023 // result. Note that this includes VPInstruction where some opcodes may
4024 // produce a vector, to preserve existing behavior as VPInstructions model
4025 // aspects not directly mapped to existing IR instructions.
4026 switch (R.getVPDefID()) {
4027 case VPDef::VPDerivedIVSC:
4028 case VPDef::VPScalarIVStepsSC:
4029 case VPDef::VPReplicateSC:
4030 case VPDef::VPInstructionSC:
4031 case VPDef::VPCanonicalIVPHISC:
4032 case VPDef::VPVectorPointerSC:
4033 case VPDef::VPVectorEndPointerSC:
4034 case VPDef::VPExpandSCEVSC:
4035 case VPDef::VPEVLBasedIVPHISC:
4036 case VPDef::VPPredInstPHISC:
4037 case VPDef::VPBranchOnMaskSC:
4038 continue;
4039 case VPDef::VPReductionSC:
4040 case VPDef::VPActiveLaneMaskPHISC:
4041 case VPDef::VPWidenCallSC:
4042 case VPDef::VPWidenCanonicalIVSC:
4043 case VPDef::VPWidenCastSC:
4044 case VPDef::VPWidenGEPSC:
4045 case VPDef::VPWidenIntrinsicSC:
4046 case VPDef::VPWidenSC:
4047 case VPDef::VPWidenSelectSC:
4048 case VPDef::VPBlendSC:
4049 case VPDef::VPFirstOrderRecurrencePHISC:
4050 case VPDef::VPHistogramSC:
4051 case VPDef::VPWidenPHISC:
4052 case VPDef::VPWidenIntOrFpInductionSC:
4053 case VPDef::VPWidenPointerInductionSC:
4054 case VPDef::VPReductionPHISC:
4055 case VPDef::VPInterleaveEVLSC:
4056 case VPDef::VPInterleaveSC:
4057 case VPDef::VPWidenLoadEVLSC:
4058 case VPDef::VPWidenLoadSC:
4059 case VPDef::VPWidenStoreEVLSC:
4060 case VPDef::VPWidenStoreSC:
4061 break;
4062 default:
4063 llvm_unreachable("unhandled recipe");
4064 }
4065
4066 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4067 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4068 if (!NumLegalParts)
4069 return false;
4070 if (VF.isScalable()) {
4071 // <vscale x 1 x iN> is assumed to be profitable over iN because
4072 // scalable registers are a distinct register class from scalar
4073 // ones. If we ever find a target which wants to lower scalable
4074 // vectors back to scalars, we'll need to update this code to
4075 // explicitly ask TTI about the register class uses for each part.
4076 return NumLegalParts <= VF.getKnownMinValue();
4077 }
4078 // Two or more elements that share a register - are vectorized.
4079 return NumLegalParts < VF.getFixedValue();
4080 };
4081
4082 // If no def nor is a store, e.g., branches, continue - no value to check.
4083 if (R.getNumDefinedValues() == 0 &&
4085 continue;
4086 // For multi-def recipes, currently only interleaved loads, suffice to
4087 // check first def only.
4088 // For stores check their stored value; for interleaved stores suffice
4089 // the check first stored value only. In all cases this is the second
4090 // operand.
4091 VPValue *ToCheck =
4092 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4093 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4094 if (!Visited.insert({ScalarTy}).second)
4095 continue;
4096 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4097 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4098 return true;
4099 }
4100 }
4101
4102 return false;
4103}
4104
4105static bool hasReplicatorRegion(VPlan &Plan) {
4107 Plan.getVectorLoopRegion()->getEntry())),
4108 [](auto *VPRB) { return VPRB->isReplicator(); });
4109}
4110
4111#ifndef NDEBUG
4112VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4113 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4114 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4115 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4116 assert(
4117 any_of(VPlans,
4118 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4119 "Expected Scalar VF to be a candidate");
4120
4121 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4122 ExpectedCost);
4123 VectorizationFactor ChosenFactor = ScalarCost;
4124
4125 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4126 if (ForceVectorization &&
4127 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4128 // Ignore scalar width, because the user explicitly wants vectorization.
4129 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4130 // evaluation.
4131 ChosenFactor.Cost = InstructionCost::getMax();
4132 }
4133
4134 for (auto &P : VPlans) {
4135 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4136 P->vectorFactors().end());
4137
4139 if (any_of(VFs, [this](ElementCount VF) {
4140 return CM.shouldConsiderRegPressureForVF(VF);
4141 }))
4142 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4143
4144 for (unsigned I = 0; I < VFs.size(); I++) {
4145 ElementCount VF = VFs[I];
4146 // The cost for scalar VF=1 is already calculated, so ignore it.
4147 if (VF.isScalar())
4148 continue;
4149
4150 /// If the register pressure needs to be considered for VF,
4151 /// don't consider the VF as valid if it exceeds the number
4152 /// of registers for the target.
4153 if (CM.shouldConsiderRegPressureForVF(VF) &&
4154 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4155 continue;
4156
4157 InstructionCost C = CM.expectedCost(VF);
4158
4159 // Add on other costs that are modelled in VPlan, but not in the legacy
4160 // cost model.
4161 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind);
4162 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4163 assert(VectorRegion && "Expected to have a vector region!");
4164 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4165 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4166 for (VPRecipeBase &R : *VPBB) {
4167 auto *VPI = dyn_cast<VPInstruction>(&R);
4168 if (!VPI)
4169 continue;
4170 switch (VPI->getOpcode()) {
4171 // Selects are only modelled in the legacy cost model for safe
4172 // divisors.
4173 case Instruction::Select: {
4174 VPValue *VPV = VPI->getVPSingleValue();
4175 if (VPV->getNumUsers() == 1) {
4176 if (auto *WR = dyn_cast<VPWidenRecipe>(*VPV->user_begin())) {
4177 switch (WR->getOpcode()) {
4178 case Instruction::UDiv:
4179 case Instruction::SDiv:
4180 case Instruction::URem:
4181 case Instruction::SRem:
4182 continue;
4183 default:
4184 break;
4185 }
4186 }
4187 }
4188 C += VPI->cost(VF, CostCtx);
4189 break;
4190 }
4192 unsigned Multiplier =
4193 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4194 ->getZExtValue();
4195 C += VPI->cost(VF * Multiplier, CostCtx);
4196 break;
4197 }
4199 C += VPI->cost(VF, CostCtx);
4200 break;
4201 default:
4202 break;
4203 }
4204 }
4205 }
4206
4207 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4208 unsigned Width =
4209 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4210 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4211 << " costs: " << (Candidate.Cost / Width));
4212 if (VF.isScalable())
4213 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4214 << CM.getVScaleForTuning().value_or(1) << ")");
4215 LLVM_DEBUG(dbgs() << ".\n");
4216
4217 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4218 LLVM_DEBUG(
4219 dbgs()
4220 << "LV: Not considering vector loop of width " << VF
4221 << " because it will not generate any vector instructions.\n");
4222 continue;
4223 }
4224
4225 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4226 LLVM_DEBUG(
4227 dbgs()
4228 << "LV: Not considering vector loop of width " << VF
4229 << " because it would cause replicated blocks to be generated,"
4230 << " which isn't allowed when optimizing for size.\n");
4231 continue;
4232 }
4233
4234 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4235 ChosenFactor = Candidate;
4236 }
4237 }
4238
4239 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4241 "There are conditional stores.",
4242 "store that is conditionally executed prevents vectorization",
4243 "ConditionalStore", ORE, OrigLoop);
4244 ChosenFactor = ScalarCost;
4245 }
4246
4247 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4248 !isMoreProfitable(ChosenFactor, ScalarCost,
4249 !CM.foldTailByMasking())) dbgs()
4250 << "LV: Vectorization seems to be not beneficial, "
4251 << "but was forced by a user.\n");
4252 return ChosenFactor;
4253}
4254#endif
4255
4256bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4257 ElementCount VF) const {
4258 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4259 // reductions need special handling and are currently unsupported.
4260 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4261 if (!Legal->isReductionVariable(&Phi))
4262 return Legal->isFixedOrderRecurrence(&Phi);
4263 RecurKind RK = Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4264 return RK == RecurKind::FMinNum || RK == RecurKind::FMaxNum;
4265 }))
4266 return false;
4267
4268 // Phis with uses outside of the loop require special handling and are
4269 // currently unsupported.
4270 for (const auto &Entry : Legal->getInductionVars()) {
4271 // Look for uses of the value of the induction at the last iteration.
4272 Value *PostInc =
4273 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4274 for (User *U : PostInc->users())
4275 if (!OrigLoop->contains(cast<Instruction>(U)))
4276 return false;
4277 // Look for uses of penultimate value of the induction.
4278 for (User *U : Entry.first->users())
4279 if (!OrigLoop->contains(cast<Instruction>(U)))
4280 return false;
4281 }
4282
4283 // Epilogue vectorization code has not been auditted to ensure it handles
4284 // non-latch exits properly. It may be fine, but it needs auditted and
4285 // tested.
4286 // TODO: Add support for loops with an early exit.
4287 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4288 return false;
4289
4290 return true;
4291}
4292
4294 const ElementCount VF, const unsigned IC) const {
4295 // FIXME: We need a much better cost-model to take different parameters such
4296 // as register pressure, code size increase and cost of extra branches into
4297 // account. For now we apply a very crude heuristic and only consider loops
4298 // with vectorization factors larger than a certain value.
4299
4300 // Allow the target to opt out entirely.
4301 if (!TTI.preferEpilogueVectorization())
4302 return false;
4303
4304 // We also consider epilogue vectorization unprofitable for targets that don't
4305 // consider interleaving beneficial (eg. MVE).
4306 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4307 return false;
4308
4309 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4311 : TTI.getEpilogueVectorizationMinVF();
4312 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4313}
4314
4316 const ElementCount MainLoopVF, unsigned IC) {
4319 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4320 return Result;
4321 }
4322
4323 if (!CM.isScalarEpilogueAllowed()) {
4324 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4325 "epilogue is allowed.\n");
4326 return Result;
4327 }
4328
4329 // Not really a cost consideration, but check for unsupported cases here to
4330 // simplify the logic.
4331 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4332 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4333 "is not a supported candidate.\n");
4334 return Result;
4335 }
4336
4338 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4340 if (hasPlanWithVF(ForcedEC))
4341 return {ForcedEC, 0, 0};
4342
4343 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4344 "viable.\n");
4345 return Result;
4346 }
4347
4348 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4349 LLVM_DEBUG(
4350 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4351 return Result;
4352 }
4353
4354 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4355 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4356 "this loop\n");
4357 return Result;
4358 }
4359
4360 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4361 // the main loop handles 8 lanes per iteration. We could still benefit from
4362 // vectorizing the epilogue loop with VF=4.
4363 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4364 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4365
4366 ScalarEvolution &SE = *PSE.getSE();
4367 Type *TCType = Legal->getWidestInductionType();
4368 const SCEV *RemainingIterations = nullptr;
4369 unsigned MaxTripCount = 0;
4370 const SCEV *TC =
4371 vputils::getSCEVExprForVPValue(getPlanFor(MainLoopVF).getTripCount(), SE);
4372 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4373 RemainingIterations =
4374 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4375
4376 // No iterations left to process in the epilogue.
4377 if (RemainingIterations->isZero())
4378 return Result;
4379
4380 if (MainLoopVF.isFixed()) {
4381 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4382 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4383 SE.getConstant(TCType, MaxTripCount))) {
4384 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4385 }
4386 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4387 << MaxTripCount << "\n");
4388 }
4389
4390 for (auto &NextVF : ProfitableVFs) {
4391 // Skip candidate VFs without a corresponding VPlan.
4392 if (!hasPlanWithVF(NextVF.Width))
4393 continue;
4394
4395 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4396 // vectors) or > the VF of the main loop (fixed vectors).
4397 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4398 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4399 (NextVF.Width.isScalable() &&
4400 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4401 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4402 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4403 continue;
4404
4405 // If NextVF is greater than the number of remaining iterations, the
4406 // epilogue loop would be dead. Skip such factors.
4407 if (RemainingIterations && !NextVF.Width.isScalable()) {
4408 if (SE.isKnownPredicate(
4410 SE.getConstant(TCType, NextVF.Width.getFixedValue()),
4411 RemainingIterations))
4412 continue;
4413 }
4414
4415 if (Result.Width.isScalar() ||
4416 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4417 /*IsEpilogue*/ true))
4418 Result = NextVF;
4419 }
4420
4421 if (Result != VectorizationFactor::Disabled())
4422 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4423 << Result.Width << "\n");
4424 return Result;
4425}
4426
4427std::pair<unsigned, unsigned>
4429 unsigned MinWidth = -1U;
4430 unsigned MaxWidth = 8;
4431 const DataLayout &DL = TheFunction->getDataLayout();
4432 // For in-loop reductions, no element types are added to ElementTypesInLoop
4433 // if there are no loads/stores in the loop. In this case, check through the
4434 // reduction variables to determine the maximum width.
4435 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4436 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4437 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4438 // When finding the min width used by the recurrence we need to account
4439 // for casts on the input operands of the recurrence.
4440 MinWidth = std::min(
4441 MinWidth,
4442 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4444 MaxWidth = std::max(MaxWidth,
4446 }
4447 } else {
4448 for (Type *T : ElementTypesInLoop) {
4449 MinWidth = std::min<unsigned>(
4450 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4451 MaxWidth = std::max<unsigned>(
4452 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4453 }
4454 }
4455 return {MinWidth, MaxWidth};
4456}
4457
4459 ElementTypesInLoop.clear();
4460 // For each block.
4461 for (BasicBlock *BB : TheLoop->blocks()) {
4462 // For each instruction in the loop.
4463 for (Instruction &I : BB->instructionsWithoutDebug()) {
4464 Type *T = I.getType();
4465
4466 // Skip ignored values.
4467 if (ValuesToIgnore.count(&I))
4468 continue;
4469
4470 // Only examine Loads, Stores and PHINodes.
4471 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4472 continue;
4473
4474 // Examine PHI nodes that are reduction variables. Update the type to
4475 // account for the recurrence type.
4476 if (auto *PN = dyn_cast<PHINode>(&I)) {
4477 if (!Legal->isReductionVariable(PN))
4478 continue;
4479 const RecurrenceDescriptor &RdxDesc =
4480 Legal->getRecurrenceDescriptor(PN);
4482 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4483 RdxDesc.getRecurrenceType()))
4484 continue;
4485 T = RdxDesc.getRecurrenceType();
4486 }
4487
4488 // Examine the stored values.
4489 if (auto *ST = dyn_cast<StoreInst>(&I))
4490 T = ST->getValueOperand()->getType();
4491
4492 assert(T->isSized() &&
4493 "Expected the load/store/recurrence type to be sized");
4494
4495 ElementTypesInLoop.insert(T);
4496 }
4497 }
4498}
4499
4500unsigned
4502 InstructionCost LoopCost) {
4503 // -- The interleave heuristics --
4504 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4505 // There are many micro-architectural considerations that we can't predict
4506 // at this level. For example, frontend pressure (on decode or fetch) due to
4507 // code size, or the number and capabilities of the execution ports.
4508 //
4509 // We use the following heuristics to select the interleave count:
4510 // 1. If the code has reductions, then we interleave to break the cross
4511 // iteration dependency.
4512 // 2. If the loop is really small, then we interleave to reduce the loop
4513 // overhead.
4514 // 3. We don't interleave if we think that we will spill registers to memory
4515 // due to the increased register pressure.
4516
4517 if (!CM.isScalarEpilogueAllowed())
4518 return 1;
4519
4522 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4523 "Unroll factor forced to be 1.\n");
4524 return 1;
4525 }
4526
4527 // We used the distance for the interleave count.
4528 if (!Legal->isSafeForAnyVectorWidth())
4529 return 1;
4530
4531 // We don't attempt to perform interleaving for loops with uncountable early
4532 // exits because the VPInstruction::AnyOf code cannot currently handle
4533 // multiple parts.
4534 if (Plan.hasEarlyExit())
4535 return 1;
4536
4537 const bool HasReductions =
4540
4541 // If we did not calculate the cost for VF (because the user selected the VF)
4542 // then we calculate the cost of VF here.
4543 if (LoopCost == 0) {
4544 if (VF.isScalar())
4545 LoopCost = CM.expectedCost(VF);
4546 else
4547 LoopCost = cost(Plan, VF);
4548 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4549
4550 // Loop body is free and there is no need for interleaving.
4551 if (LoopCost == 0)
4552 return 1;
4553 }
4554
4555 VPRegisterUsage R =
4556 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4557 // We divide by these constants so assume that we have at least one
4558 // instruction that uses at least one register.
4559 for (auto &Pair : R.MaxLocalUsers) {
4560 Pair.second = std::max(Pair.second, 1U);
4561 }
4562
4563 // We calculate the interleave count using the following formula.
4564 // Subtract the number of loop invariants from the number of available
4565 // registers. These registers are used by all of the interleaved instances.
4566 // Next, divide the remaining registers by the number of registers that is
4567 // required by the loop, in order to estimate how many parallel instances
4568 // fit without causing spills. All of this is rounded down if necessary to be
4569 // a power of two. We want power of two interleave count to simplify any
4570 // addressing operations or alignment considerations.
4571 // We also want power of two interleave counts to ensure that the induction
4572 // variable of the vector loop wraps to zero, when tail is folded by masking;
4573 // this currently happens when OptForSize, in which case IC is set to 1 above.
4574 unsigned IC = UINT_MAX;
4575
4576 for (const auto &Pair : R.MaxLocalUsers) {
4577 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4578 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4579 << " registers of "
4580 << TTI.getRegisterClassName(Pair.first)
4581 << " register class\n");
4582 if (VF.isScalar()) {
4583 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4584 TargetNumRegisters = ForceTargetNumScalarRegs;
4585 } else {
4586 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4587 TargetNumRegisters = ForceTargetNumVectorRegs;
4588 }
4589 unsigned MaxLocalUsers = Pair.second;
4590 unsigned LoopInvariantRegs = 0;
4591 if (R.LoopInvariantRegs.contains(Pair.first))
4592 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4593
4594 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4595 MaxLocalUsers);
4596 // Don't count the induction variable as interleaved.
4598 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4599 std::max(1U, (MaxLocalUsers - 1)));
4600 }
4601
4602 IC = std::min(IC, TmpIC);
4603 }
4604
4605 // Clamp the interleave ranges to reasonable counts.
4606 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4607
4608 // Check if the user has overridden the max.
4609 if (VF.isScalar()) {
4610 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4611 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4612 } else {
4613 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4614 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4615 }
4616
4617 // Try to get the exact trip count, or an estimate based on profiling data or
4618 // ConstantMax from PSE, failing that.
4619 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4620
4621 // For fixed length VFs treat a scalable trip count as unknown.
4622 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4623 // Re-evaluate trip counts and VFs to be in the same numerical space.
4624 unsigned AvailableTC =
4625 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4626 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4627
4628 // At least one iteration must be scalar when this constraint holds. So the
4629 // maximum available iterations for interleaving is one less.
4630 if (CM.requiresScalarEpilogue(VF.isVector()))
4631 --AvailableTC;
4632
4633 unsigned InterleaveCountLB = bit_floor(std::max(
4634 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4635
4636 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4637 // If the best known trip count is exact, we select between two
4638 // prospective ICs, where
4639 //
4640 // 1) the aggressive IC is capped by the trip count divided by VF
4641 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4642 //
4643 // The final IC is selected in a way that the epilogue loop trip count is
4644 // minimized while maximizing the IC itself, so that we either run the
4645 // vector loop at least once if it generates a small epilogue loop, or
4646 // else we run the vector loop at least twice.
4647
4648 unsigned InterleaveCountUB = bit_floor(std::max(
4649 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4650 MaxInterleaveCount = InterleaveCountLB;
4651
4652 if (InterleaveCountUB != InterleaveCountLB) {
4653 unsigned TailTripCountUB =
4654 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4655 unsigned TailTripCountLB =
4656 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4657 // If both produce same scalar tail, maximize the IC to do the same work
4658 // in fewer vector loop iterations
4659 if (TailTripCountUB == TailTripCountLB)
4660 MaxInterleaveCount = InterleaveCountUB;
4661 }
4662 } else {
4663 // If trip count is an estimated compile time constant, limit the
4664 // IC to be capped by the trip count divided by VF * 2, such that the
4665 // vector loop runs at least twice to make interleaving seem profitable
4666 // when there is an epilogue loop present. Since exact Trip count is not
4667 // known we choose to be conservative in our IC estimate.
4668 MaxInterleaveCount = InterleaveCountLB;
4669 }
4670 }
4671
4672 assert(MaxInterleaveCount > 0 &&
4673 "Maximum interleave count must be greater than 0");
4674
4675 // Clamp the calculated IC to be between the 1 and the max interleave count
4676 // that the target and trip count allows.
4677 if (IC > MaxInterleaveCount)
4678 IC = MaxInterleaveCount;
4679 else
4680 // Make sure IC is greater than 0.
4681 IC = std::max(1u, IC);
4682
4683 assert(IC > 0 && "Interleave count must be greater than 0.");
4684
4685 // Interleave if we vectorized this loop and there is a reduction that could
4686 // benefit from interleaving.
4687 if (VF.isVector() && HasReductions) {
4688 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4689 return IC;
4690 }
4691
4692 // For any scalar loop that either requires runtime checks or predication we
4693 // are better off leaving this to the unroller. Note that if we've already
4694 // vectorized the loop we will have done the runtime check and so interleaving
4695 // won't require further checks.
4696 bool ScalarInterleavingRequiresPredication =
4697 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4698 return Legal->blockNeedsPredication(BB);
4699 }));
4700 bool ScalarInterleavingRequiresRuntimePointerCheck =
4701 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4702
4703 // We want to interleave small loops in order to reduce the loop overhead and
4704 // potentially expose ILP opportunities.
4705 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4706 << "LV: IC is " << IC << '\n'
4707 << "LV: VF is " << VF << '\n');
4708 const bool AggressivelyInterleaveReductions =
4709 TTI.enableAggressiveInterleaving(HasReductions);
4710 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4711 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4712 // We assume that the cost overhead is 1 and we use the cost model
4713 // to estimate the cost of the loop and interleave until the cost of the
4714 // loop overhead is about 5% of the cost of the loop.
4715 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4716 SmallLoopCost / LoopCost.getValue()));
4717
4718 // Interleave until store/load ports (estimated by max interleave count) are
4719 // saturated.
4720 unsigned NumStores = 0;
4721 unsigned NumLoads = 0;
4724 for (VPRecipeBase &R : *VPBB) {
4726 NumLoads++;
4727 continue;
4728 }
4730 NumStores++;
4731 continue;
4732 }
4733
4734 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4735 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4736 NumStores += StoreOps;
4737 else
4738 NumLoads += InterleaveR->getNumDefinedValues();
4739 continue;
4740 }
4741 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4742 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4743 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4744 continue;
4745 }
4746 if (isa<VPHistogramRecipe>(&R)) {
4747 NumLoads++;
4748 NumStores++;
4749 continue;
4750 }
4751 }
4752 }
4753 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4754 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4755
4756 // There is little point in interleaving for reductions containing selects
4757 // and compares when VF=1 since it may just create more overhead than it's
4758 // worth for loops with small trip counts. This is because we still have to
4759 // do the final reduction after the loop.
4760 bool HasSelectCmpReductions =
4761 HasReductions &&
4763 [](VPRecipeBase &R) {
4764 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4765 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4766 RedR->getRecurrenceKind()) ||
4767 RecurrenceDescriptor::isFindIVRecurrenceKind(
4768 RedR->getRecurrenceKind()));
4769 });
4770 if (HasSelectCmpReductions) {
4771 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4772 return 1;
4773 }
4774
4775 // If we have a scalar reduction (vector reductions are already dealt with
4776 // by this point), we can increase the critical path length if the loop
4777 // we're interleaving is inside another loop. For tree-wise reductions
4778 // set the limit to 2, and for ordered reductions it's best to disable
4779 // interleaving entirely.
4780 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4781 bool HasOrderedReductions =
4783 [](VPRecipeBase &R) {
4784 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4785
4786 return RedR && RedR->isOrdered();
4787 });
4788 if (HasOrderedReductions) {
4789 LLVM_DEBUG(
4790 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4791 return 1;
4792 }
4793
4794 unsigned F = MaxNestedScalarReductionIC;
4795 SmallIC = std::min(SmallIC, F);
4796 StoresIC = std::min(StoresIC, F);
4797 LoadsIC = std::min(LoadsIC, F);
4798 }
4799
4801 std::max(StoresIC, LoadsIC) > SmallIC) {
4802 LLVM_DEBUG(
4803 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4804 return std::max(StoresIC, LoadsIC);
4805 }
4806
4807 // If there are scalar reductions and TTI has enabled aggressive
4808 // interleaving for reductions, we will interleave to expose ILP.
4809 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4810 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4811 // Interleave no less than SmallIC but not as aggressive as the normal IC
4812 // to satisfy the rare situation when resources are too limited.
4813 return std::max(IC / 2, SmallIC);
4814 }
4815
4816 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4817 return SmallIC;
4818 }
4819
4820 // Interleave if this is a large loop (small loops are already dealt with by
4821 // this point) that could benefit from interleaving.
4822 if (AggressivelyInterleaveReductions) {
4823 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4824 return IC;
4825 }
4826
4827 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4828 return 1;
4829}
4830
4831bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4832 ElementCount VF) {
4833 // TODO: Cost model for emulated masked load/store is completely
4834 // broken. This hack guides the cost model to use an artificially
4835 // high enough value to practically disable vectorization with such
4836 // operations, except where previously deployed legality hack allowed
4837 // using very low cost values. This is to avoid regressions coming simply
4838 // from moving "masked load/store" check from legality to cost model.
4839 // Masked Load/Gather emulation was previously never allowed.
4840 // Limited number of Masked Store/Scatter emulation was allowed.
4841 assert((isPredicatedInst(I)) &&
4842 "Expecting a scalar emulated instruction");
4843 return isa<LoadInst>(I) ||
4844 (isa<StoreInst>(I) &&
4845 NumPredStores > NumberOfStoresToPredicate);
4846}
4847
4849 assert(VF.isVector() && "Expected VF >= 2");
4850
4851 // If we've already collected the instructions to scalarize or the predicated
4852 // BBs after vectorization, there's nothing to do. Collection may already have
4853 // occurred if we have a user-selected VF and are now computing the expected
4854 // cost for interleaving.
4855 if (InstsToScalarize.contains(VF) ||
4856 PredicatedBBsAfterVectorization.contains(VF))
4857 return;
4858
4859 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4860 // not profitable to scalarize any instructions, the presence of VF in the
4861 // map will indicate that we've analyzed it already.
4862 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4863
4864 // Find all the instructions that are scalar with predication in the loop and
4865 // determine if it would be better to not if-convert the blocks they are in.
4866 // If so, we also record the instructions to scalarize.
4867 for (BasicBlock *BB : TheLoop->blocks()) {
4869 continue;
4870 for (Instruction &I : *BB)
4871 if (isScalarWithPredication(&I, VF)) {
4872 ScalarCostsTy ScalarCosts;
4873 // Do not apply discount logic for:
4874 // 1. Scalars after vectorization, as there will only be a single copy
4875 // of the instruction.
4876 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4877 // 3. Emulated masked memrefs, if a hacked cost is needed.
4878 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4879 !useEmulatedMaskMemRefHack(&I, VF) &&
4880 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4881 for (const auto &[I, IC] : ScalarCosts)
4882 ScalarCostsVF.insert({I, IC});
4883 // Check if we decided to scalarize a call. If so, update the widening
4884 // decision of the call to CM_Scalarize with the computed scalar cost.
4885 for (const auto &[I, Cost] : ScalarCosts) {
4886 auto *CI = dyn_cast<CallInst>(I);
4887 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4888 continue;
4889 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
4890 CallWideningDecisions[{CI, VF}].Cost = Cost;
4891 }
4892 }
4893 // Remember that BB will remain after vectorization.
4894 PredicatedBBsAfterVectorization[VF].insert(BB);
4895 for (auto *Pred : predecessors(BB)) {
4896 if (Pred->getSingleSuccessor() == BB)
4897 PredicatedBBsAfterVectorization[VF].insert(Pred);
4898 }
4899 }
4900 }
4901}
4902
4903InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
4904 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
4905 assert(!isUniformAfterVectorization(PredInst, VF) &&
4906 "Instruction marked uniform-after-vectorization will be predicated");
4907
4908 // Initialize the discount to zero, meaning that the scalar version and the
4909 // vector version cost the same.
4910 InstructionCost Discount = 0;
4911
4912 // Holds instructions to analyze. The instructions we visit are mapped in
4913 // ScalarCosts. Those instructions are the ones that would be scalarized if
4914 // we find that the scalar version costs less.
4916
4917 // Returns true if the given instruction can be scalarized.
4918 auto CanBeScalarized = [&](Instruction *I) -> bool {
4919 // We only attempt to scalarize instructions forming a single-use chain
4920 // from the original predicated block that would otherwise be vectorized.
4921 // Although not strictly necessary, we give up on instructions we know will
4922 // already be scalar to avoid traversing chains that are unlikely to be
4923 // beneficial.
4924 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
4925 isScalarAfterVectorization(I, VF))
4926 return false;
4927
4928 // If the instruction is scalar with predication, it will be analyzed
4929 // separately. We ignore it within the context of PredInst.
4930 if (isScalarWithPredication(I, VF))
4931 return false;
4932
4933 // If any of the instruction's operands are uniform after vectorization,
4934 // the instruction cannot be scalarized. This prevents, for example, a
4935 // masked load from being scalarized.
4936 //
4937 // We assume we will only emit a value for lane zero of an instruction
4938 // marked uniform after vectorization, rather than VF identical values.
4939 // Thus, if we scalarize an instruction that uses a uniform, we would
4940 // create uses of values corresponding to the lanes we aren't emitting code
4941 // for. This behavior can be changed by allowing getScalarValue to clone
4942 // the lane zero values for uniforms rather than asserting.
4943 for (Use &U : I->operands())
4944 if (auto *J = dyn_cast<Instruction>(U.get()))
4945 if (isUniformAfterVectorization(J, VF))
4946 return false;
4947
4948 // Otherwise, we can scalarize the instruction.
4949 return true;
4950 };
4951
4952 // Compute the expected cost discount from scalarizing the entire expression
4953 // feeding the predicated instruction. We currently only consider expressions
4954 // that are single-use instruction chains.
4955 Worklist.push_back(PredInst);
4956 while (!Worklist.empty()) {
4957 Instruction *I = Worklist.pop_back_val();
4958
4959 // If we've already analyzed the instruction, there's nothing to do.
4960 if (ScalarCosts.contains(I))
4961 continue;
4962
4963 // Cannot scalarize fixed-order recurrence phis at the moment.
4964 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
4965 continue;
4966
4967 // Compute the cost of the vector instruction. Note that this cost already
4968 // includes the scalarization overhead of the predicated instruction.
4969 InstructionCost VectorCost = getInstructionCost(I, VF);
4970
4971 // Compute the cost of the scalarized instruction. This cost is the cost of
4972 // the instruction as if it wasn't if-converted and instead remained in the
4973 // predicated block. We will scale this cost by block probability after
4974 // computing the scalarization overhead.
4975 InstructionCost ScalarCost =
4976 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
4977
4978 // Compute the scalarization overhead of needed insertelement instructions
4979 // and phi nodes.
4980 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
4981 Type *WideTy = toVectorizedTy(I->getType(), VF);
4982 for (Type *VectorTy : getContainedTypes(WideTy)) {
4983 ScalarCost += TTI.getScalarizationOverhead(
4985 /*Insert=*/true,
4986 /*Extract=*/false, CostKind);
4987 }
4988 ScalarCost +=
4989 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
4990 }
4991
4992 // Compute the scalarization overhead of needed extractelement
4993 // instructions. For each of the instruction's operands, if the operand can
4994 // be scalarized, add it to the worklist; otherwise, account for the
4995 // overhead.
4996 for (Use &U : I->operands())
4997 if (auto *J = dyn_cast<Instruction>(U.get())) {
4998 assert(canVectorizeTy(J->getType()) &&
4999 "Instruction has non-scalar type");
5000 if (CanBeScalarized(J))
5001 Worklist.push_back(J);
5002 else if (needsExtract(J, VF)) {
5003 Type *WideTy = toVectorizedTy(J->getType(), VF);
5004 for (Type *VectorTy : getContainedTypes(WideTy)) {
5005 ScalarCost += TTI.getScalarizationOverhead(
5006 cast<VectorType>(VectorTy),
5007 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5008 /*Extract*/ true, CostKind);
5009 }
5010 }
5011 }
5012
5013 // Scale the total scalar cost by block probability.
5014 ScalarCost /= getPredBlockCostDivisor(CostKind);
5015
5016 // Compute the discount. A non-negative discount means the vector version
5017 // of the instruction costs more, and scalarizing would be beneficial.
5018 Discount += VectorCost - ScalarCost;
5019 ScalarCosts[I] = ScalarCost;
5020 }
5021
5022 return Discount;
5023}
5024
5027
5028 // If the vector loop gets executed exactly once with the given VF, ignore the
5029 // costs of comparison and induction instructions, as they'll get simplified
5030 // away.
5031 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5032 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5033 if (TC == VF && !foldTailByMasking())
5035 ValuesToIgnoreForVF);
5036
5037 // For each block.
5038 for (BasicBlock *BB : TheLoop->blocks()) {
5039 InstructionCost BlockCost;
5040
5041 // For each instruction in the old loop.
5042 for (Instruction &I : BB->instructionsWithoutDebug()) {
5043 // Skip ignored values.
5044 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5045 (VF.isVector() && VecValuesToIgnore.count(&I)))
5046 continue;
5047
5049
5050 // Check if we should override the cost.
5051 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0)
5053
5054 BlockCost += C;
5055 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5056 << VF << " For instruction: " << I << '\n');
5057 }
5058
5059 // If we are vectorizing a predicated block, it will have been
5060 // if-converted. This means that the block's instructions (aside from
5061 // stores and instructions that may divide by zero) will now be
5062 // unconditionally executed. For the scalar case, we may not always execute
5063 // the predicated block, if it is an if-else block. Thus, scale the block's
5064 // cost by the probability of executing it. blockNeedsPredication from
5065 // Legal is used so as to not include all blocks in tail folded loops.
5066 if (VF.isScalar() && Legal->blockNeedsPredication(BB))
5067 BlockCost /= getPredBlockCostDivisor(CostKind);
5068
5069 Cost += BlockCost;
5070 }
5071
5072 return Cost;
5073}
5074
5075/// Gets Address Access SCEV after verifying that the access pattern
5076/// is loop invariant except the induction variable dependence.
5077///
5078/// This SCEV can be sent to the Target in order to estimate the address
5079/// calculation cost.
5081 Value *Ptr,
5084 const Loop *TheLoop) {
5085
5086 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5087 if (!Gep)
5088 return nullptr;
5089
5090 // We are looking for a gep with all loop invariant indices except for one
5091 // which should be an induction variable.
5092 auto *SE = PSE.getSE();
5093 unsigned NumOperands = Gep->getNumOperands();
5094 for (unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5095 Value *Opd = Gep->getOperand(Idx);
5096 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5097 !Legal->isInductionVariable(Opd))
5098 return nullptr;
5099 }
5100
5101 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5102 return PSE.getSCEV(Ptr);
5103}
5104
5106LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5107 ElementCount VF) {
5108 assert(VF.isVector() &&
5109 "Scalarization cost of instruction implies vectorization.");
5110 if (VF.isScalable())
5111 return InstructionCost::getInvalid();
5112
5113 Type *ValTy = getLoadStoreType(I);
5114 auto *SE = PSE.getSE();
5115
5116 unsigned AS = getLoadStoreAddressSpace(I);
5118 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5119 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5120 // that it is being called from this specific place.
5121
5122 // Figure out whether the access is strided and get the stride value
5123 // if it's known in compile time
5124 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5125
5126 // Get the cost of the scalar memory instruction and address computation.
5128 PtrTy, SE, PtrSCEV, CostKind);
5129
5130 // Don't pass *I here, since it is scalar but will actually be part of a
5131 // vectorized loop where the user of it is a vectorized instruction.
5132 const Align Alignment = getLoadStoreAlignment(I);
5133 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5134 Cost += VF.getFixedValue() *
5135 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5136 AS, CostKind, OpInfo);
5137
5138 // Get the overhead of the extractelement and insertelement instructions
5139 // we might create due to scalarization.
5141
5142 // If we have a predicated load/store, it will need extra i1 extracts and
5143 // conditional branches, but may not be executed for each vector lane. Scale
5144 // the cost by the probability of executing the predicated block.
5145 if (isPredicatedInst(I)) {
5147
5148 // Add the cost of an i1 extract and a branch
5149 auto *VecI1Ty =
5150 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5152 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5153 /*Insert=*/false, /*Extract=*/true, CostKind);
5154 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5155
5156 if (useEmulatedMaskMemRefHack(I, VF))
5157 // Artificially setting to a high enough value to practically disable
5158 // vectorization with such operations.
5159 Cost = 3000000;
5160 }
5161
5162 return Cost;
5163}
5164
5166LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5167 ElementCount VF) {
5168 Type *ValTy = getLoadStoreType(I);
5169 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5171 unsigned AS = getLoadStoreAddressSpace(I);
5172 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5173
5174 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5175 "Stride should be 1 or -1 for consecutive memory access");
5176 const Align Alignment = getLoadStoreAlignment(I);
5178 if (Legal->isMaskRequired(I)) {
5179 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5180 CostKind);
5181 } else {
5182 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5183 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5184 CostKind, OpInfo, I);
5185 }
5186
5187 bool Reverse = ConsecutiveStride < 0;
5188 if (Reverse)
5190 VectorTy, {}, CostKind, 0);
5191 return Cost;
5192}
5193
5195LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5196 ElementCount VF) {
5197 assert(Legal->isUniformMemOp(*I, VF));
5198
5199 Type *ValTy = getLoadStoreType(I);
5201 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5202 const Align Alignment = getLoadStoreAlignment(I);
5203 unsigned AS = getLoadStoreAddressSpace(I);
5204 if (isa<LoadInst>(I)) {
5205 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5206 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5207 CostKind) +
5209 VectorTy, {}, CostKind);
5210 }
5211 StoreInst *SI = cast<StoreInst>(I);
5212
5213 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5214 // TODO: We have existing tests that request the cost of extracting element
5215 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5216 // the actual generated code, which involves extracting the last element of
5217 // a scalable vector where the lane to extract is unknown at compile time.
5219 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5220 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5221 if (!IsLoopInvariantStoreValue)
5222 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5223 VectorTy, CostKind, 0);
5224 return Cost;
5225}
5226
5228LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5229 ElementCount VF) {
5230 Type *ValTy = getLoadStoreType(I);
5231 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5232 const Align Alignment = getLoadStoreAlignment(I);
5234 Type *PtrTy = Ptr->getType();
5235
5236 if (!Legal->isUniform(Ptr, VF))
5237 PtrTy = toVectorTy(PtrTy, VF);
5238
5239 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5240 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5241 Legal->isMaskRequired(I), Alignment,
5242 CostKind, I);
5243}
5244
5246LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5247 ElementCount VF) {
5248 const auto *Group = getInterleavedAccessGroup(I);
5249 assert(Group && "Fail to get an interleaved access group.");
5250
5251 Instruction *InsertPos = Group->getInsertPos();
5252 Type *ValTy = getLoadStoreType(InsertPos);
5253 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5254 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5255
5256 unsigned InterleaveFactor = Group->getFactor();
5257 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5258
5259 // Holds the indices of existing members in the interleaved group.
5260 SmallVector<unsigned, 4> Indices;
5261 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5262 if (Group->getMember(IF))
5263 Indices.push_back(IF);
5264
5265 // Calculate the cost of the whole interleaved group.
5266 bool UseMaskForGaps =
5267 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5268 (isa<StoreInst>(I) && !Group->isFull());
5270 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5271 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5272 UseMaskForGaps);
5273
5274 if (Group->isReverse()) {
5275 // TODO: Add support for reversed masked interleaved access.
5276 assert(!Legal->isMaskRequired(I) &&
5277 "Reverse masked interleaved access not supported.");
5278 Cost += Group->getNumMembers() *
5280 VectorTy, {}, CostKind, 0);
5281 }
5282 return Cost;
5283}
5284
5285std::optional<InstructionCost>
5287 ElementCount VF,
5288 Type *Ty) const {
5289 using namespace llvm::PatternMatch;
5290 // Early exit for no inloop reductions
5291 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5292 return std::nullopt;
5293 auto *VectorTy = cast<VectorType>(Ty);
5294
5295 // We are looking for a pattern of, and finding the minimal acceptable cost:
5296 // reduce(mul(ext(A), ext(B))) or
5297 // reduce(mul(A, B)) or
5298 // reduce(ext(A)) or
5299 // reduce(A).
5300 // The basic idea is that we walk down the tree to do that, finding the root
5301 // reduction instruction in InLoopReductionImmediateChains. From there we find
5302 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5303 // of the components. If the reduction cost is lower then we return it for the
5304 // reduction instruction and 0 for the other instructions in the pattern. If
5305 // it is not we return an invalid cost specifying the orignal cost method
5306 // should be used.
5307 Instruction *RetI = I;
5308 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5309 if (!RetI->hasOneUser())
5310 return std::nullopt;
5311 RetI = RetI->user_back();
5312 }
5313
5314 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5315 RetI->user_back()->getOpcode() == Instruction::Add) {
5316 RetI = RetI->user_back();
5317 }
5318
5319 // Test if the found instruction is a reduction, and if not return an invalid
5320 // cost specifying the parent to use the original cost modelling.
5321 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5322 if (!LastChain)
5323 return std::nullopt;
5324
5325 // Find the reduction this chain is a part of and calculate the basic cost of
5326 // the reduction on its own.
5327 Instruction *ReductionPhi = LastChain;
5328 while (!isa<PHINode>(ReductionPhi))
5329 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5330
5331 const RecurrenceDescriptor &RdxDesc =
5332 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5333
5334 InstructionCost BaseCost;
5335 RecurKind RK = RdxDesc.getRecurrenceKind();
5338 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5339 RdxDesc.getFastMathFlags(), CostKind);
5340 } else {
5341 BaseCost = TTI.getArithmeticReductionCost(
5342 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5343 }
5344
5345 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5346 // normal fmul instruction to the cost of the fadd reduction.
5347 if (RK == RecurKind::FMulAdd)
5348 BaseCost +=
5349 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5350
5351 // If we're using ordered reductions then we can just return the base cost
5352 // here, since getArithmeticReductionCost calculates the full ordered
5353 // reduction cost when FP reassociation is not allowed.
5354 if (useOrderedReductions(RdxDesc))
5355 return BaseCost;
5356
5357 // Get the operand that was not the reduction chain and match it to one of the
5358 // patterns, returning the better cost if it is found.
5359 Instruction *RedOp = RetI->getOperand(1) == LastChain
5362
5363 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5364
5365 Instruction *Op0, *Op1;
5366 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5367 match(RedOp,
5369 match(Op0, m_ZExtOrSExt(m_Value())) &&
5370 Op0->getOpcode() == Op1->getOpcode() &&
5371 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5372 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5373 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5374
5375 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5376 // Note that the extend opcodes need to all match, or if A==B they will have
5377 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5378 // which is equally fine.
5379 bool IsUnsigned = isa<ZExtInst>(Op0);
5380 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5381 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5382
5383 InstructionCost ExtCost =
5384 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5386 InstructionCost MulCost =
5387 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5388 InstructionCost Ext2Cost =
5389 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5391
5392 InstructionCost RedCost = TTI.getMulAccReductionCost(
5393 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5394 CostKind);
5395
5396 if (RedCost.isValid() &&
5397 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5398 return I == RetI ? RedCost : 0;
5399 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5400 !TheLoop->isLoopInvariant(RedOp)) {
5401 // Matched reduce(ext(A))
5402 bool IsUnsigned = isa<ZExtInst>(RedOp);
5403 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5404 InstructionCost RedCost = TTI.getExtendedReductionCost(
5405 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5406 RdxDesc.getFastMathFlags(), CostKind);
5407
5408 InstructionCost ExtCost =
5409 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5411 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5412 return I == RetI ? RedCost : 0;
5413 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5414 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5415 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5416 Op0->getOpcode() == Op1->getOpcode() &&
5417 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5418 bool IsUnsigned = isa<ZExtInst>(Op0);
5419 Type *Op0Ty = Op0->getOperand(0)->getType();
5420 Type *Op1Ty = Op1->getOperand(0)->getType();
5421 Type *LargestOpTy =
5422 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5423 : Op0Ty;
5424 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5425
5426 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5427 // different sizes. We take the largest type as the ext to reduce, and add
5428 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5429 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5430 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5432 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5433 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5435 InstructionCost MulCost =
5436 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5437
5438 InstructionCost RedCost = TTI.getMulAccReductionCost(
5439 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5440 CostKind);
5441 InstructionCost ExtraExtCost = 0;
5442 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5443 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5444 ExtraExtCost = TTI.getCastInstrCost(
5445 ExtraExtOp->getOpcode(), ExtType,
5446 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5448 }
5449
5450 if (RedCost.isValid() &&
5451 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5452 return I == RetI ? RedCost : 0;
5453 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5454 // Matched reduce.add(mul())
5455 InstructionCost MulCost =
5456 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5457
5458 InstructionCost RedCost = TTI.getMulAccReductionCost(
5459 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5460 CostKind);
5461
5462 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5463 return I == RetI ? RedCost : 0;
5464 }
5465 }
5466
5467 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5468}
5469
5471LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5472 ElementCount VF) {
5473 // Calculate scalar cost only. Vectorization cost should be ready at this
5474 // moment.
5475 if (VF.isScalar()) {
5476 Type *ValTy = getLoadStoreType(I);
5478 const Align Alignment = getLoadStoreAlignment(I);
5479 unsigned AS = getLoadStoreAddressSpace(I);
5480
5481 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5482 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5483 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5484 OpInfo, I);
5485 }
5486 return getWideningCost(I, VF);
5487}
5488
5490LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5491 ElementCount VF) const {
5492
5493 // There is no mechanism yet to create a scalable scalarization loop,
5494 // so this is currently Invalid.
5495 if (VF.isScalable())
5496 return InstructionCost::getInvalid();
5497
5498 if (VF.isScalar())
5499 return 0;
5500
5502 Type *RetTy = toVectorizedTy(I->getType(), VF);
5503 if (!RetTy->isVoidTy() &&
5505
5506 for (Type *VectorTy : getContainedTypes(RetTy)) {
5509 /*Insert=*/true,
5510 /*Extract=*/false, CostKind);
5511 }
5512 }
5513
5514 // Some targets keep addresses scalar.
5516 return Cost;
5517
5518 // Some targets support efficient element stores.
5520 return Cost;
5521
5522 // Collect operands to consider.
5523 CallInst *CI = dyn_cast<CallInst>(I);
5524 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5525
5526 // Skip operands that do not require extraction/scalarization and do not incur
5527 // any overhead.
5529 for (auto *V : filterExtractingOperands(Ops, VF))
5530 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5532}
5533
5535 if (VF.isScalar())
5536 return;
5537 NumPredStores = 0;
5538 for (BasicBlock *BB : TheLoop->blocks()) {
5539 // For each instruction in the old loop.
5540 for (Instruction &I : *BB) {
5542 if (!Ptr)
5543 continue;
5544
5545 // TODO: We should generate better code and update the cost model for
5546 // predicated uniform stores. Today they are treated as any other
5547 // predicated store (see added test cases in
5548 // invariant-store-vectorization.ll).
5550 NumPredStores++;
5551
5552 if (Legal->isUniformMemOp(I, VF)) {
5553 auto IsLegalToScalarize = [&]() {
5554 if (!VF.isScalable())
5555 // Scalarization of fixed length vectors "just works".
5556 return true;
5557
5558 // We have dedicated lowering for unpredicated uniform loads and
5559 // stores. Note that even with tail folding we know that at least
5560 // one lane is active (i.e. generalized predication is not possible
5561 // here), and the logic below depends on this fact.
5562 if (!foldTailByMasking())
5563 return true;
5564
5565 // For scalable vectors, a uniform memop load is always
5566 // uniform-by-parts and we know how to scalarize that.
5567 if (isa<LoadInst>(I))
5568 return true;
5569
5570 // A uniform store isn't neccessarily uniform-by-part
5571 // and we can't assume scalarization.
5572 auto &SI = cast<StoreInst>(I);
5573 return TheLoop->isLoopInvariant(SI.getValueOperand());
5574 };
5575
5576 const InstructionCost GatherScatterCost =
5578 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5579
5580 // Load: Scalar load + broadcast
5581 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5582 // FIXME: This cost is a significant under-estimate for tail folded
5583 // memory ops.
5584 const InstructionCost ScalarizationCost =
5585 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5587
5588 // Choose better solution for the current VF, Note that Invalid
5589 // costs compare as maximumal large. If both are invalid, we get
5590 // scalable invalid which signals a failure and a vectorization abort.
5591 if (GatherScatterCost < ScalarizationCost)
5592 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5593 else
5594 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5595 continue;
5596 }
5597
5598 // We assume that widening is the best solution when possible.
5599 if (memoryInstructionCanBeWidened(&I, VF)) {
5600 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5601 int ConsecutiveStride = Legal->isConsecutivePtr(
5603 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5604 "Expected consecutive stride.");
5605 InstWidening Decision =
5606 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5607 setWideningDecision(&I, VF, Decision, Cost);
5608 continue;
5609 }
5610
5611 // Choose between Interleaving, Gather/Scatter or Scalarization.
5613 unsigned NumAccesses = 1;
5614 if (isAccessInterleaved(&I)) {
5615 const auto *Group = getInterleavedAccessGroup(&I);
5616 assert(Group && "Fail to get an interleaved access group.");
5617
5618 // Make one decision for the whole group.
5619 if (getWideningDecision(&I, VF) != CM_Unknown)
5620 continue;
5621
5622 NumAccesses = Group->getNumMembers();
5624 InterleaveCost = getInterleaveGroupCost(&I, VF);
5625 }
5626
5627 InstructionCost GatherScatterCost =
5629 ? getGatherScatterCost(&I, VF) * NumAccesses
5631
5632 InstructionCost ScalarizationCost =
5633 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5634
5635 // Choose better solution for the current VF,
5636 // write down this decision and use it during vectorization.
5638 InstWidening Decision;
5639 if (InterleaveCost <= GatherScatterCost &&
5640 InterleaveCost < ScalarizationCost) {
5641 Decision = CM_Interleave;
5642 Cost = InterleaveCost;
5643 } else if (GatherScatterCost < ScalarizationCost) {
5644 Decision = CM_GatherScatter;
5645 Cost = GatherScatterCost;
5646 } else {
5647 Decision = CM_Scalarize;
5648 Cost = ScalarizationCost;
5649 }
5650 // If the instructions belongs to an interleave group, the whole group
5651 // receives the same decision. The whole group receives the cost, but
5652 // the cost will actually be assigned to one instruction.
5653 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5654 if (Decision == CM_Scalarize) {
5655 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5656 if (auto *I = Group->getMember(Idx)) {
5657 setWideningDecision(I, VF, Decision,
5658 getMemInstScalarizationCost(I, VF));
5659 }
5660 }
5661 } else {
5662 setWideningDecision(Group, VF, Decision, Cost);
5663 }
5664 } else
5665 setWideningDecision(&I, VF, Decision, Cost);
5666 }
5667 }
5668
5669 // Make sure that any load of address and any other address computation
5670 // remains scalar unless there is gather/scatter support. This avoids
5671 // inevitable extracts into address registers, and also has the benefit of
5672 // activating LSR more, since that pass can't optimize vectorized
5673 // addresses.
5674 if (TTI.prefersVectorizedAddressing())
5675 return;
5676
5677 // Start with all scalar pointer uses.
5679 for (BasicBlock *BB : TheLoop->blocks())
5680 for (Instruction &I : *BB) {
5681 Instruction *PtrDef =
5683 if (PtrDef && TheLoop->contains(PtrDef) &&
5685 AddrDefs.insert(PtrDef);
5686 }
5687
5688 // Add all instructions used to generate the addresses.
5690 append_range(Worklist, AddrDefs);
5691 while (!Worklist.empty()) {
5692 Instruction *I = Worklist.pop_back_val();
5693 for (auto &Op : I->operands())
5694 if (auto *InstOp = dyn_cast<Instruction>(Op))
5695 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
5696 AddrDefs.insert(InstOp).second)
5697 Worklist.push_back(InstOp);
5698 }
5699
5700 for (auto *I : AddrDefs) {
5701 if (isa<LoadInst>(I)) {
5702 // Setting the desired widening decision should ideally be handled in
5703 // by cost functions, but since this involves the task of finding out
5704 // if the loaded register is involved in an address computation, it is
5705 // instead changed here when we know this is the case.
5706 InstWidening Decision = getWideningDecision(I, VF);
5707 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5708 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5709 Decision == CM_Scalarize))
5710 // Scalarize a widened load of address or update the cost of a scalar
5711 // load of an address.
5713 I, VF, CM_Scalarize,
5714 (VF.getKnownMinValue() *
5715 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5716 else if (const auto *Group = getInterleavedAccessGroup(I)) {
5717 // Scalarize an interleave group of address loads.
5718 for (unsigned I = 0; I < Group->getFactor(); ++I) {
5719 if (Instruction *Member = Group->getMember(I))
5721 Member, VF, CM_Scalarize,
5722 (VF.getKnownMinValue() *
5723 getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
5724 }
5725 }
5726 } else {
5727 // Cannot scalarize fixed-order recurrence phis at the moment.
5728 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5729 continue;
5730
5731 // Make sure I gets scalarized and a cost estimate without
5732 // scalarization overhead.
5733 ForcedScalars[VF].insert(I);
5734 }
5735 }
5736}
5737
5739 assert(!VF.isScalar() &&
5740 "Trying to set a vectorization decision for a scalar VF");
5741
5742 auto ForcedScalar = ForcedScalars.find(VF);
5743 for (BasicBlock *BB : TheLoop->blocks()) {
5744 // For each instruction in the old loop.
5745 for (Instruction &I : *BB) {
5747
5748 if (!CI)
5749 continue;
5750
5754 Function *ScalarFunc = CI->getCalledFunction();
5755 Type *ScalarRetTy = CI->getType();
5756 SmallVector<Type *, 4> Tys, ScalarTys;
5757 for (auto &ArgOp : CI->args())
5758 ScalarTys.push_back(ArgOp->getType());
5759
5760 // Estimate cost of scalarized vector call. The source operands are
5761 // assumed to be vectors, so we need to extract individual elements from
5762 // there, execute VF scalar calls, and then gather the result into the
5763 // vector return value.
5764 if (VF.isFixed()) {
5765 InstructionCost ScalarCallCost =
5766 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5767
5768 // Compute costs of unpacking argument values for the scalar calls and
5769 // packing the return values to a vector.
5770 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5771 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5772 } else {
5773 // There is no point attempting to calculate the scalar cost for a
5774 // scalable VF as we know it will be Invalid.
5776 "Unexpected valid cost for scalarizing scalable vectors");
5777 ScalarCost = InstructionCost::getInvalid();
5778 }
5779
5780 // Honor ForcedScalars and UniformAfterVectorization decisions.
5781 // TODO: For calls, it might still be more profitable to widen. Use
5782 // VPlan-based cost model to compare different options.
5783 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5784 ForcedScalar->second.contains(CI)) ||
5785 isUniformAfterVectorization(CI, VF))) {
5786 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5787 Intrinsic::not_intrinsic, std::nullopt,
5788 ScalarCost);
5789 continue;
5790 }
5791
5792 bool MaskRequired = Legal->isMaskRequired(CI);
5793 // Compute corresponding vector type for return value and arguments.
5794 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5795 for (Type *ScalarTy : ScalarTys)
5796 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5797
5798 // An in-loop reduction using an fmuladd intrinsic is a special case;
5799 // we don't want the normal cost for that intrinsic.
5801 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5804 std::nullopt, *RedCost);
5805 continue;
5806 }
5807
5808 // Find the cost of vectorizing the call, if we can find a suitable
5809 // vector variant of the function.
5810 VFInfo FuncInfo;
5811 Function *VecFunc = nullptr;
5812 // Search through any available variants for one we can use at this VF.
5813 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5814 // Must match requested VF.
5815 if (Info.Shape.VF != VF)
5816 continue;
5817
5818 // Must take a mask argument if one is required
5819 if (MaskRequired && !Info.isMasked())
5820 continue;
5821
5822 // Check that all parameter kinds are supported
5823 bool ParamsOk = true;
5824 for (VFParameter Param : Info.Shape.Parameters) {
5825 switch (Param.ParamKind) {
5827 break;
5829 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5830 // Make sure the scalar parameter in the loop is invariant.
5831 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5832 TheLoop))
5833 ParamsOk = false;
5834 break;
5835 }
5837 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5838 // Find the stride for the scalar parameter in this loop and see if
5839 // it matches the stride for the variant.
5840 // TODO: do we need to figure out the cost of an extract to get the
5841 // first lane? Or do we hope that it will be folded away?
5842 ScalarEvolution *SE = PSE.getSE();
5843 if (!match(SE->getSCEV(ScalarParam),
5845 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5847 ParamsOk = false;
5848 break;
5849 }
5851 break;
5852 default:
5853 ParamsOk = false;
5854 break;
5855 }
5856 }
5857
5858 if (!ParamsOk)
5859 continue;
5860
5861 // Found a suitable candidate, stop here.
5862 VecFunc = CI->getModule()->getFunction(Info.VectorName);
5863 FuncInfo = Info;
5864 break;
5865 }
5866
5867 if (TLI && VecFunc && !CI->isNoBuiltin())
5868 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
5869
5870 // Find the cost of an intrinsic; some targets may have instructions that
5871 // perform the operation without needing an actual call.
5873 if (IID != Intrinsic::not_intrinsic)
5875
5876 InstructionCost Cost = ScalarCost;
5877 InstWidening Decision = CM_Scalarize;
5878
5879 if (VectorCost <= Cost) {
5880 Cost = VectorCost;
5881 Decision = CM_VectorCall;
5882 }
5883
5884 if (IntrinsicCost <= Cost) {
5886 Decision = CM_IntrinsicCall;
5887 }
5888
5889 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
5891 }
5892 }
5893}
5894
5896 if (!Legal->isInvariant(Op))
5897 return false;
5898 // Consider Op invariant, if it or its operands aren't predicated
5899 // instruction in the loop. In that case, it is not trivially hoistable.
5900 auto *OpI = dyn_cast<Instruction>(Op);
5901 return !OpI || !TheLoop->contains(OpI) ||
5902 (!isPredicatedInst(OpI) &&
5903 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
5904 all_of(OpI->operands(),
5905 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
5906}
5907
5910 ElementCount VF) {
5911 // If we know that this instruction will remain uniform, check the cost of
5912 // the scalar version.
5914 VF = ElementCount::getFixed(1);
5915
5916 if (VF.isVector() && isProfitableToScalarize(I, VF))
5917 return InstsToScalarize[VF][I];
5918
5919 // Forced scalars do not have any scalarization overhead.
5920 auto ForcedScalar = ForcedScalars.find(VF);
5921 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
5922 auto InstSet = ForcedScalar->second;
5923 if (InstSet.count(I))
5925 VF.getKnownMinValue();
5926 }
5927
5928 Type *RetTy = I->getType();
5930 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5931 auto *SE = PSE.getSE();
5932
5933 Type *VectorTy;
5934 if (isScalarAfterVectorization(I, VF)) {
5935 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
5936 [this](Instruction *I, ElementCount VF) -> bool {
5937 if (VF.isScalar())
5938 return true;
5939
5940 auto Scalarized = InstsToScalarize.find(VF);
5941 assert(Scalarized != InstsToScalarize.end() &&
5942 "VF not yet analyzed for scalarization profitability");
5943 return !Scalarized->second.count(I) &&
5944 llvm::all_of(I->users(), [&](User *U) {
5945 auto *UI = cast<Instruction>(U);
5946 return !Scalarized->second.count(UI);
5947 });
5948 };
5949
5950 // With the exception of GEPs and PHIs, after scalarization there should
5951 // only be one copy of the instruction generated in the loop. This is
5952 // because the VF is either 1, or any instructions that need scalarizing
5953 // have already been dealt with by the time we get here. As a result,
5954 // it means we don't have to multiply the instruction cost by VF.
5955 assert(I->getOpcode() == Instruction::GetElementPtr ||
5956 I->getOpcode() == Instruction::PHI ||
5957 (I->getOpcode() == Instruction::BitCast &&
5958 I->getType()->isPointerTy()) ||
5959 HasSingleCopyAfterVectorization(I, VF));
5960 VectorTy = RetTy;
5961 } else
5962 VectorTy = toVectorizedTy(RetTy, VF);
5963
5964 if (VF.isVector() && VectorTy->isVectorTy() &&
5965 !TTI.getNumberOfParts(VectorTy))
5967
5968 // TODO: We need to estimate the cost of intrinsic calls.
5969 switch (I->getOpcode()) {
5970 case Instruction::GetElementPtr:
5971 // We mark this instruction as zero-cost because the cost of GEPs in
5972 // vectorized code depends on whether the corresponding memory instruction
5973 // is scalarized or not. Therefore, we handle GEPs with the memory
5974 // instruction cost.
5975 return 0;
5976 case Instruction::Br: {
5977 // In cases of scalarized and predicated instructions, there will be VF
5978 // predicated blocks in the vectorized loop. Each branch around these
5979 // blocks requires also an extract of its vector compare i1 element.
5980 // Note that the conditional branch from the loop latch will be replaced by
5981 // a single branch controlling the loop, so there is no extra overhead from
5982 // scalarization.
5983 bool ScalarPredicatedBB = false;
5985 if (VF.isVector() && BI->isConditional() &&
5986 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
5987 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
5988 BI->getParent() != TheLoop->getLoopLatch())
5989 ScalarPredicatedBB = true;
5990
5991 if (ScalarPredicatedBB) {
5992 // Not possible to scalarize scalable vector with predicated instructions.
5993 if (VF.isScalable())
5995 // Return cost for branches around scalarized and predicated blocks.
5996 auto *VecI1Ty =
5998 return (
5999 TTI.getScalarizationOverhead(
6000 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6001 /*Insert*/ false, /*Extract*/ true, CostKind) +
6002 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6003 }
6004
6005 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6006 // The back-edge branch will remain, as will all scalar branches.
6007 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6008
6009 // This branch will be eliminated by if-conversion.
6010 return 0;
6011 // Note: We currently assume zero cost for an unconditional branch inside
6012 // a predicated block since it will become a fall-through, although we
6013 // may decide in the future to call TTI for all branches.
6014 }
6015 case Instruction::Switch: {
6016 if (VF.isScalar())
6017 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6018 auto *Switch = cast<SwitchInst>(I);
6019 return Switch->getNumCases() *
6020 TTI.getCmpSelInstrCost(
6021 Instruction::ICmp,
6022 toVectorTy(Switch->getCondition()->getType(), VF),
6023 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6025 }
6026 case Instruction::PHI: {
6027 auto *Phi = cast<PHINode>(I);
6028
6029 // First-order recurrences are replaced by vector shuffles inside the loop.
6030 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6032 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6033 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6034 cast<VectorType>(VectorTy),
6035 cast<VectorType>(VectorTy), Mask, CostKind,
6036 VF.getKnownMinValue() - 1);
6037 }
6038
6039 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6040 // converted into select instructions. We require N - 1 selects per phi
6041 // node, where N is the number of incoming values.
6042 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6043 Type *ResultTy = Phi->getType();
6044
6045 // All instructions in an Any-of reduction chain are narrowed to bool.
6046 // Check if that is the case for this phi node.
6047 auto *HeaderUser = cast_if_present<PHINode>(
6048 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6049 auto *Phi = dyn_cast<PHINode>(U);
6050 if (Phi && Phi->getParent() == TheLoop->getHeader())
6051 return Phi;
6052 return nullptr;
6053 }));
6054 if (HeaderUser) {
6055 auto &ReductionVars = Legal->getReductionVars();
6056 auto Iter = ReductionVars.find(HeaderUser);
6057 if (Iter != ReductionVars.end() &&
6059 Iter->second.getRecurrenceKind()))
6060 ResultTy = Type::getInt1Ty(Phi->getContext());
6061 }
6062 return (Phi->getNumIncomingValues() - 1) *
6063 TTI.getCmpSelInstrCost(
6064 Instruction::Select, toVectorTy(ResultTy, VF),
6065 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6067 }
6068
6069 // When tail folding with EVL, if the phi is part of an out of loop
6070 // reduction then it will be transformed into a wide vp_merge.
6071 if (VF.isVector() && foldTailWithEVL() &&
6072 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6074 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6075 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6076 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6077 }
6078
6079 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6080 }
6081 case Instruction::UDiv:
6082 case Instruction::SDiv:
6083 case Instruction::URem:
6084 case Instruction::SRem:
6085 if (VF.isVector() && isPredicatedInst(I)) {
6086 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6087 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6088 ScalarCost : SafeDivisorCost;
6089 }
6090 // We've proven all lanes safe to speculate, fall through.
6091 [[fallthrough]];
6092 case Instruction::Add:
6093 case Instruction::Sub: {
6094 auto Info = Legal->getHistogramInfo(I);
6095 if (Info && VF.isVector()) {
6096 const HistogramInfo *HGram = Info.value();
6097 // Assume that a non-constant update value (or a constant != 1) requires
6098 // a multiply, and add that into the cost.
6100 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6101 if (!RHS || RHS->getZExtValue() != 1)
6102 MulCost =
6103 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6104
6105 // Find the cost of the histogram operation itself.
6106 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6107 Type *ScalarTy = I->getType();
6108 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6109 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6110 Type::getVoidTy(I->getContext()),
6111 {PtrTy, ScalarTy, MaskTy});
6112
6113 // Add the costs together with the add/sub operation.
6114 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6115 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6116 }
6117 [[fallthrough]];
6118 }
6119 case Instruction::FAdd:
6120 case Instruction::FSub:
6121 case Instruction::Mul:
6122 case Instruction::FMul:
6123 case Instruction::FDiv:
6124 case Instruction::FRem:
6125 case Instruction::Shl:
6126 case Instruction::LShr:
6127 case Instruction::AShr:
6128 case Instruction::And:
6129 case Instruction::Or:
6130 case Instruction::Xor: {
6131 // If we're speculating on the stride being 1, the multiplication may
6132 // fold away. We can generalize this for all operations using the notion
6133 // of neutral elements. (TODO)
6134 if (I->getOpcode() == Instruction::Mul &&
6135 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6136 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6137 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6138 PSE.getSCEV(I->getOperand(1))->isOne())))
6139 return 0;
6140
6141 // Detect reduction patterns
6142 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6143 return *RedCost;
6144
6145 // Certain instructions can be cheaper to vectorize if they have a constant
6146 // second vector operand. One example of this are shifts on x86.
6147 Value *Op2 = I->getOperand(1);
6148 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6149 PSE.getSE()->isSCEVable(Op2->getType()) &&
6150 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6151 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6152 }
6153 auto Op2Info = TTI.getOperandInfo(Op2);
6154 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6157
6158 SmallVector<const Value *, 4> Operands(I->operand_values());
6159 return TTI.getArithmeticInstrCost(
6160 I->getOpcode(), VectorTy, CostKind,
6161 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6162 Op2Info, Operands, I, TLI);
6163 }
6164 case Instruction::FNeg: {
6165 return TTI.getArithmeticInstrCost(
6166 I->getOpcode(), VectorTy, CostKind,
6167 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6168 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6169 I->getOperand(0), I);
6170 }
6171 case Instruction::Select: {
6173 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6174 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6175
6176 const Value *Op0, *Op1;
6177 using namespace llvm::PatternMatch;
6178 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6179 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6180 // select x, y, false --> x & y
6181 // select x, true, y --> x | y
6182 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6183 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6184 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6185 Op1->getType()->getScalarSizeInBits() == 1);
6186
6187 return TTI.getArithmeticInstrCost(
6188 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6189 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6190 }
6191
6192 Type *CondTy = SI->getCondition()->getType();
6193 if (!ScalarCond)
6194 CondTy = VectorType::get(CondTy, VF);
6195
6197 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6198 Pred = Cmp->getPredicate();
6199 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6200 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6201 {TTI::OK_AnyValue, TTI::OP_None}, I);
6202 }
6203 case Instruction::ICmp:
6204 case Instruction::FCmp: {
6205 Type *ValTy = I->getOperand(0)->getType();
6206
6208 [[maybe_unused]] Instruction *Op0AsInstruction =
6209 dyn_cast<Instruction>(I->getOperand(0));
6210 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6211 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6212 "if both the operand and the compare are marked for "
6213 "truncation, they must have the same bitwidth");
6214 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6215 }
6216
6217 VectorTy = toVectorTy(ValTy, VF);
6218 return TTI.getCmpSelInstrCost(
6219 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6220 cast<CmpInst>(I)->getPredicate(), CostKind,
6221 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6222 }
6223 case Instruction::Store:
6224 case Instruction::Load: {
6225 ElementCount Width = VF;
6226 if (Width.isVector()) {
6227 InstWidening Decision = getWideningDecision(I, Width);
6228 assert(Decision != CM_Unknown &&
6229 "CM decision should be taken at this point");
6232 if (Decision == CM_Scalarize)
6233 Width = ElementCount::getFixed(1);
6234 }
6235 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6236 return getMemoryInstructionCost(I, VF);
6237 }
6238 case Instruction::BitCast:
6239 if (I->getType()->isPointerTy())
6240 return 0;
6241 [[fallthrough]];
6242 case Instruction::ZExt:
6243 case Instruction::SExt:
6244 case Instruction::FPToUI:
6245 case Instruction::FPToSI:
6246 case Instruction::FPExt:
6247 case Instruction::PtrToInt:
6248 case Instruction::IntToPtr:
6249 case Instruction::SIToFP:
6250 case Instruction::UIToFP:
6251 case Instruction::Trunc:
6252 case Instruction::FPTrunc: {
6253 // Computes the CastContextHint from a Load/Store instruction.
6254 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6256 "Expected a load or a store!");
6257
6258 if (VF.isScalar() || !TheLoop->contains(I))
6260
6261 switch (getWideningDecision(I, VF)) {
6273 llvm_unreachable("Instr did not go through cost modelling?");
6276 llvm_unreachable_internal("Instr has invalid widening decision");
6277 }
6278
6279 llvm_unreachable("Unhandled case!");
6280 };
6281
6282 unsigned Opcode = I->getOpcode();
6284 // For Trunc, the context is the only user, which must be a StoreInst.
6285 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6286 if (I->hasOneUse())
6287 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6288 CCH = ComputeCCH(Store);
6289 }
6290 // For Z/Sext, the context is the operand, which must be a LoadInst.
6291 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6292 Opcode == Instruction::FPExt) {
6293 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6294 CCH = ComputeCCH(Load);
6295 }
6296
6297 // We optimize the truncation of induction variables having constant
6298 // integer steps. The cost of these truncations is the same as the scalar
6299 // operation.
6300 if (isOptimizableIVTruncate(I, VF)) {
6301 auto *Trunc = cast<TruncInst>(I);
6302 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6303 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6304 }
6305
6306 // Detect reduction patterns
6307 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6308 return *RedCost;
6309
6310 Type *SrcScalarTy = I->getOperand(0)->getType();
6311 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6312 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6313 SrcScalarTy =
6314 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6315 Type *SrcVecTy =
6316 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6317
6319 // If the result type is <= the source type, there will be no extend
6320 // after truncating the users to the minimal required bitwidth.
6321 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6322 (I->getOpcode() == Instruction::ZExt ||
6323 I->getOpcode() == Instruction::SExt))
6324 return 0;
6325 }
6326
6327 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6328 }
6329 case Instruction::Call:
6330 return getVectorCallCost(cast<CallInst>(I), VF);
6331 case Instruction::ExtractValue:
6332 return TTI.getInstructionCost(I, CostKind);
6333 case Instruction::Alloca:
6334 // We cannot easily widen alloca to a scalable alloca, as
6335 // the result would need to be a vector of pointers.
6336 if (VF.isScalable())
6338 [[fallthrough]];
6339 default:
6340 // This opcode is unknown. Assume that it is the same as 'mul'.
6341 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6342 } // end of switch.
6343}
6344
6346 // Ignore ephemeral values.
6348
6349 SmallVector<Value *, 4> DeadInterleavePointerOps;
6351
6352 // If a scalar epilogue is required, users outside the loop won't use
6353 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6354 // that is the case.
6355 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6356 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6357 return RequiresScalarEpilogue &&
6358 !TheLoop->contains(cast<Instruction>(U)->getParent());
6359 };
6360
6362 DFS.perform(LI);
6363 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6364 for (Instruction &I : reverse(*BB)) {
6365 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6366 continue;
6367
6368 // Add instructions that would be trivially dead and are only used by
6369 // values already ignored to DeadOps to seed worklist.
6371 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6372 return VecValuesToIgnore.contains(U) ||
6373 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6374 }))
6375 DeadOps.push_back(&I);
6376
6377 // For interleave groups, we only create a pointer for the start of the
6378 // interleave group. Queue up addresses of group members except the insert
6379 // position for further processing.
6380 if (isAccessInterleaved(&I)) {
6381 auto *Group = getInterleavedAccessGroup(&I);
6382 if (Group->getInsertPos() == &I)
6383 continue;
6384 Value *PointerOp = getLoadStorePointerOperand(&I);
6385 DeadInterleavePointerOps.push_back(PointerOp);
6386 }
6387
6388 // Queue branches for analysis. They are dead, if their successors only
6389 // contain dead instructions.
6390 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6391 if (Br->isConditional())
6392 DeadOps.push_back(&I);
6393 }
6394 }
6395
6396 // Mark ops feeding interleave group members as free, if they are only used
6397 // by other dead computations.
6398 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6399 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6400 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6401 Instruction *UI = cast<Instruction>(U);
6402 return !VecValuesToIgnore.contains(U) &&
6403 (!isAccessInterleaved(UI) ||
6404 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6405 }))
6406 continue;
6407 VecValuesToIgnore.insert(Op);
6408 append_range(DeadInterleavePointerOps, Op->operands());
6409 }
6410
6411 // Mark ops that would be trivially dead and are only used by ignored
6412 // instructions as free.
6413 BasicBlock *Header = TheLoop->getHeader();
6414
6415 // Returns true if the block contains only dead instructions. Such blocks will
6416 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6417 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6418 auto IsEmptyBlock = [this](BasicBlock *BB) {
6419 return all_of(*BB, [this](Instruction &I) {
6420 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6421 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6422 });
6423 };
6424 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6425 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6426
6427 // Check if the branch should be considered dead.
6428 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6429 BasicBlock *ThenBB = Br->getSuccessor(0);
6430 BasicBlock *ElseBB = Br->getSuccessor(1);
6431 // Don't considers branches leaving the loop for simplification.
6432 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6433 continue;
6434 bool ThenEmpty = IsEmptyBlock(ThenBB);
6435 bool ElseEmpty = IsEmptyBlock(ElseBB);
6436 if ((ThenEmpty && ElseEmpty) ||
6437 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6438 ElseBB->phis().empty()) ||
6439 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6440 ThenBB->phis().empty())) {
6441 VecValuesToIgnore.insert(Br);
6442 DeadOps.push_back(Br->getCondition());
6443 }
6444 continue;
6445 }
6446
6447 // Skip any op that shouldn't be considered dead.
6448 if (!Op || !TheLoop->contains(Op) ||
6449 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6451 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6452 return !VecValuesToIgnore.contains(U) &&
6453 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6454 }))
6455 continue;
6456
6457 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6458 // which applies for both scalar and vector versions. Otherwise it is only
6459 // dead in vector versions, so only add it to VecValuesToIgnore.
6460 if (all_of(Op->users(),
6461 [this](User *U) { return ValuesToIgnore.contains(U); }))
6462 ValuesToIgnore.insert(Op);
6463
6464 VecValuesToIgnore.insert(Op);
6465 append_range(DeadOps, Op->operands());
6466 }
6467
6468 // Ignore type-promoting instructions we identified during reduction
6469 // detection.
6470 for (const auto &Reduction : Legal->getReductionVars()) {
6471 const RecurrenceDescriptor &RedDes = Reduction.second;
6472 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6473 VecValuesToIgnore.insert_range(Casts);
6474 }
6475 // Ignore type-casting instructions we identified during induction
6476 // detection.
6477 for (const auto &Induction : Legal->getInductionVars()) {
6478 const InductionDescriptor &IndDes = Induction.second;
6479 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6480 VecValuesToIgnore.insert_range(Casts);
6481 }
6482}
6483
6485 // Avoid duplicating work finding in-loop reductions.
6486 if (!InLoopReductions.empty())
6487 return;
6488
6489 for (const auto &Reduction : Legal->getReductionVars()) {
6490 PHINode *Phi = Reduction.first;
6491 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6492
6493 // We don't collect reductions that are type promoted (yet).
6494 if (RdxDesc.getRecurrenceType() != Phi->getType())
6495 continue;
6496
6497 // If the target would prefer this reduction to happen "in-loop", then we
6498 // want to record it as such.
6499 RecurKind Kind = RdxDesc.getRecurrenceKind();
6500 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6501 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6502 continue;
6503
6504 // Check that we can correctly put the reductions into the loop, by
6505 // finding the chain of operations that leads from the phi to the loop
6506 // exit value.
6507 SmallVector<Instruction *, 4> ReductionOperations =
6508 RdxDesc.getReductionOpChain(Phi, TheLoop);
6509 bool InLoop = !ReductionOperations.empty();
6510
6511 if (InLoop) {
6512 InLoopReductions.insert(Phi);
6513 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6514 Instruction *LastChain = Phi;
6515 for (auto *I : ReductionOperations) {
6516 InLoopReductionImmediateChains[I] = LastChain;
6517 LastChain = I;
6518 }
6519 }
6520 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6521 << " reduction for phi: " << *Phi << "\n");
6522 }
6523}
6524
6525// This function will select a scalable VF if the target supports scalable
6526// vectors and a fixed one otherwise.
6527// TODO: we could return a pair of values that specify the max VF and
6528// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6529// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6530// doesn't have a cost model that can choose which plan to execute if
6531// more than one is generated.
6534 unsigned WidestType;
6535 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6536
6538 TTI.enableScalableVectorization()
6541
6542 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6543 unsigned N = RegSize.getKnownMinValue() / WidestType;
6544 return ElementCount::get(N, RegSize.isScalable());
6545}
6546
6549 ElementCount VF = UserVF;
6550 // Outer loop handling: They may require CFG and instruction level
6551 // transformations before even evaluating whether vectorization is profitable.
6552 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6553 // the vectorization pipeline.
6554 if (!OrigLoop->isInnermost()) {
6555 // If the user doesn't provide a vectorization factor, determine a
6556 // reasonable one.
6557 if (UserVF.isZero()) {
6558 VF = determineVPlanVF(TTI, CM);
6559 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6560
6561 // Make sure we have a VF > 1 for stress testing.
6562 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6563 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6564 << "overriding computed VF.\n");
6565 VF = ElementCount::getFixed(4);
6566 }
6567 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6569 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6570 << "not supported by the target.\n");
6572 "Scalable vectorization requested but not supported by the target",
6573 "the scalable user-specified vectorization width for outer-loop "
6574 "vectorization cannot be used because the target does not support "
6575 "scalable vectors.",
6576 "ScalableVFUnfeasible", ORE, OrigLoop);
6578 }
6579 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6581 "VF needs to be a power of two");
6582 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6583 << "VF " << VF << " to build VPlans.\n");
6584 buildVPlans(VF, VF);
6585
6586 if (VPlans.empty())
6588
6589 // For VPlan build stress testing, we bail out after VPlan construction.
6592
6593 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6594 }
6595
6596 LLVM_DEBUG(
6597 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6598 "VPlan-native path.\n");
6600}
6601
6602void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6603 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6604 CM.collectValuesToIgnore();
6605 CM.collectElementTypesForWidening();
6606
6607 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6608 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6609 return;
6610
6611 // Invalidate interleave groups if all blocks of loop will be predicated.
6612 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6614 LLVM_DEBUG(
6615 dbgs()
6616 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6617 "which requires masked-interleaved support.\n");
6618 if (CM.InterleaveInfo.invalidateGroups())
6619 // Invalidating interleave groups also requires invalidating all decisions
6620 // based on them, which includes widening decisions and uniform and scalar
6621 // values.
6622 CM.invalidateCostModelingDecisions();
6623 }
6624
6625 if (CM.foldTailByMasking())
6626 Legal->prepareToFoldTailByMasking();
6627
6628 ElementCount MaxUserVF =
6629 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6630 if (UserVF) {
6631 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6633 "UserVF ignored because it may be larger than the maximal safe VF",
6634 "InvalidUserVF", ORE, OrigLoop);
6635 } else {
6637 "VF needs to be a power of two");
6638 // Collect the instructions (and their associated costs) that will be more
6639 // profitable to scalarize.
6640 CM.collectInLoopReductions();
6641 if (CM.selectUserVectorizationFactor(UserVF)) {
6642 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6643 buildVPlansWithVPRecipes(UserVF, UserVF);
6645 return;
6646 }
6647 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6648 "InvalidCost", ORE, OrigLoop);
6649 }
6650 }
6651
6652 // Collect the Vectorization Factor Candidates.
6653 SmallVector<ElementCount> VFCandidates;
6654 for (auto VF = ElementCount::getFixed(1);
6655 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6656 VFCandidates.push_back(VF);
6657 for (auto VF = ElementCount::getScalable(1);
6658 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6659 VFCandidates.push_back(VF);
6660
6661 CM.collectInLoopReductions();
6662 for (const auto &VF : VFCandidates) {
6663 // Collect Uniform and Scalar instructions after vectorization with VF.
6664 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6665 }
6666
6667 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6668 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6669
6671}
6672
6674 ElementCount VF) const {
6675 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6676 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6678 return Cost;
6679}
6680
6682 ElementCount VF) const {
6683 return CM.isUniformAfterVectorization(I, VF);
6684}
6685
6686bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6687 return CM.ValuesToIgnore.contains(UI) ||
6688 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6689 SkipCostComputation.contains(UI);
6690}
6691
6693LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6694 VPCostContext &CostCtx) const {
6696 // Cost modeling for inductions is inaccurate in the legacy cost model
6697 // compared to the recipes that are generated. To match here initially during
6698 // VPlan cost model bring up directly use the induction costs from the legacy
6699 // cost model. Note that we do this as pre-processing; the VPlan may not have
6700 // any recipes associated with the original induction increment instruction
6701 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6702 // the cost of induction phis and increments (both that are represented by
6703 // recipes and those that are not), to avoid distinguishing between them here,
6704 // and skip all recipes that represent induction phis and increments (the
6705 // former case) later on, if they exist, to avoid counting them twice.
6706 // Similarly we pre-compute the cost of any optimized truncates.
6707 // TODO: Switch to more accurate costing based on VPlan.
6708 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6710 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6711 SmallVector<Instruction *> IVInsts = {IVInc};
6712 for (unsigned I = 0; I != IVInsts.size(); I++) {
6713 for (Value *Op : IVInsts[I]->operands()) {
6714 auto *OpI = dyn_cast<Instruction>(Op);
6715 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6716 continue;
6717 IVInsts.push_back(OpI);
6718 }
6719 }
6720 IVInsts.push_back(IV);
6721 for (User *U : IV->users()) {
6722 auto *CI = cast<Instruction>(U);
6723 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6724 continue;
6725 IVInsts.push_back(CI);
6726 }
6727
6728 // If the vector loop gets executed exactly once with the given VF, ignore
6729 // the costs of comparison and induction instructions, as they'll get
6730 // simplified away.
6731 // TODO: Remove this code after stepping away from the legacy cost model and
6732 // adding code to simplify VPlans before calculating their costs.
6733 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6734 if (TC == VF && !CM.foldTailByMasking())
6735 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6736 CostCtx.SkipCostComputation);
6737
6738 for (Instruction *IVInst : IVInsts) {
6739 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6740 continue;
6741 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6742 LLVM_DEBUG({
6743 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6744 << ": induction instruction " << *IVInst << "\n";
6745 });
6746 Cost += InductionCost;
6747 CostCtx.SkipCostComputation.insert(IVInst);
6748 }
6749 }
6750
6751 /// Compute the cost of all exiting conditions of the loop using the legacy
6752 /// cost model. This is to match the legacy behavior, which adds the cost of
6753 /// all exit conditions. Note that this over-estimates the cost, as there will
6754 /// be a single condition to control the vector loop.
6756 CM.TheLoop->getExitingBlocks(Exiting);
6757 SetVector<Instruction *> ExitInstrs;
6758 // Collect all exit conditions.
6759 for (BasicBlock *EB : Exiting) {
6760 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6761 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6762 continue;
6763 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6764 ExitInstrs.insert(CondI);
6765 }
6766 }
6767 // Compute the cost of all instructions only feeding the exit conditions.
6768 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6769 Instruction *CondI = ExitInstrs[I];
6770 if (!OrigLoop->contains(CondI) ||
6771 !CostCtx.SkipCostComputation.insert(CondI).second)
6772 continue;
6773 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6774 LLVM_DEBUG({
6775 dbgs() << "Cost of " << CondICost << " for VF " << VF
6776 << ": exit condition instruction " << *CondI << "\n";
6777 });
6778 Cost += CondICost;
6779 for (Value *Op : CondI->operands()) {
6780 auto *OpI = dyn_cast<Instruction>(Op);
6781 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6782 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6783 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6784 !ExitInstrs.contains(cast<Instruction>(U));
6785 }))
6786 continue;
6787 ExitInstrs.insert(OpI);
6788 }
6789 }
6790
6791 // Pre-compute the costs for branches except for the backedge, as the number
6792 // of replicate regions in a VPlan may not directly match the number of
6793 // branches, which would lead to different decisions.
6794 // TODO: Compute cost of branches for each replicate region in the VPlan,
6795 // which is more accurate than the legacy cost model.
6796 for (BasicBlock *BB : OrigLoop->blocks()) {
6797 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6798 continue;
6799 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6800 if (BB == OrigLoop->getLoopLatch())
6801 continue;
6802 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6803 Cost += BranchCost;
6804 }
6805
6806 // Pre-compute costs for instructions that are forced-scalar or profitable to
6807 // scalarize. Their costs will be computed separately in the legacy cost
6808 // model.
6809 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6810 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6811 continue;
6812 CostCtx.SkipCostComputation.insert(ForcedScalar);
6813 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6814 LLVM_DEBUG({
6815 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6816 << ": forced scalar " << *ForcedScalar << "\n";
6817 });
6818 Cost += ForcedCost;
6819 }
6820 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6821 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6822 continue;
6823 CostCtx.SkipCostComputation.insert(Scalarized);
6824 LLVM_DEBUG({
6825 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6826 << ": profitable to scalarize " << *Scalarized << "\n";
6827 });
6828 Cost += ScalarCost;
6829 }
6830
6831 return Cost;
6832}
6833
6834InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6835 ElementCount VF) const {
6836 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind);
6837 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6838
6839 // Now compute and add the VPlan-based cost.
6840 Cost += Plan.cost(VF, CostCtx);
6841#ifndef NDEBUG
6842 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
6843 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
6844 << " (Estimated cost per lane: ");
6845 if (Cost.isValid()) {
6846 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
6847 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
6848 } else /* No point dividing an invalid cost - it will still be invalid */
6849 LLVM_DEBUG(dbgs() << "Invalid");
6850 LLVM_DEBUG(dbgs() << ")\n");
6851#endif
6852 return Cost;
6853}
6854
6855#ifndef NDEBUG
6856/// Return true if the original loop \ TheLoop contains any instructions that do
6857/// not have corresponding recipes in \p Plan and are not marked to be ignored
6858/// in \p CostCtx. This means the VPlan contains simplification that the legacy
6859/// cost-model did not account for.
6861 VPCostContext &CostCtx,
6862 Loop *TheLoop,
6863 ElementCount VF) {
6864 // First collect all instructions for the recipes in Plan.
6865 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
6866 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
6867 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
6868 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
6869 return &WidenMem->getIngredient();
6870 return nullptr;
6871 };
6872
6873 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
6874 // the select doesn't need to be considered for the vector loop cost; go with
6875 // the more accurate VPlan-based cost model.
6876 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
6877 auto *VPI = dyn_cast<VPInstruction>(&R);
6878 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6879 VPI->getNumUsers() != 1)
6880 continue;
6881
6882 if (auto *WR = dyn_cast<VPWidenRecipe>(*VPI->user_begin())) {
6883 switch (WR->getOpcode()) {
6884 case Instruction::UDiv:
6885 case Instruction::SDiv:
6886 case Instruction::URem:
6887 case Instruction::SRem:
6888 return true;
6889 default:
6890 break;
6891 }
6892 }
6893 }
6894
6895 DenseSet<Instruction *> SeenInstrs;
6896 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
6898 for (VPRecipeBase &R : *VPBB) {
6899 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
6900 auto *IG = IR->getInterleaveGroup();
6901 unsigned NumMembers = IG->getNumMembers();
6902 for (unsigned I = 0; I != NumMembers; ++I) {
6903 if (Instruction *M = IG->getMember(I))
6904 SeenInstrs.insert(M);
6905 }
6906 continue;
6907 }
6908 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
6909 // cost model won't cost it whilst the legacy will.
6910 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
6911 using namespace VPlanPatternMatch;
6912 if (none_of(FOR->users(),
6913 match_fn(m_VPInstruction<
6915 return true;
6916 }
6917 // The VPlan-based cost model is more accurate for partial reduction and
6918 // comparing against the legacy cost isn't desirable.
6920 return true;
6921
6922 // The VPlan-based cost model can analyze if recipes are scalar
6923 // recursively, but the legacy cost model cannot.
6924 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
6925 auto *AddrI = dyn_cast<Instruction>(
6926 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
6927 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
6928 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
6929 return true;
6930 }
6931
6932 /// If a VPlan transform folded a recipe to one producing a single-scalar,
6933 /// but the original instruction wasn't uniform-after-vectorization in the
6934 /// legacy cost model, the legacy cost overestimates the actual cost.
6935 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
6936 if (RepR->isSingleScalar() &&
6938 RepR->getUnderlyingInstr(), VF))
6939 return true;
6940 }
6941 if (Instruction *UI = GetInstructionForCost(&R)) {
6942 // If we adjusted the predicate of the recipe, the cost in the legacy
6943 // cost model may be different.
6944 using namespace VPlanPatternMatch;
6945 CmpPredicate Pred;
6946 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6947 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
6948 cast<CmpInst>(UI)->getPredicate())
6949 return true;
6950 SeenInstrs.insert(UI);
6951 }
6952 }
6953 }
6954
6955 // Return true if the loop contains any instructions that are not also part of
6956 // the VPlan or are skipped for VPlan-based cost computations. This indicates
6957 // that the VPlan contains extra simplifications.
6958 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
6959 TheLoop](BasicBlock *BB) {
6960 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
6961 // Skip induction phis when checking for simplifications, as they may not
6962 // be lowered directly be lowered to a corresponding PHI recipe.
6963 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
6964 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
6965 return false;
6966 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
6967 });
6968 });
6969}
6970#endif
6971
6973 if (VPlans.empty())
6975 // If there is a single VPlan with a single VF, return it directly.
6976 VPlan &FirstPlan = *VPlans[0];
6977 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
6978 return {*FirstPlan.vectorFactors().begin(), 0, 0};
6979
6980 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
6981 << (CM.CostKind == TTI::TCK_RecipThroughput
6982 ? "Reciprocal Throughput\n"
6983 : CM.CostKind == TTI::TCK_Latency
6984 ? "Instruction Latency\n"
6985 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
6986 : CM.CostKind == TTI::TCK_SizeAndLatency
6987 ? "Code Size and Latency\n"
6988 : "Unknown\n"));
6989
6991 assert(hasPlanWithVF(ScalarVF) &&
6992 "More than a single plan/VF w/o any plan having scalar VF");
6993
6994 // TODO: Compute scalar cost using VPlan-based cost model.
6995 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
6996 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
6997 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
6998 VectorizationFactor BestFactor = ScalarFactor;
6999
7000 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7001 if (ForceVectorization) {
7002 // Ignore scalar width, because the user explicitly wants vectorization.
7003 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7004 // evaluation.
7005 BestFactor.Cost = InstructionCost::getMax();
7006 }
7007
7008 for (auto &P : VPlans) {
7009 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7010 P->vectorFactors().end());
7011
7013 if (any_of(VFs, [this](ElementCount VF) {
7014 return CM.shouldConsiderRegPressureForVF(VF);
7015 }))
7016 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7017
7018 for (unsigned I = 0; I < VFs.size(); I++) {
7019 ElementCount VF = VFs[I];
7020 if (VF.isScalar())
7021 continue;
7022 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7023 LLVM_DEBUG(
7024 dbgs()
7025 << "LV: Not considering vector loop of width " << VF
7026 << " because it will not generate any vector instructions.\n");
7027 continue;
7028 }
7029 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7030 LLVM_DEBUG(
7031 dbgs()
7032 << "LV: Not considering vector loop of width " << VF
7033 << " because it would cause replicated blocks to be generated,"
7034 << " which isn't allowed when optimizing for size.\n");
7035 continue;
7036 }
7037
7038 InstructionCost Cost = cost(*P, VF);
7039 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7040
7041 if (CM.shouldConsiderRegPressureForVF(VF) &&
7042 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7043 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7044 << VF << " because it uses too many registers\n");
7045 continue;
7046 }
7047
7048 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7049 BestFactor = CurrentFactor;
7050
7051 // If profitable add it to ProfitableVF list.
7052 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7053 ProfitableVFs.push_back(CurrentFactor);
7054 }
7055 }
7056
7057#ifndef NDEBUG
7058 // Select the optimal vectorization factor according to the legacy cost-model.
7059 // This is now only used to verify the decisions by the new VPlan-based
7060 // cost-model and will be retired once the VPlan-based cost-model is
7061 // stabilized.
7062 VectorizationFactor LegacyVF = selectVectorizationFactor();
7063 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7064
7065 // Pre-compute the cost and use it to check if BestPlan contains any
7066 // simplifications not accounted for in the legacy cost model. If that's the
7067 // case, don't trigger the assertion, as the extra simplifications may cause a
7068 // different VF to be picked by the VPlan-based cost model.
7069 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind);
7070 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7071 // Verify that the VPlan-based and legacy cost models agree, except for VPlans
7072 // with early exits and plans with additional VPlan simplifications. The
7073 // legacy cost model doesn't properly model costs for such loops.
7074 assert((BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7076 CostCtx, OrigLoop,
7077 BestFactor.Width) ||
7079 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7080 " VPlan cost model and legacy cost model disagreed");
7081 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7082 "when vectorizing, the scalar cost must be computed.");
7083#endif
7084
7085 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7086 return BestFactor;
7087}
7088
7090 using namespace VPlanPatternMatch;
7092 "RdxResult must be ComputeFindIVResult");
7093 VPValue *StartVPV = RdxResult->getOperand(1);
7094 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7095 return StartVPV->getLiveInIRValue();
7096}
7097
7098// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7099// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7100// from the main vector loop.
7102 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7103 // Get the VPInstruction computing the reduction result in the middle block.
7104 // The first operand may not be from the middle block if it is not connected
7105 // to the scalar preheader. In that case, there's nothing to fix.
7106 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7109 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7110 if (!EpiRedResult ||
7111 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7112 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7113 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7114 return;
7115
7116 auto *EpiRedHeaderPhi =
7117 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7118 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7119 Value *MainResumeValue;
7120 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7121 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7122 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7123 "unexpected start recipe");
7124 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7125 } else
7126 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7128 [[maybe_unused]] Value *StartV =
7129 EpiRedResult->getOperand(1)->getLiveInIRValue();
7130 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7131 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7132 "AnyOf expected to start with ICMP_NE");
7133 assert(Cmp->getOperand(1) == StartV &&
7134 "AnyOf expected to start by comparing main resume value to original "
7135 "start value");
7136 MainResumeValue = Cmp->getOperand(0);
7138 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7139 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7140 using namespace llvm::PatternMatch;
7141 Value *Cmp, *OrigResumeV, *CmpOp;
7142 [[maybe_unused]] bool IsExpectedPattern =
7143 match(MainResumeValue,
7144 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7145 m_Value(OrigResumeV))) &&
7147 m_Value(CmpOp))) &&
7148 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7149 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7150 MainResumeValue = OrigResumeV;
7151 }
7152 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7153
7154 // When fixing reductions in the epilogue loop we should already have
7155 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7156 // over the incoming values correctly.
7157 EpiResumePhi.setIncomingValueForBlock(
7158 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7159}
7160
7162 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7163 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7164 assert(BestVPlan.hasVF(BestVF) &&
7165 "Trying to execute plan with unsupported VF");
7166 assert(BestVPlan.hasUF(BestUF) &&
7167 "Trying to execute plan with unsupported UF");
7168 if (BestVPlan.hasEarlyExit())
7169 ++LoopsEarlyExitVectorized;
7170 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7171 // cost model is complete for better cost estimates.
7176 bool HasBranchWeights =
7177 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7178 if (HasBranchWeights) {
7179 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7181 BestVPlan, BestVF, VScale);
7182 }
7183
7184 // Checks are the same for all VPlans, added to BestVPlan only for
7185 // compactness.
7186 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7187
7188 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7189 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7190
7191 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7194 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7195 BestVPlan.getScalarPreheader()) {
7196 // TODO: The vector loop would be dead, should not even try to vectorize.
7197 ORE->emit([&]() {
7198 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7199 OrigLoop->getStartLoc(),
7200 OrigLoop->getHeader())
7201 << "Created vector loop never executes due to insufficient trip "
7202 "count.";
7203 });
7205 }
7206
7208 BestVPlan, BestVF,
7209 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector));
7210 VPlanTransforms::cse(BestVPlan);
7212
7214 // Regions are dissolved after optimizing for VF and UF, which completely
7215 // removes unneeded loop regions first.
7217 // Canonicalize EVL loops after regions are dissolved.
7221 BestVPlan, VectorPH, CM.foldTailByMasking(),
7222 CM.requiresScalarEpilogue(BestVF.isVector()));
7223 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7225
7226 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7227 // making any changes to the CFG.
7228 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7229 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7230 if (!ILV.getTripCount())
7231 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7232 else
7233 assert(VectorizingEpilogue && "should only re-use the existing trip "
7234 "count during epilogue vectorization");
7235
7236 // Perform the actual loop transformation.
7237 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7238 OrigLoop->getParentLoop(),
7239 Legal->getWidestInductionType());
7240
7241#ifdef EXPENSIVE_CHECKS
7242 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7243#endif
7244
7245 // 1. Set up the skeleton for vectorization, including vector pre-header and
7246 // middle block. The vector loop is created during VPlan execution.
7247 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7249 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7251
7252 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7253 "final VPlan is invalid");
7254
7255 // After vectorization, the exit blocks of the original loop will have
7256 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7257 // looked through single-entry phis.
7258 ScalarEvolution &SE = *PSE.getSE();
7259 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7260 if (!Exit->hasPredecessors())
7261 continue;
7262 for (VPRecipeBase &PhiR : Exit->phis())
7264 OrigLoop, cast<PHINode>(&cast<VPIRPhi>(PhiR).getInstruction()));
7265 }
7266 // Forget the original loop and block dispositions.
7267 SE.forgetLoop(OrigLoop);
7269
7271
7272 //===------------------------------------------------===//
7273 //
7274 // Notice: any optimization or new instruction that go
7275 // into the code below should also be implemented in
7276 // the cost-model.
7277 //
7278 //===------------------------------------------------===//
7279
7280 // Retrieve loop information before executing the plan, which may remove the
7281 // original loop, if it becomes unreachable.
7282 MDNode *LID = OrigLoop->getLoopID();
7283 unsigned OrigLoopInvocationWeight = 0;
7284 std::optional<unsigned> OrigAverageTripCount =
7285 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7286
7287 BestVPlan.execute(&State);
7288
7289 // 2.6. Maintain Loop Hints
7290 // Keep all loop hints from the original loop on the vector loop (we'll
7291 // replace the vectorizer-specific hints below).
7292 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7293 // Add metadata to disable runtime unrolling a scalar loop when there
7294 // are no runtime checks about strides and memory. A scalar loop that is
7295 // rarely used is not worth unrolling.
7296 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7298 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7299 : nullptr,
7300 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7301 OrigLoopInvocationWeight,
7302 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7303 DisableRuntimeUnroll);
7304
7305 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7306 // predication, updating analyses.
7307 ILV.fixVectorizedLoop(State);
7308
7310
7311 return ExpandedSCEVs;
7312}
7313
7314//===--------------------------------------------------------------------===//
7315// EpilogueVectorizerMainLoop
7316//===--------------------------------------------------------------------===//
7317
7318/// This function is partially responsible for generating the control flow
7319/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7321 BasicBlock *ScalarPH = createScalarPreheader("");
7322 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7323
7324 // Generate the code to check the minimum iteration count of the vector
7325 // epilogue (see below).
7326 EPI.EpilogueIterationCountCheck =
7327 emitIterationCountCheck(VectorPH, ScalarPH, true);
7328 EPI.EpilogueIterationCountCheck->setName("iter.check");
7329
7330 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7331 ->getSuccessor(1);
7332 // Generate the iteration count check for the main loop, *after* the check
7333 // for the epilogue loop, so that the path-length is shorter for the case
7334 // that goes directly through the vector epilogue. The longer-path length for
7335 // the main loop is compensated for, by the gain from vectorizing the larger
7336 // trip count. Note: the branch will get updated later on when we vectorize
7337 // the epilogue.
7338 EPI.MainLoopIterationCountCheck =
7339 emitIterationCountCheck(VectorPH, ScalarPH, false);
7340
7341 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7342 ->getSuccessor(1);
7343}
7344
7346 LLVM_DEBUG({
7347 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7348 << "Main Loop VF:" << EPI.MainLoopVF
7349 << ", Main Loop UF:" << EPI.MainLoopUF
7350 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7351 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7352 });
7353}
7354
7357 dbgs() << "intermediate fn:\n"
7358 << *OrigLoop->getHeader()->getParent() << "\n";
7359 });
7360}
7361
7363 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7364 assert(Bypass && "Expected valid bypass basic block.");
7367 Value *CheckMinIters = createIterationCountCheck(
7368 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7369 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7370
7371 BasicBlock *const TCCheckBlock = VectorPH;
7372 if (!ForEpilogue)
7373 TCCheckBlock->setName("vector.main.loop.iter.check");
7374
7375 // Create new preheader for vector loop.
7376 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7377 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7378 "vector.ph");
7379 if (ForEpilogue) {
7380 // Save the trip count so we don't have to regenerate it in the
7381 // vec.epilog.iter.check. This is safe to do because the trip count
7382 // generated here dominates the vector epilog iter check.
7383 EPI.TripCount = Count;
7384 } else {
7386 }
7387
7388 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7389 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7390 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7391 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7392
7393 // When vectorizing the main loop, its trip-count check is placed in a new
7394 // block, whereas the overall trip-count check is placed in the VPlan entry
7395 // block. When vectorizing the epilogue loop, its trip-count check is placed
7396 // in the VPlan entry block.
7397 if (!ForEpilogue)
7398 introduceCheckBlockInVPlan(TCCheckBlock);
7399 return TCCheckBlock;
7400}
7401
7402//===--------------------------------------------------------------------===//
7403// EpilogueVectorizerEpilogueLoop
7404//===--------------------------------------------------------------------===//
7405
7406/// This function creates a new scalar preheader, using the previous one as
7407/// entry block to the epilogue VPlan. The minimum iteration check is being
7408/// represented in VPlan.
7410 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7411 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7412 OriginalScalarPH->setName("vec.epilog.iter.check");
7413 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7414 VPBasicBlock *OldEntry = Plan.getEntry();
7415 for (auto &R : make_early_inc_range(*OldEntry)) {
7416 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7417 // defining.
7418 if (isa<VPIRInstruction>(&R))
7419 continue;
7420 R.moveBefore(*NewEntry, NewEntry->end());
7421 }
7422
7423 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7424 Plan.setEntry(NewEntry);
7425 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7426
7427 return OriginalScalarPH;
7428}
7429
7431 LLVM_DEBUG({
7432 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7433 << "Epilogue Loop VF:" << EPI.EpilogueVF
7434 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7435 });
7436}
7437
7440 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7441 });
7442}
7443
7445VPRecipeBuilder::tryToWidenMemory(Instruction *I, ArrayRef<VPValue *> Operands,
7446 VFRange &Range) {
7448 "Must be called with either a load or store");
7449
7450 auto WillWiden = [&](ElementCount VF) -> bool {
7452 CM.getWideningDecision(I, VF);
7454 "CM decision should be taken at this point.");
7456 return true;
7457 if (CM.isScalarAfterVectorization(I, VF) ||
7458 CM.isProfitableToScalarize(I, VF))
7459 return false;
7461 };
7462
7464 return nullptr;
7465
7466 VPValue *Mask = nullptr;
7467 if (Legal->isMaskRequired(I))
7468 Mask = getBlockInMask(Builder.getInsertBlock());
7469
7470 // Determine if the pointer operand of the access is either consecutive or
7471 // reverse consecutive.
7473 CM.getWideningDecision(I, Range.Start);
7475 bool Consecutive =
7477
7479 if (Consecutive) {
7481 Ptr->getUnderlyingValue()->stripPointerCasts());
7482 VPSingleDefRecipe *VectorPtr;
7483 if (Reverse) {
7484 // When folding the tail, we may compute an address that we don't in the
7485 // original scalar loop and it may not be inbounds. Drop Inbounds in that
7486 // case.
7487 GEPNoWrapFlags Flags =
7488 (CM.foldTailByMasking() || !GEP || !GEP->isInBounds())
7490 : GEPNoWrapFlags::inBounds();
7491 VectorPtr =
7493 /*Stride*/ -1, Flags, I->getDebugLoc());
7494 } else {
7495 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7496 GEP ? GEP->getNoWrapFlags()
7498 I->getDebugLoc());
7499 }
7500 Builder.insert(VectorPtr);
7501 Ptr = VectorPtr;
7502 }
7503 if (LoadInst *Load = dyn_cast<LoadInst>(I))
7504 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7505 VPIRMetadata(*Load, LVer), I->getDebugLoc());
7506
7507 StoreInst *Store = cast<StoreInst>(I);
7508 return new VPWidenStoreRecipe(*Store, Ptr, Operands[0], Mask, Consecutive,
7509 Reverse, VPIRMetadata(*Store, LVer),
7510 I->getDebugLoc());
7511}
7512
7513/// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
7514/// insert a recipe to expand the step for the induction recipe.
7515static VPWidenIntOrFpInductionRecipe *
7517 VPValue *Start, const InductionDescriptor &IndDesc,
7518 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop) {
7519 assert(IndDesc.getStartValue() ==
7520 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
7521 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
7522 "step must be loop invariant");
7523
7524 VPValue *Step =
7526 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
7527 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7528 IndDesc, TruncI,
7529 TruncI->getDebugLoc());
7530 }
7531 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
7532 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, &Plan.getVF(),
7533 IndDesc, Phi->getDebugLoc());
7534}
7535
7536VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7537 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) {
7538
7539 // Check if this is an integer or fp induction. If so, build the recipe that
7540 // produces its scalar and vector values.
7541 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
7542 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, Plan,
7543 *PSE.getSE(), *OrigLoop);
7544
7545 // Check if this is pointer induction. If so, build the recipe for it.
7546 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) {
7547 VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep());
7548 return new VPWidenPointerInductionRecipe(
7549 Phi, Operands[0], Step, &Plan.getVFxUF(), *II,
7551 [&](ElementCount VF) {
7552 return CM.isScalarAfterVectorization(Phi, VF);
7553 },
7554 Range),
7555 Phi->getDebugLoc());
7556 }
7557 return nullptr;
7558}
7559
7560VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7561 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range) {
7562 // Optimize the special case where the source is a constant integer
7563 // induction variable. Notice that we can only optimize the 'trunc' case
7564 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7565 // (c) other casts depend on pointer size.
7566
7567 // Determine whether \p K is a truncation based on an induction variable that
7568 // can be optimized.
7569 auto IsOptimizableIVTruncate =
7570 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7571 return [=](ElementCount VF) -> bool {
7572 return CM.isOptimizableIVTruncate(K, VF);
7573 };
7574 };
7575
7577 IsOptimizableIVTruncate(I), Range)) {
7578
7579 auto *Phi = cast<PHINode>(I->getOperand(0));
7580 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
7581 VPValue *Start = Plan.getOrAddLiveIn(II.getStartValue());
7582 return createWidenInductionRecipes(Phi, I, Start, II, Plan, *PSE.getSE(),
7583 *OrigLoop);
7584 }
7585 return nullptr;
7586}
7587
7588VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7590 VFRange &Range) {
7592 [this, CI](ElementCount VF) {
7593 return CM.isScalarWithPredication(CI, VF);
7594 },
7595 Range);
7596
7597 if (IsPredicated)
7598 return nullptr;
7599
7601 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7602 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7603 ID == Intrinsic::pseudoprobe ||
7604 ID == Intrinsic::experimental_noalias_scope_decl))
7605 return nullptr;
7606
7608
7609 // Is it beneficial to perform intrinsic call compared to lib call?
7610 bool ShouldUseVectorIntrinsic =
7612 [&](ElementCount VF) -> bool {
7613 return CM.getCallWideningDecision(CI, VF).Kind ==
7615 },
7616 Range);
7617 if (ShouldUseVectorIntrinsic)
7618 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(),
7619 CI->getDebugLoc());
7620
7621 Function *Variant = nullptr;
7622 std::optional<unsigned> MaskPos;
7623 // Is better to call a vectorized version of the function than to to scalarize
7624 // the call?
7625 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7626 [&](ElementCount VF) -> bool {
7627 // The following case may be scalarized depending on the VF.
7628 // The flag shows whether we can use a usual Call for vectorized
7629 // version of the instruction.
7630
7631 // If we've found a variant at a previous VF, then stop looking. A
7632 // vectorized variant of a function expects input in a certain shape
7633 // -- basically the number of input registers, the number of lanes
7634 // per register, and whether there's a mask required.
7635 // We store a pointer to the variant in the VPWidenCallRecipe, so
7636 // once we have an appropriate variant it's only valid for that VF.
7637 // This will force a different vplan to be generated for each VF that
7638 // finds a valid variant.
7639 if (Variant)
7640 return false;
7641 LoopVectorizationCostModel::CallWideningDecision Decision =
7642 CM.getCallWideningDecision(CI, VF);
7644 Variant = Decision.Variant;
7645 MaskPos = Decision.MaskPos;
7646 return true;
7647 }
7648
7649 return false;
7650 },
7651 Range);
7652 if (ShouldUseVectorCall) {
7653 if (MaskPos.has_value()) {
7654 // We have 2 cases that would require a mask:
7655 // 1) The block needs to be predicated, either due to a conditional
7656 // in the scalar loop or use of an active lane mask with
7657 // tail-folding, and we use the appropriate mask for the block.
7658 // 2) No mask is required for the block, but the only available
7659 // vector variant at this VF requires a mask, so we synthesize an
7660 // all-true mask.
7661 VPValue *Mask = nullptr;
7662 if (Legal->isMaskRequired(CI))
7663 Mask = getBlockInMask(Builder.getInsertBlock());
7664 else
7665 Mask = Plan.getOrAddLiveIn(
7666 ConstantInt::getTrue(IntegerType::getInt1Ty(CI->getContext())));
7667
7668 Ops.insert(Ops.begin() + *MaskPos, Mask);
7669 }
7670
7671 Ops.push_back(Operands.back());
7672 return new VPWidenCallRecipe(CI, Variant, Ops, CI->getDebugLoc());
7673 }
7674
7675 return nullptr;
7676}
7677
7678bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7680 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7681 // Instruction should be widened, unless it is scalar after vectorization,
7682 // scalarization is profitable or it is predicated.
7683 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7684 return CM.isScalarAfterVectorization(I, VF) ||
7685 CM.isProfitableToScalarize(I, VF) ||
7686 CM.isScalarWithPredication(I, VF);
7687 };
7689 Range);
7690}
7691
7692VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
7694 switch (I->getOpcode()) {
7695 default:
7696 return nullptr;
7697 case Instruction::SDiv:
7698 case Instruction::UDiv:
7699 case Instruction::SRem:
7700 case Instruction::URem: {
7701 // If not provably safe, use a select to form a safe divisor before widening the
7702 // div/rem operation itself. Otherwise fall through to general handling below.
7703 if (CM.isPredicatedInst(I)) {
7705 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7706 VPValue *One =
7707 Plan.getOrAddLiveIn(ConstantInt::get(I->getType(), 1u, false));
7708 auto *SafeRHS = Builder.createSelect(Mask, Ops[1], One, I->getDebugLoc());
7709 Ops[1] = SafeRHS;
7710 return new VPWidenRecipe(*I, Ops);
7711 }
7712 [[fallthrough]];
7713 }
7714 case Instruction::Add:
7715 case Instruction::And:
7716 case Instruction::AShr:
7717 case Instruction::FAdd:
7718 case Instruction::FCmp:
7719 case Instruction::FDiv:
7720 case Instruction::FMul:
7721 case Instruction::FNeg:
7722 case Instruction::FRem:
7723 case Instruction::FSub:
7724 case Instruction::ICmp:
7725 case Instruction::LShr:
7726 case Instruction::Mul:
7727 case Instruction::Or:
7728 case Instruction::Select:
7729 case Instruction::Shl:
7730 case Instruction::Sub:
7731 case Instruction::Xor:
7732 case Instruction::Freeze: {
7734 if (Instruction::isBinaryOp(I->getOpcode())) {
7735 // The legacy cost model uses SCEV to check if some of the operands are
7736 // constants. To match the legacy cost model's behavior, use SCEV to try
7737 // to replace operands with constants.
7738 ScalarEvolution &SE = *PSE.getSE();
7739 auto GetConstantViaSCEV = [this, &SE](VPValue *Op) {
7740 if (!Op->isLiveIn())
7741 return Op;
7742 Value *V = Op->getUnderlyingValue();
7743 if (isa<Constant>(V) || !SE.isSCEVable(V->getType()))
7744 return Op;
7745 auto *C = dyn_cast<SCEVConstant>(SE.getSCEV(V));
7746 if (!C)
7747 return Op;
7748 return Plan.getOrAddLiveIn(C->getValue());
7749 };
7750 // For Mul, the legacy cost model checks both operands.
7751 if (I->getOpcode() == Instruction::Mul)
7752 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7753 // For other binops, the legacy cost model only checks the second operand.
7754 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7755 }
7756 return new VPWidenRecipe(*I, NewOps);
7757 }
7758 case Instruction::ExtractValue: {
7760 Type *I32Ty = IntegerType::getInt32Ty(I->getContext());
7761 auto *EVI = cast<ExtractValueInst>(I);
7762 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7763 unsigned Idx = EVI->getIndices()[0];
7764 NewOps.push_back(Plan.getOrAddLiveIn(ConstantInt::get(I32Ty, Idx, false)));
7765 return new VPWidenRecipe(*I, NewOps);
7766 }
7767 };
7768}
7769
7770VPHistogramRecipe *
7771VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7773 // FIXME: Support other operations.
7774 unsigned Opcode = HI->Update->getOpcode();
7775 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7776 "Histogram update operation must be an Add or Sub");
7777
7779 // Bucket address.
7780 HGramOps.push_back(Operands[1]);
7781 // Increment value.
7782 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7783
7784 // In case of predicated execution (due to tail-folding, or conditional
7785 // execution, or both), pass the relevant mask.
7786 if (Legal->isMaskRequired(HI->Store))
7787 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7788
7789 return new VPHistogramRecipe(Opcode, HGramOps, HI->Store->getDebugLoc());
7790}
7791
7792VPReplicateRecipe *
7794 VFRange &Range) {
7796 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7797 Range);
7798
7799 bool IsPredicated = CM.isPredicatedInst(I);
7800
7801 // Even if the instruction is not marked as uniform, there are certain
7802 // intrinsic calls that can be effectively treated as such, so we check for
7803 // them here. Conservatively, we only do this for scalable vectors, since
7804 // for fixed-width VFs we can always fall back on full scalarization.
7805 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7806 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7807 case Intrinsic::assume:
7808 case Intrinsic::lifetime_start:
7809 case Intrinsic::lifetime_end:
7810 // For scalable vectors if one of the operands is variant then we still
7811 // want to mark as uniform, which will generate one instruction for just
7812 // the first lane of the vector. We can't scalarize the call in the same
7813 // way as for fixed-width vectors because we don't know how many lanes
7814 // there are.
7815 //
7816 // The reasons for doing it this way for scalable vectors are:
7817 // 1. For the assume intrinsic generating the instruction for the first
7818 // lane is still be better than not generating any at all. For
7819 // example, the input may be a splat across all lanes.
7820 // 2. For the lifetime start/end intrinsics the pointer operand only
7821 // does anything useful when the input comes from a stack object,
7822 // which suggests it should always be uniform. For non-stack objects
7823 // the effect is to poison the object, which still allows us to
7824 // remove the call.
7825 IsUniform = true;
7826 break;
7827 default:
7828 break;
7829 }
7830 }
7831 VPValue *BlockInMask = nullptr;
7832 if (!IsPredicated) {
7833 // Finalize the recipe for Instr, first if it is not predicated.
7834 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7835 } else {
7836 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7837 // Instructions marked for predication are replicated and a mask operand is
7838 // added initially. Masked replicate recipes will later be placed under an
7839 // if-then construct to prevent side-effects. Generate recipes to compute
7840 // the block mask for this region.
7841 BlockInMask = getBlockInMask(Builder.getInsertBlock());
7842 }
7843
7844 // Note that there is some custom logic to mark some intrinsics as uniform
7845 // manually above for scalable vectors, which this assert needs to account for
7846 // as well.
7847 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7848 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
7849 "Should not predicate a uniform recipe");
7850 auto *Recipe = new VPReplicateRecipe(I, Operands, IsUniform, BlockInMask,
7851 VPIRMetadata(*I, LVer));
7852 return Recipe;
7853}
7854
7855/// Find all possible partial reductions in the loop and track all of those that
7856/// are valid so recipes can be formed later.
7858 // Find all possible partial reductions.
7860 PartialReductionChains;
7861 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7862 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(), Range,
7863 PartialReductionChains);
7864 }
7865
7866 // A partial reduction is invalid if any of its extends are used by
7867 // something that isn't another partial reduction. This is because the
7868 // extends are intended to be lowered along with the reduction itself.
7869
7870 // Build up a set of partial reduction ops for efficient use checking.
7871 SmallPtrSet<User *, 4> PartialReductionOps;
7872 for (const auto &[PartialRdx, _] : PartialReductionChains)
7873 PartialReductionOps.insert(PartialRdx.ExtendUser);
7874
7875 auto ExtendIsOnlyUsedByPartialReductions =
7876 [&PartialReductionOps](Instruction *Extend) {
7877 return all_of(Extend->users(), [&](const User *U) {
7878 return PartialReductionOps.contains(U);
7879 });
7880 };
7881
7882 // Check if each use of a chain's two extends is a partial reduction
7883 // and only add those that don't have non-partial reduction users.
7884 for (auto Pair : PartialReductionChains) {
7885 PartialReductionChain Chain = Pair.first;
7886 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
7887 (!Chain.ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
7888 ScaledReductionMap.try_emplace(Chain.Reduction, Pair.second);
7889 }
7890}
7891
7892bool VPRecipeBuilder::getScaledReductions(
7893 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
7894 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7895 if (!CM.TheLoop->contains(RdxExitInstr))
7896 return false;
7897
7898 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
7899 if (!Update)
7900 return false;
7901
7902 Value *Op = Update->getOperand(0);
7903 Value *PhiOp = Update->getOperand(1);
7904 if (Op == PHI)
7905 std::swap(Op, PhiOp);
7906
7907 // Try and get a scaled reduction from the first non-phi operand.
7908 // If one is found, we use the discovered reduction instruction in
7909 // place of the accumulator for costing.
7910 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
7911 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
7912 PHI = Chains.rbegin()->first.Reduction;
7913
7914 Op = Update->getOperand(0);
7915 PhiOp = Update->getOperand(1);
7916 if (Op == PHI)
7917 std::swap(Op, PhiOp);
7918 }
7919 }
7920 if (PhiOp != PHI)
7921 return false;
7922
7923 using namespace llvm::PatternMatch;
7924
7925 // If the update is a binary operator, check both of its operands to see if
7926 // they are extends. Otherwise, see if the update comes directly from an
7927 // extend.
7928 Instruction *Exts[2] = {nullptr};
7929 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
7930 std::optional<unsigned> BinOpc;
7931 Type *ExtOpTypes[2] = {nullptr};
7933
7934 auto CollectExtInfo = [this, &Exts, &ExtOpTypes,
7935 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
7936 for (const auto &[I, OpI] : enumerate(Ops)) {
7937 Value *ExtOp;
7938 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
7939 return false;
7940 Exts[I] = cast<Instruction>(OpI);
7941
7942 // TODO: We should be able to support live-ins.
7943 if (!CM.TheLoop->contains(Exts[I]))
7944 return false;
7945
7946 ExtOpTypes[I] = ExtOp->getType();
7947 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
7948 }
7949 return true;
7950 };
7951
7952 if (ExtendUser) {
7953 if (!ExtendUser->hasOneUse())
7954 return false;
7955
7956 // Use the side-effect of match to replace BinOp only if the pattern is
7957 // matched, we don't care at this point whether it actually matched.
7958 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
7959
7960 SmallVector<Value *> Ops(ExtendUser->operands());
7961 if (!CollectExtInfo(Ops))
7962 return false;
7963
7964 BinOpc = std::make_optional(ExtendUser->getOpcode());
7965 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
7966 // We already know the operands for Update are Op and PhiOp.
7968 if (!CollectExtInfo(Ops))
7969 return false;
7970
7971 ExtendUser = Update;
7972 BinOpc = std::nullopt;
7973 } else
7974 return false;
7975
7976 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
7977
7978 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
7979 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
7980 if (!PHISize.hasKnownScalarFactor(ASize))
7981 return false;
7982 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
7983
7985 [&](ElementCount VF) {
7987 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
7988 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
7989 CM.CostKind);
7990 return Cost.isValid();
7991 },
7992 Range)) {
7993 Chains.emplace_back(Chain, TargetScaleFactor);
7994 return true;
7995 }
7996
7997 return false;
7998}
7999
8001 VFRange &Range) {
8002 // First, check for specific widening recipes that deal with inductions, Phi
8003 // nodes, calls and memory operations.
8004 VPRecipeBase *Recipe;
8005 Instruction *Instr = R->getUnderlyingInstr();
8006 SmallVector<VPValue *, 4> Operands(R->operands());
8007 if (auto *PhiR = dyn_cast<VPPhi>(R)) {
8008 VPBasicBlock *Parent = PhiR->getParent();
8009 [[maybe_unused]] VPRegionBlock *LoopRegionOf =
8010 Parent->getEnclosingLoopRegion();
8011 assert(LoopRegionOf && LoopRegionOf->getEntry() == Parent &&
8012 "Non-header phis should have been handled during predication");
8013 auto *Phi = cast<PHINode>(R->getUnderlyingInstr());
8014 assert(Operands.size() == 2 && "Must have 2 operands for header phis");
8015 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8016 return Recipe;
8017
8018 VPHeaderPHIRecipe *PhiRecipe = nullptr;
8019 assert((Legal->isReductionVariable(Phi) ||
8020 Legal->isFixedOrderRecurrence(Phi)) &&
8021 "can only widen reductions and fixed-order recurrences here");
8022 VPValue *StartV = Operands[0];
8023 if (Legal->isReductionVariable(Phi)) {
8024 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(Phi);
8025 assert(RdxDesc.getRecurrenceStartValue() ==
8026 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8027
8028 // If the PHI is used by a partial reduction, set the scale factor.
8029 unsigned ScaleFactor =
8030 getScalingForReduction(RdxDesc.getLoopExitInstr()).value_or(1);
8031 PhiRecipe = new VPReductionPHIRecipe(
8032 Phi, RdxDesc.getRecurrenceKind(), *StartV, CM.isInLoopReduction(Phi),
8033 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8034 } else {
8035 // TODO: Currently fixed-order recurrences are modeled as chains of
8036 // first-order recurrences. If there are no users of the intermediate
8037 // recurrences in the chain, the fixed order recurrence should be modeled
8038 // directly, enabling more efficient codegen.
8039 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8040 }
8041 // Add backedge value.
8042 PhiRecipe->addOperand(Operands[1]);
8043 return PhiRecipe;
8044 }
8045 assert(!R->isPhi() && "only VPPhi nodes expected at this point");
8046
8047 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8048 cast<TruncInst>(Instr), Operands, Range)))
8049 return Recipe;
8050
8051 // All widen recipes below deal only with VF > 1.
8053 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8054 return nullptr;
8055
8056 if (auto *CI = dyn_cast<CallInst>(Instr))
8057 return tryToWidenCall(CI, Operands, Range);
8058
8059 if (StoreInst *SI = dyn_cast<StoreInst>(Instr))
8060 if (auto HistInfo = Legal->getHistogramInfo(SI))
8061 return tryToWidenHistogram(*HistInfo, Operands);
8062
8063 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8064 return tryToWidenMemory(Instr, Operands, Range);
8065
8066 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr)) {
8067 if (auto PartialRed =
8068 tryToCreatePartialReduction(Instr, Operands, ScaleFactor.value()))
8069 return PartialRed;
8070 }
8071
8072 if (!shouldWiden(Instr, Range))
8073 return nullptr;
8074
8075 if (auto *GEP = dyn_cast<GetElementPtrInst>(Instr))
8076 return new VPWidenGEPRecipe(GEP, Operands);
8077
8078 if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8079 return new VPWidenSelectRecipe(*SI, Operands);
8080 }
8081
8082 if (auto *CI = dyn_cast<CastInst>(Instr)) {
8083 return new VPWidenCastRecipe(CI->getOpcode(), Operands[0], CI->getType(),
8084 *CI);
8085 }
8086
8087 return tryToWiden(Instr, Operands);
8088}
8089
8093 unsigned ScaleFactor) {
8094 assert(Operands.size() == 2 &&
8095 "Unexpected number of operands for partial reduction");
8096
8097 VPValue *BinOp = Operands[0];
8099 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8100 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8101 isa<VPPartialReductionRecipe>(BinOpRecipe))
8102 std::swap(BinOp, Accumulator);
8103
8104 if (ScaleFactor !=
8105 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()))
8106 return nullptr;
8107
8108 unsigned ReductionOpcode = Reduction->getOpcode();
8109 if (ReductionOpcode == Instruction::Sub) {
8110 auto *const Zero = ConstantInt::get(Reduction->getType(), 0);
8112 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8113 Ops.push_back(BinOp);
8114 BinOp = new VPWidenRecipe(*Reduction, Ops);
8115 Builder.insert(BinOp->getDefiningRecipe());
8116 ReductionOpcode = Instruction::Add;
8117 }
8118
8119 VPValue *Cond = nullptr;
8120 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8121 assert((ReductionOpcode == Instruction::Add ||
8122 ReductionOpcode == Instruction::Sub) &&
8123 "Expected an ADD or SUB operation for predicated partial "
8124 "reductions (because the neutral element in the mask is zero)!");
8125 Cond = getBlockInMask(Builder.getInsertBlock());
8126 VPValue *Zero =
8127 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8128 BinOp = Builder.createSelect(Cond, BinOp, Zero, Reduction->getDebugLoc());
8129 }
8130 return new VPPartialReductionRecipe(ReductionOpcode, Accumulator, BinOp, Cond,
8131 ScaleFactor, Reduction);
8132}
8133
8134void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8135 ElementCount MaxVF) {
8136 if (ElementCount::isKnownGT(MinVF, MaxVF))
8137 return;
8138
8139 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8140
8141 const LoopAccessInfo *LAI = Legal->getLAI();
8143 OrigLoop, LI, DT, PSE.getSE());
8144 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8146 // Only use noalias metadata when using memory checks guaranteeing no
8147 // overlap across all iterations.
8148 LVer.prepareNoAliasMetadata();
8149 }
8150
8151 // Create initial base VPlan0, to serve as common starting point for all
8152 // candidates built later for specific VF ranges.
8153 auto VPlan0 = VPlanTransforms::buildVPlan0(
8154 OrigLoop, *LI, Legal->getWidestInductionType(),
8155 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8156
8157 auto MaxVFTimes2 = MaxVF * 2;
8158 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8159 VFRange SubRange = {VF, MaxVFTimes2};
8160 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8161 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8162 bool HasScalarVF = Plan->hasScalarVFOnly();
8163 // Now optimize the initial VPlan.
8164 if (!HasScalarVF)
8166 *Plan, CM.getMinimalBitwidths());
8168 // TODO: try to put it close to addActiveLaneMask().
8169 if (CM.foldTailWithEVL() && !HasScalarVF)
8171 *Plan, CM.getMaxSafeElements());
8172 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8173 VPlans.push_back(std::move(Plan));
8174 }
8175 VF = SubRange.End;
8176 }
8177}
8178
8179/// Create and return a ResumePhi for \p WideIV, unless it is truncated. If the
8180/// induction recipe is not canonical, creates a VPDerivedIVRecipe to compute
8181/// the end value of the induction.
8183 VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder,
8184 VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC) {
8185 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8186 // Truncated wide inductions resume from the last lane of their vector value
8187 // in the last vector iteration which is handled elsewhere.
8188 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8189 return nullptr;
8190
8191 VPValue *Start = WideIV->getStartValue();
8192 VPValue *Step = WideIV->getStepValue();
8194 VPValue *EndValue = VectorTC;
8195 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8196 EndValue = VectorPHBuilder.createDerivedIV(
8197 ID.getKind(), dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
8198 Start, VectorTC, Step);
8199 }
8200
8201 // EndValue is derived from the vector trip count (which has the same type as
8202 // the widest induction) and thus may be wider than the induction here.
8203 Type *ScalarTypeOfWideIV = TypeInfo.inferScalarType(WideIV);
8204 if (ScalarTypeOfWideIV != TypeInfo.inferScalarType(EndValue)) {
8205 EndValue = VectorPHBuilder.createScalarCast(Instruction::Trunc, EndValue,
8206 ScalarTypeOfWideIV,
8207 WideIV->getDebugLoc());
8208 }
8209
8210 auto *ResumePhiRecipe = ScalarPHBuilder.createScalarPhi(
8211 {EndValue, Start}, WideIV->getDebugLoc(), "bc.resume.val");
8212 return ResumePhiRecipe;
8213}
8214
8215/// Create resume phis in the scalar preheader for first-order recurrences,
8216/// reductions and inductions, and update the VPIRInstructions wrapping the
8217/// original phis in the scalar header. End values for inductions are added to
8218/// \p IVEndValues.
8219static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan,
8220 DenseMap<VPValue *, VPValue *> &IVEndValues) {
8221 VPTypeAnalysis TypeInfo(Plan);
8222 auto *ScalarPH = Plan.getScalarPreheader();
8223 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getPredecessors()[0]);
8224 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
8225 VPBuilder VectorPHBuilder(
8226 cast<VPBasicBlock>(VectorRegion->getSinglePredecessor()));
8227 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8228 VPBuilder ScalarPHBuilder(ScalarPH);
8229 for (VPRecipeBase &ScalarPhiR : Plan.getScalarHeader()->phis()) {
8230 auto *ScalarPhiIRI = cast<VPIRPhi>(&ScalarPhiR);
8231
8232 // TODO: Extract final value from induction recipe initially, optimize to
8233 // pre-computed end value together in optimizeInductionExitUsers.
8234 auto *VectorPhiR =
8235 cast<VPHeaderPHIRecipe>(Builder.getRecipe(&ScalarPhiIRI->getIRPhi()));
8236 if (auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8238 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8239 &Plan.getVectorTripCount())) {
8240 assert(isa<VPPhi>(ResumePhi) && "Expected a phi");
8241 IVEndValues[WideIVR] = ResumePhi->getOperand(0);
8242 ScalarPhiIRI->addOperand(ResumePhi);
8243 continue;
8244 }
8245 // TODO: Also handle truncated inductions here. Computing end-values
8246 // separately should be done as VPlan-to-VPlan optimization, after
8247 // legalizing all resume values to use the last lane from the loop.
8248 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8249 "should only skip truncated wide inductions");
8250 continue;
8251 }
8252
8253 // The backedge value provides the value to resume coming out of a loop,
8254 // which for FORs is a vector whose last element needs to be extracted. The
8255 // start value provides the value if the loop is bypassed.
8256 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8257 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8258 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() &&
8259 "Cannot handle loops with uncountable early exits");
8260 if (IsFOR)
8261 ResumeFromVectorLoop = MiddleBuilder.createNaryOp(
8262 VPInstruction::ExtractLastElement, {ResumeFromVectorLoop}, {},
8263 "vector.recur.extract");
8264 StringRef Name = IsFOR ? "scalar.recur.init" : "bc.merge.rdx";
8265 auto *ResumePhiR = ScalarPHBuilder.createScalarPhi(
8266 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {}, Name);
8267 ScalarPhiIRI->addOperand(ResumePhiR);
8268 }
8269}
8270
8271/// Handle users in the exit block for first order reductions in the original
8272/// exit block. The penultimate value of recurrences is fed to their LCSSA phi
8273/// users in the original exit block using the VPIRInstruction wrapping to the
8274/// LCSSA phi.
8276 VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion();
8277 auto *ScalarPHVPBB = Plan.getScalarPreheader();
8278 auto *MiddleVPBB = Plan.getMiddleBlock();
8279 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
8280 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8281
8282 auto IsScalableOne = [](ElementCount VF) -> bool {
8283 return VF == ElementCount::getScalable(1);
8284 };
8285
8286 for (auto &HeaderPhi : VectorRegion->getEntryBasicBlock()->phis()) {
8287 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
8288 if (!FOR)
8289 continue;
8290
8291 assert(VectorRegion->getSingleSuccessor() == Plan.getMiddleBlock() &&
8292 "Cannot handle loops with uncountable early exits");
8293
8294 // This is the second phase of vectorizing first-order recurrences, creating
8295 // extract for users outside the loop. An overview of the transformation is
8296 // described below. Suppose we have the following loop with some use after
8297 // the loop of the last a[i-1],
8298 //
8299 // for (int i = 0; i < n; ++i) {
8300 // t = a[i - 1];
8301 // b[i] = a[i] - t;
8302 // }
8303 // use t;
8304 //
8305 // There is a first-order recurrence on "a". For this loop, the shorthand
8306 // scalar IR looks like:
8307 //
8308 // scalar.ph:
8309 // s.init = a[-1]
8310 // br scalar.body
8311 //
8312 // scalar.body:
8313 // i = phi [0, scalar.ph], [i+1, scalar.body]
8314 // s1 = phi [s.init, scalar.ph], [s2, scalar.body]
8315 // s2 = a[i]
8316 // b[i] = s2 - s1
8317 // br cond, scalar.body, exit.block
8318 //
8319 // exit.block:
8320 // use = lcssa.phi [s1, scalar.body]
8321 //
8322 // In this example, s1 is a recurrence because it's value depends on the
8323 // previous iteration. In the first phase of vectorization, we created a
8324 // VPFirstOrderRecurrencePHIRecipe v1 for s1. Now we create the extracts
8325 // for users in the scalar preheader and exit block.
8326 //
8327 // vector.ph:
8328 // v_init = vector(..., ..., ..., a[-1])
8329 // br vector.body
8330 //
8331 // vector.body
8332 // i = phi [0, vector.ph], [i+4, vector.body]
8333 // v1 = phi [v_init, vector.ph], [v2, vector.body]
8334 // v2 = a[i, i+1, i+2, i+3]
8335 // b[i] = v2 - v1
8336 // // Next, third phase will introduce v1' = splice(v1(3), v2(0, 1, 2))
8337 // b[i, i+1, i+2, i+3] = v2 - v1
8338 // br cond, vector.body, middle.block
8339 //
8340 // middle.block:
8341 // vector.recur.extract.for.phi = v2(2)
8342 // vector.recur.extract = v2(3)
8343 // br cond, scalar.ph, exit.block
8344 //
8345 // scalar.ph:
8346 // scalar.recur.init = phi [vector.recur.extract, middle.block],
8347 // [s.init, otherwise]
8348 // br scalar.body
8349 //
8350 // scalar.body:
8351 // i = phi [0, scalar.ph], [i+1, scalar.body]
8352 // s1 = phi [scalar.recur.init, scalar.ph], [s2, scalar.body]
8353 // s2 = a[i]
8354 // b[i] = s2 - s1
8355 // br cond, scalar.body, exit.block
8356 //
8357 // exit.block:
8358 // lo = lcssa.phi [s1, scalar.body],
8359 // [vector.recur.extract.for.phi, middle.block]
8360 //
8361 // Now update VPIRInstructions modeling LCSSA phis in the exit block.
8362 // Extract the penultimate value of the recurrence and use it as operand for
8363 // the VPIRInstruction modeling the phi.
8364 for (VPUser *U : FOR->users()) {
8365 using namespace llvm::VPlanPatternMatch;
8366 if (!match(U, m_ExtractLastElement(m_Specific(FOR))))
8367 continue;
8368 // For VF vscale x 1, if vscale = 1, we are unable to extract the
8369 // penultimate value of the recurrence. Instead we rely on the existing
8370 // extract of the last element from the result of
8371 // VPInstruction::FirstOrderRecurrenceSplice.
8372 // TODO: Consider vscale_range info and UF.
8374 Range))
8375 return;
8376 VPValue *PenultimateElement = MiddleBuilder.createNaryOp(
8377 VPInstruction::ExtractPenultimateElement, {FOR->getBackedgeValue()},
8378 {}, "vector.recur.extract.for.phi");
8379 cast<VPInstruction>(U)->replaceAllUsesWith(PenultimateElement);
8380 }
8381 }
8382}
8383
8384VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8385 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8386
8387 using namespace llvm::VPlanPatternMatch;
8388 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8389
8390 // ---------------------------------------------------------------------------
8391 // Build initial VPlan: Scan the body of the loop in a topological order to
8392 // visit each basic block after having visited its predecessor basic blocks.
8393 // ---------------------------------------------------------------------------
8394
8395 bool RequiresScalarEpilogueCheck =
8397 [this](ElementCount VF) {
8398 return !CM.requiresScalarEpilogue(VF.isVector());
8399 },
8400 Range);
8401 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8402 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8403 CM.foldTailByMasking());
8404
8406
8407 // Don't use getDecisionAndClampRange here, because we don't know the UF
8408 // so this function is better to be conservative, rather than to split
8409 // it up into different VPlans.
8410 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8411 bool IVUpdateMayOverflow = false;
8412 for (ElementCount VF : Range)
8413 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8414
8415 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8416 // Use NUW for the induction increment if we proved that it won't overflow in
8417 // the vector loop or when not folding the tail. In the later case, we know
8418 // that the canonical induction increment will not overflow as the vector trip
8419 // count is >= increment and a multiple of the increment.
8420 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8421 if (!HasNUW) {
8422 auto *IVInc = Plan->getVectorLoopRegion()
8423 ->getExitingBasicBlock()
8424 ->getTerminator()
8425 ->getOperand(0);
8426 assert(match(IVInc, m_VPInstruction<Instruction::Add>(
8427 m_Specific(Plan->getCanonicalIV()), m_VPValue())) &&
8428 "Did not find the canonical IV increment");
8429 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8430 }
8431
8432 // ---------------------------------------------------------------------------
8433 // Pre-construction: record ingredients whose recipes we'll need to further
8434 // process after constructing the initial VPlan.
8435 // ---------------------------------------------------------------------------
8436
8437 // For each interleave group which is relevant for this (possibly trimmed)
8438 // Range, add it to the set of groups to be later applied to the VPlan and add
8439 // placeholders for its members' Recipes which we'll be replacing with a
8440 // single VPInterleaveRecipe.
8441 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8442 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8443 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8444 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8446 // For scalable vectors, the interleave factors must be <= 8 since we
8447 // require the (de)interleaveN intrinsics instead of shufflevectors.
8448 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8449 "Unsupported interleave factor for scalable vectors");
8450 return Result;
8451 };
8452 if (!getDecisionAndClampRange(ApplyIG, Range))
8453 continue;
8454 InterleaveGroups.insert(IG);
8455 }
8456
8457 // ---------------------------------------------------------------------------
8458 // Predicate and linearize the top-level loop region.
8459 // ---------------------------------------------------------------------------
8460 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8461 *Plan, CM.foldTailByMasking());
8462
8463 // ---------------------------------------------------------------------------
8464 // Construct wide recipes and apply predication for original scalar
8465 // VPInstructions in the loop.
8466 // ---------------------------------------------------------------------------
8467 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8468 Builder, BlockMaskCache, LVer);
8469 RecipeBuilder.collectScaledReductions(Range);
8470
8471 // Scan the body of the loop in a topological order to visit each basic block
8472 // after having visited its predecessor basic blocks.
8473 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8474 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8475 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8476 HeaderVPBB);
8477
8478 auto *MiddleVPBB = Plan->getMiddleBlock();
8479 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8480 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8481 // temporarily to update created block masks.
8482 DenseMap<VPValue *, VPValue *> Old2New;
8483 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8484 // Convert input VPInstructions to widened recipes.
8485 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8486 auto *SingleDef = cast<VPSingleDefRecipe>(&R);
8487 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8488 // Skip recipes that do not need transforming, including canonical IV,
8489 // wide canonical IV and VPInstructions without underlying values. The
8490 // latter are added above for masking.
8491 // FIXME: Migrate code relying on the underlying instruction from VPlan0
8492 // to construct recipes below to not use the underlying instruction.
8494 &R) ||
8495 (isa<VPInstruction>(&R) && !UnderlyingValue))
8496 continue;
8497
8498 // FIXME: VPlan0, which models a copy of the original scalar loop, should
8499 // not use VPWidenPHIRecipe to model the phis.
8501 UnderlyingValue && "unsupported recipe");
8502
8503 // TODO: Gradually replace uses of underlying instruction by analyses on
8504 // VPlan.
8505 Instruction *Instr = cast<Instruction>(UnderlyingValue);
8506 Builder.setInsertPoint(SingleDef);
8507
8508 // The stores with invariant address inside the loop will be deleted, and
8509 // in the exit block, a uniform store recipe will be created for the final
8510 // invariant store of the reduction.
8511 StoreInst *SI;
8512 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8513 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8514 // Only create recipe for the final invariant store of the reduction.
8515 if (Legal->isInvariantStoreOfReduction(SI)) {
8516 auto *Recipe =
8517 new VPReplicateRecipe(SI, R.operands(), true /* IsUniform */,
8518 nullptr /*Mask*/, VPIRMetadata(*SI, LVer));
8519 Recipe->insertBefore(*MiddleVPBB, MBIP);
8520 }
8521 R.eraseFromParent();
8522 continue;
8523 }
8524
8525 VPRecipeBase *Recipe =
8526 RecipeBuilder.tryToCreateWidenRecipe(SingleDef, Range);
8527 if (!Recipe)
8528 Recipe = RecipeBuilder.handleReplication(Instr, R.operands(), Range);
8529
8530 RecipeBuilder.setRecipe(Instr, Recipe);
8531 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8532 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8533 // moved to the phi section in the header.
8534 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8535 } else {
8536 Builder.insert(Recipe);
8537 }
8538 if (Recipe->getNumDefinedValues() == 1) {
8539 SingleDef->replaceAllUsesWith(Recipe->getVPSingleValue());
8540 Old2New[SingleDef] = Recipe->getVPSingleValue();
8541 } else {
8542 assert(Recipe->getNumDefinedValues() == 0 &&
8543 "Unexpected multidef recipe");
8544 R.eraseFromParent();
8545 }
8546 }
8547 }
8548
8549 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8550 // TODO: Include the masks as operands in the predicated VPlan directly
8551 // to remove the need to keep a map of masks beyond the predication
8552 // transform.
8553 RecipeBuilder.updateBlockMaskCache(Old2New);
8554 for (VPValue *Old : Old2New.keys())
8555 Old->getDefiningRecipe()->eraseFromParent();
8556
8557 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8558 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8559 "entry block must be set to a VPRegionBlock having a non-empty entry "
8560 "VPBasicBlock");
8561
8562 // Update wide induction increments to use the same step as the corresponding
8563 // wide induction. This enables detecting induction increments directly in
8564 // VPlan and removes redundant splats.
8565 for (const auto &[Phi, ID] : Legal->getInductionVars()) {
8566 auto *IVInc = cast<Instruction>(
8567 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8568 if (IVInc->getOperand(0) != Phi || IVInc->getOpcode() != Instruction::Add)
8569 continue;
8570 VPWidenInductionRecipe *WideIV =
8571 cast<VPWidenInductionRecipe>(RecipeBuilder.getRecipe(Phi));
8572 VPRecipeBase *R = RecipeBuilder.getRecipe(IVInc);
8573 R->setOperand(1, WideIV->getStepValue());
8574 }
8575
8577 DenseMap<VPValue *, VPValue *> IVEndValues;
8578 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues);
8579
8580 // ---------------------------------------------------------------------------
8581 // Transform initial VPlan: Apply previously taken decisions, in order, to
8582 // bring the VPlan to its final state.
8583 // ---------------------------------------------------------------------------
8584
8585 // Adjust the recipes for any inloop reductions.
8586 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8587
8588 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8589 // NaNs if possible, bail out otherwise.
8591 *Plan))
8592 return nullptr;
8593
8594 // Transform recipes to abstract recipes if it is legal and beneficial and
8595 // clamp the range for better cost estimation.
8596 // TODO: Enable following transform when the EVL-version of extended-reduction
8597 // and mulacc-reduction are implemented.
8598 if (!CM.foldTailWithEVL()) {
8599 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind);
8601 CostCtx, Range);
8602 }
8603
8604 for (ElementCount VF : Range)
8605 Plan->addVF(VF);
8606 Plan->setName("Initial VPlan");
8607
8608 // Interleave memory: for each Interleave Group we marked earlier as relevant
8609 // for this VPlan, replace the Recipes widening its memory instructions with a
8610 // single VPInterleaveRecipe at its insertion point.
8612 InterleaveGroups, RecipeBuilder,
8613 CM.isScalarEpilogueAllowed());
8614
8615 // Replace VPValues for known constant strides.
8617 Legal->getLAI()->getSymbolicStrides());
8618
8619 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8620 return Legal->blockNeedsPredication(BB);
8621 };
8623 BlockNeedsPredication);
8624
8625 // Sink users of fixed-order recurrence past the recipe defining the previous
8626 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8628 *Plan, Builder))
8629 return nullptr;
8630
8631 if (useActiveLaneMask(Style)) {
8632 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8633 // TailFoldingStyle is visible there.
8634 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8635 bool WithoutRuntimeCheck =
8636 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8637 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8638 WithoutRuntimeCheck);
8639 }
8640 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, *PSE.getSE());
8641
8642 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8643 return Plan;
8644}
8645
8646VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8647 // Outer loop handling: They may require CFG and instruction level
8648 // transformations before even evaluating whether vectorization is profitable.
8649 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8650 // the vectorization pipeline.
8651 assert(!OrigLoop->isInnermost());
8652 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8653
8654 auto Plan = VPlanTransforms::buildVPlan0(
8655 OrigLoop, *LI, Legal->getWidestInductionType(),
8656 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8658 /*HasUncountableExit*/ false);
8659 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8660 /*TailFolded*/ false);
8661
8663
8664 for (ElementCount VF : Range)
8665 Plan->addVF(VF);
8666
8668 Plan,
8669 [this](PHINode *P) {
8670 return Legal->getIntOrFpInductionDescriptor(P);
8671 },
8672 *TLI))
8673 return nullptr;
8674
8675 // Collect mapping of IR header phis to header phi recipes, to be used in
8676 // addScalarResumePhis.
8677 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8678 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8679 Builder, BlockMaskCache, nullptr /*LVer*/);
8680 for (auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8682 continue;
8683 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
8684 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8685 }
8686 DenseMap<VPValue *, VPValue *> IVEndValues;
8687 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8688 // values.
8689 addScalarResumePhis(RecipeBuilder, *Plan, IVEndValues);
8690
8691 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8692 return Plan;
8693}
8694
8695// Adjust the recipes for reductions. For in-loop reductions the chain of
8696// instructions leading from the loop exit instr to the phi need to be converted
8697// to reductions, with one operand being vector and the other being the scalar
8698// reduction chain. For other reductions, a select is introduced between the phi
8699// and users outside the vector region when folding the tail.
8700//
8701// A ComputeReductionResult recipe is added to the middle block, also for
8702// in-loop reductions which compute their result in-loop, because generating
8703// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8704//
8705// Adjust AnyOf reductions; replace the reduction phi for the selected value
8706// with a boolean reduction phi node to check if the condition is true in any
8707// iteration. The final value is selected by the final ComputeReductionResult.
8708void LoopVectorizationPlanner::adjustRecipesForReductions(
8709 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8710 using namespace VPlanPatternMatch;
8711 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8712 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8713 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8715
8716 for (VPRecipeBase &R : Header->phis()) {
8717 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8718 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8719 continue;
8720
8721 RecurKind Kind = PhiR->getRecurrenceKind();
8722 assert(
8725 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8726
8727 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8728 SetVector<VPSingleDefRecipe *> Worklist;
8729 Worklist.insert(PhiR);
8730 for (unsigned I = 0; I != Worklist.size(); ++I) {
8731 VPSingleDefRecipe *Cur = Worklist[I];
8732 for (VPUser *U : Cur->users()) {
8733 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8734 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8735 assert((UserRecipe->getParent() == MiddleVPBB ||
8736 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8737 "U must be either in the loop region, the middle block or the "
8738 "scalar preheader.");
8739 continue;
8740 }
8741 Worklist.insert(UserRecipe);
8742 }
8743 }
8744
8745 // Visit operation "Links" along the reduction chain top-down starting from
8746 // the phi until LoopExitValue. We keep track of the previous item
8747 // (PreviousLink) to tell which of the two operands of a Link will remain
8748 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8749 // the select instructions. Blend recipes of in-loop reduction phi's will
8750 // get folded to their non-phi operand, as the reduction recipe handles the
8751 // condition directly.
8752 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8753 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8754 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8755 assert(Blend->getNumIncomingValues() == 2 &&
8756 "Blend must have 2 incoming values");
8757 if (Blend->getIncomingValue(0) == PhiR) {
8758 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8759 } else {
8760 assert(Blend->getIncomingValue(1) == PhiR &&
8761 "PhiR must be an operand of the blend");
8762 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8763 }
8764 continue;
8765 }
8766
8767 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8768
8769 // Index of the first operand which holds a non-mask vector operand.
8770 unsigned IndexOfFirstOperand;
8771 // Recognize a call to the llvm.fmuladd intrinsic.
8772 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8773 VPValue *VecOp;
8774 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8775 if (IsFMulAdd) {
8776 assert(
8778 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8779 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8780 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8781 CurrentLink->getOperand(2) == PreviousLink &&
8782 "expected a call where the previous link is the added operand");
8783
8784 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8785 // need to create an fmul recipe (multiplying the first two operands of
8786 // the fmuladd together) to use as the vector operand for the fadd
8787 // reduction.
8788 VPInstruction *FMulRecipe = new VPInstruction(
8789 Instruction::FMul,
8790 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8791 CurrentLinkI->getFastMathFlags());
8792 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8793 VecOp = FMulRecipe;
8794 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8795 CurrentLinkI->getOpcode() == Instruction::Sub) {
8796 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8797 auto *Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8798 VPWidenRecipe *Sub = new VPWidenRecipe(
8799 Instruction::Sub, {Zero, CurrentLink->getOperand(1)}, {},
8800 VPIRMetadata(), CurrentLinkI->getDebugLoc());
8801 Sub->setUnderlyingValue(CurrentLinkI);
8802 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8803 VecOp = Sub;
8804 } else {
8806 if (isa<VPWidenRecipe>(CurrentLink)) {
8807 assert(isa<CmpInst>(CurrentLinkI) &&
8808 "need to have the compare of the select");
8809 continue;
8810 }
8811 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8812 "must be a select recipe");
8813 IndexOfFirstOperand = 1;
8814 } else {
8815 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8816 "Expected to replace a VPWidenSC");
8817 IndexOfFirstOperand = 0;
8818 }
8819 // Note that for non-commutable operands (cmp-selects), the semantics of
8820 // the cmp-select are captured in the recurrence kind.
8821 unsigned VecOpId =
8822 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8823 ? IndexOfFirstOperand + 1
8824 : IndexOfFirstOperand;
8825 VecOp = CurrentLink->getOperand(VecOpId);
8826 assert(VecOp != PreviousLink &&
8827 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8828 (VecOpId - IndexOfFirstOperand)) ==
8829 PreviousLink &&
8830 "PreviousLink must be the operand other than VecOp");
8831 }
8832
8833 VPValue *CondOp = nullptr;
8834 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8835 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8836
8837 // TODO: Retrieve FMFs from recipes directly.
8838 RecurrenceDescriptor RdxDesc = Legal->getRecurrenceDescriptor(
8839 cast<PHINode>(PhiR->getUnderlyingInstr()));
8840 // Non-FP RdxDescs will have all fast math flags set, so clear them.
8841 FastMathFlags FMFs = isa<FPMathOperator>(CurrentLinkI)
8842 ? RdxDesc.getFastMathFlags()
8843 : FastMathFlags();
8844 auto *RedRecipe = new VPReductionRecipe(
8845 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8846 PhiR->isOrdered(), CurrentLinkI->getDebugLoc());
8847 // Append the recipe to the end of the VPBasicBlock because we need to
8848 // ensure that it comes after all of it's inputs, including CondOp.
8849 // Delete CurrentLink as it will be invalid if its operand is replaced
8850 // with a reduction defined at the bottom of the block in the next link.
8851 if (LinkVPBB->getNumSuccessors() == 0)
8852 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8853 else
8854 LinkVPBB->appendRecipe(RedRecipe);
8855
8856 CurrentLink->replaceAllUsesWith(RedRecipe);
8857 ToDelete.push_back(CurrentLink);
8858 PreviousLink = RedRecipe;
8859 }
8860 }
8861 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8862 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8863 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8864 for (VPRecipeBase &R :
8865 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8866 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8867 if (!PhiR)
8868 continue;
8869
8870 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8872 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8873 // If tail is folded by masking, introduce selects between the phi
8874 // and the users outside the vector region of each reduction, at the
8875 // beginning of the dedicated latch block.
8876 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8877 auto *NewExitingVPV = PhiR->getBackedgeValue();
8878 // Don't output selects for partial reductions because they have an output
8879 // with fewer lanes than the VF. So the operands of the select would have
8880 // different numbers of lanes. Partial reductions mask the input instead.
8881 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8882 !isa<VPPartialReductionRecipe>(OrigExitingVPV->getDefiningRecipe())) {
8883 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8884 std::optional<FastMathFlags> FMFs =
8885 PhiTy->isFloatingPointTy()
8886 ? std::make_optional(RdxDesc.getFastMathFlags())
8887 : std::nullopt;
8888 NewExitingVPV =
8889 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8890 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8891 return isa<VPInstruction>(&U) &&
8892 (cast<VPInstruction>(&U)->getOpcode() ==
8894 cast<VPInstruction>(&U)->getOpcode() ==
8896 cast<VPInstruction>(&U)->getOpcode() ==
8898 });
8899 if (CM.usePredicatedReductionSelect())
8900 PhiR->setOperand(1, NewExitingVPV);
8901 }
8902
8903 // We want code in the middle block to appear to execute on the location of
8904 // the scalar loop's latch terminator because: (a) it is all compiler
8905 // generated, (b) these instructions are always executed after evaluating
8906 // the latch conditional branch, and (c) other passes may add new
8907 // predecessors which terminate on this line. This is the easiest way to
8908 // ensure we don't accidentally cause an extra step back into the loop while
8909 // debugging.
8910 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8911
8912 // TODO: At the moment ComputeReductionResult also drives creation of the
8913 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8914 // even for in-loop reductions, until the reduction resume value handling is
8915 // also modeled in VPlan.
8916 VPInstruction *FinalReductionResult;
8917 VPBuilder::InsertPointGuard Guard(Builder);
8918 Builder.setInsertPoint(MiddleVPBB, IP);
8919 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8921 VPValue *Start = PhiR->getStartValue();
8922 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8923 FinalReductionResult =
8924 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8925 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8926 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8927 VPValue *Start = PhiR->getStartValue();
8928 FinalReductionResult =
8929 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8930 {PhiR, Start, NewExitingVPV}, ExitDL);
8931 } else {
8932 VPIRFlags Flags =
8934 ? VPIRFlags(RdxDesc.getFastMathFlags())
8935 : VPIRFlags();
8936 FinalReductionResult =
8937 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8938 {PhiR, NewExitingVPV}, Flags, ExitDL);
8939 }
8940 // If the vector reduction can be performed in a smaller type, we truncate
8941 // then extend the loop exit value to enable InstCombine to evaluate the
8942 // entire expression in the smaller type.
8943 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8945 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8947 "Unexpected truncated min-max recurrence!");
8948 Type *RdxTy = RdxDesc.getRecurrenceType();
8949 auto *Trunc =
8950 new VPWidenCastRecipe(Instruction::Trunc, NewExitingVPV, RdxTy);
8951 Instruction::CastOps ExtendOpc =
8952 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8953 auto *Extnd = new VPWidenCastRecipe(ExtendOpc, Trunc, PhiTy);
8954 Trunc->insertAfter(NewExitingVPV->getDefiningRecipe());
8955 Extnd->insertAfter(Trunc);
8956 if (PhiR->getOperand(1) == NewExitingVPV)
8957 PhiR->setOperand(1, Extnd->getVPSingleValue());
8958
8959 // Update ComputeReductionResult with the truncated exiting value and
8960 // extend its result.
8961 FinalReductionResult->setOperand(1, Trunc);
8962 FinalReductionResult =
8963 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8964 }
8965
8966 // Update all users outside the vector region. Also replace redundant
8967 // ExtractLastElement.
8968 for (auto *U : to_vector(OrigExitingVPV->users())) {
8969 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8970 if (FinalReductionResult == U || Parent->getParent())
8971 continue;
8972 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8974 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8975 }
8976
8977 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8978 // with a boolean reduction phi node to check if the condition is true in
8979 // any iteration. The final value is selected by the final
8980 // ComputeReductionResult.
8981 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8982 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8983 return isa<VPWidenSelectRecipe>(U) ||
8984 (isa<VPReplicateRecipe>(U) &&
8985 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8986 Instruction::Select);
8987 }));
8988 VPValue *Cmp = Select->getOperand(0);
8989 // If the compare is checking the reduction PHI node, adjust it to check
8990 // the start value.
8991 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8992 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8993 Builder.setInsertPoint(Select);
8994
8995 // If the true value of the select is the reduction phi, the new value is
8996 // selected if the negated condition is true in any iteration.
8997 if (Select->getOperand(1) == PhiR)
8998 Cmp = Builder.createNot(Cmp);
8999 VPValue *Or = Builder.createOr(PhiR, Cmp);
9000 Select->getVPSingleValue()->replaceAllUsesWith(Or);
9001 // Delete Select now that it has invalid types.
9002 ToDelete.push_back(Select);
9003
9004 // Convert the reduction phi to operate on bools.
9005 PhiR->setOperand(0, Plan->getOrAddLiveIn(ConstantInt::getFalse(
9006 OrigLoop->getHeader()->getContext())));
9007 continue;
9008 }
9009
9011 RdxDesc.getRecurrenceKind())) {
9012 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
9013 // the sentinel value after generating the ResumePhi recipe, which uses
9014 // the original start value.
9015 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
9016 }
9017 RecurKind RK = RdxDesc.getRecurrenceKind();
9021 VPBuilder PHBuilder(Plan->getVectorPreheader());
9022 VPValue *Iden = Plan->getOrAddLiveIn(
9023 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
9024 // If the PHI is used by a partial reduction, set the scale factor.
9025 unsigned ScaleFactor =
9026 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
9027 .value_or(1);
9028 Type *I32Ty = IntegerType::getInt32Ty(PhiTy->getContext());
9029 auto *ScaleFactorVPV =
9030 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
9031 VPValue *StartV = PHBuilder.createNaryOp(
9033 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
9034 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
9035 : FastMathFlags());
9036 PhiR->setOperand(0, StartV);
9037 }
9038 }
9039 for (VPRecipeBase *R : ToDelete)
9040 R->eraseFromParent();
9041
9043}
9044
9045void LoopVectorizationPlanner::attachRuntimeChecks(
9046 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
9047 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9048 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9049 assert((!CM.OptForSize ||
9050 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
9051 "Cannot SCEV check stride or overflow when optimizing for size");
9052 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
9053 HasBranchWeights);
9054 }
9055 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9056 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9057 // VPlan-native path does not do any analysis for runtime checks
9058 // currently.
9059 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
9060 "Runtime checks are not supported for outer loops yet");
9061
9062 if (CM.OptForSize) {
9063 assert(
9064 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
9065 "Cannot emit memory checks when optimizing for size, unless forced "
9066 "to vectorize.");
9067 ORE->emit([&]() {
9068 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9069 OrigLoop->getStartLoc(),
9070 OrigLoop->getHeader())
9071 << "Code-size may be reduced by not forcing "
9072 "vectorization, or by source-code modifications "
9073 "eliminating the need for runtime checks "
9074 "(e.g., adding 'restrict').";
9075 });
9076 }
9077 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9078 HasBranchWeights);
9079 }
9080}
9081
9083 VPlan &Plan, ElementCount VF, unsigned UF,
9084 ElementCount MinProfitableTripCount) const {
9085 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9086 // an overflow to zero when updating induction variables and so an
9087 // additional overflow check is required before entering the vector loop.
9088 bool IsIndvarOverflowCheckNeededForVF =
9089 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9090 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9091 CM.getTailFoldingStyle() !=
9093 const uint32_t *BranchWeigths =
9094 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9096 : nullptr;
9098 Plan, VF, UF, MinProfitableTripCount,
9099 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9100 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9101 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9102 *PSE.getSE());
9103}
9104
9106 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9107
9108 // Fast-math-flags propagate from the original induction instruction.
9109 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9110 if (FPBinOp)
9111 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9112
9113 Value *Step = State.get(getStepValue(), VPLane(0));
9114 Value *Index = State.get(getOperand(1), VPLane(0));
9115 Value *DerivedIV = emitTransformedIndex(
9116 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9118 DerivedIV->setName(Name);
9119 State.set(this, DerivedIV, VPLane(0));
9120}
9121
9122// Determine how to lower the scalar epilogue, which depends on 1) optimising
9123// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9124// predication, and 4) a TTI hook that analyses whether the loop is suitable
9125// for predication.
9130 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9131 // don't look at hints or options, and don't request a scalar epilogue.
9132 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9133 // LoopAccessInfo (due to code dependency and not being able to reliably get
9134 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9135 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9136 // versioning when the vectorization is forced, unlike hasOptSize. So revert
9137 // back to the old way and vectorize with versioning when forced. See D81345.)
9138 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9142
9143 // 2) If set, obey the directives
9144 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9152 };
9153 }
9154
9155 // 3) If set, obey the hints
9156 switch (Hints.getPredicate()) {
9161 };
9162
9163 // 4) if the TTI hook indicates this is profitable, request predication.
9164 TailFoldingInfo TFI(TLI, &LVL, IAI);
9165 if (TTI->preferPredicateOverEpilogue(&TFI))
9167
9169}
9170
9171// Process the loop in the VPlan-native vectorization path. This path builds
9172// VPlan upfront in the vectorization pipeline, which allows to apply
9173// VPlan-to-VPlan transformations from the very beginning without modifying the
9174// input LLVM IR.
9181 LoopVectorizationRequirements &Requirements) {
9182
9184 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9185 return false;
9186 }
9187 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9188 Function *F = L->getHeader()->getParent();
9189 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9190
9192 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, *LVL, &IAI);
9193
9194 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9195 &Hints, IAI, PSI, BFI);
9196 // Use the planner for outer loop vectorization.
9197 // TODO: CM is not used at this point inside the planner. Turn CM into an
9198 // optional argument if we don't need it in the future.
9199 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9200 ORE);
9201
9202 // Get user vectorization factor.
9203 ElementCount UserVF = Hints.getWidth();
9204
9206
9207 // Plan how to best vectorize, return the best VF and its cost.
9208 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9209
9210 // If we are stress testing VPlan builds, do not attempt to generate vector
9211 // code. Masked vector code generation support will follow soon.
9212 // Also, do not attempt to vectorize if no vector code will be produced.
9214 return false;
9215
9216 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9217
9218 {
9219 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
9220 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9221 BFI, PSI, Checks, BestPlan);
9222 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9223 << L->getHeader()->getParent()->getName() << "\"\n");
9224 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9226
9227 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9228 }
9229
9230 reportVectorization(ORE, L, VF, 1);
9231
9232 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9233 return true;
9234}
9235
9236// Emit a remark if there are stores to floats that required a floating point
9237// extension. If the vectorized loop was generated with floating point there
9238// will be a performance penalty from the conversion overhead and the change in
9239// the vector width.
9242 for (BasicBlock *BB : L->getBlocks()) {
9243 for (Instruction &Inst : *BB) {
9244 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9245 if (S->getValueOperand()->getType()->isFloatTy())
9246 Worklist.push_back(S);
9247 }
9248 }
9249 }
9250
9251 // Traverse the floating point stores upwards searching, for floating point
9252 // conversions.
9255 while (!Worklist.empty()) {
9256 auto *I = Worklist.pop_back_val();
9257 if (!L->contains(I))
9258 continue;
9259 if (!Visited.insert(I).second)
9260 continue;
9261
9262 // Emit a remark if the floating point store required a floating
9263 // point conversion.
9264 // TODO: More work could be done to identify the root cause such as a
9265 // constant or a function return type and point the user to it.
9266 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9267 ORE->emit([&]() {
9268 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9269 I->getDebugLoc(), L->getHeader())
9270 << "floating point conversion changes vector width. "
9271 << "Mixed floating point precision requires an up/down "
9272 << "cast that will negatively impact performance.";
9273 });
9274
9275 for (Use &Op : I->operands())
9276 if (auto *OpI = dyn_cast<Instruction>(Op))
9277 Worklist.push_back(OpI);
9278 }
9279}
9280
9281/// For loops with uncountable early exits, find the cost of doing work when
9282/// exiting the loop early, such as calculating the final exit values of
9283/// variables used outside the loop.
9284/// TODO: This is currently overly pessimistic because the loop may not take
9285/// the early exit, but better to keep this conservative for now. In future,
9286/// it might be possible to relax this by using branch probabilities.
9288 VPlan &Plan, ElementCount VF) {
9289 InstructionCost Cost = 0;
9290 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9291 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9292 // If the predecessor is not the middle.block, then it must be the
9293 // vector.early.exit block, which may contain work to calculate the exit
9294 // values of variables used outside the loop.
9295 if (PredVPBB != Plan.getMiddleBlock()) {
9296 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9297 << PredVPBB->getName() << ":\n");
9298 Cost += PredVPBB->cost(VF, CostCtx);
9299 }
9300 }
9301 }
9302 return Cost;
9303}
9304
9305/// This function determines whether or not it's still profitable to vectorize
9306/// the loop given the extra work we have to do outside of the loop:
9307/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9308/// to vectorize.
9309/// 2. In the case of loops with uncountable early exits, we may have to do
9310/// extra work when exiting the loop early, such as calculating the final
9311/// exit values of variables used outside the loop.
9312static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9313 VectorizationFactor &VF, Loop *L,
9315 VPCostContext &CostCtx, VPlan &Plan,
9317 std::optional<unsigned> VScale) {
9318 InstructionCost TotalCost = Checks.getCost();
9319 if (!TotalCost.isValid())
9320 return false;
9321
9322 // Add on the cost of any work required in the vector early exit block, if
9323 // one exists.
9324 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9325
9326 // When interleaving only scalar and vector cost will be equal, which in turn
9327 // would lead to a divide by 0. Fall back to hard threshold.
9328 if (VF.Width.isScalar()) {
9329 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9330 if (TotalCost > VectorizeMemoryCheckThreshold) {
9331 LLVM_DEBUG(
9332 dbgs()
9333 << "LV: Interleaving only is not profitable due to runtime checks\n");
9334 return false;
9335 }
9336 return true;
9337 }
9338
9339 // The scalar cost should only be 0 when vectorizing with a user specified
9340 // VF/IC. In those cases, runtime checks should always be generated.
9341 uint64_t ScalarC = VF.ScalarCost.getValue();
9342 if (ScalarC == 0)
9343 return true;
9344
9345 // First, compute the minimum iteration count required so that the vector
9346 // loop outperforms the scalar loop.
9347 // The total cost of the scalar loop is
9348 // ScalarC * TC
9349 // where
9350 // * TC is the actual trip count of the loop.
9351 // * ScalarC is the cost of a single scalar iteration.
9352 //
9353 // The total cost of the vector loop is
9354 // RtC + VecC * (TC / VF) + EpiC
9355 // where
9356 // * RtC is the cost of the generated runtime checks plus the cost of
9357 // performing any additional work in the vector.early.exit block for loops
9358 // with uncountable early exits.
9359 // * VecC is the cost of a single vector iteration.
9360 // * TC is the actual trip count of the loop
9361 // * VF is the vectorization factor
9362 // * EpiCost is the cost of the generated epilogue, including the cost
9363 // of the remaining scalar operations.
9364 //
9365 // Vectorization is profitable once the total vector cost is less than the
9366 // total scalar cost:
9367 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9368 //
9369 // Now we can compute the minimum required trip count TC as
9370 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9371 //
9372 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9373 // the computations are performed on doubles, not integers and the result
9374 // is rounded up, hence we get an upper estimate of the TC.
9375 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9376 uint64_t RtC = TotalCost.getValue();
9377 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9378 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9379
9380 // Second, compute a minimum iteration count so that the cost of the
9381 // runtime checks is only a fraction of the total scalar loop cost. This
9382 // adds a loop-dependent bound on the overhead incurred if the runtime
9383 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9384 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9385 // cost, compute
9386 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9387 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9388
9389 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9390 // epilogue is allowed, choose the next closest multiple of VF. This should
9391 // partly compensate for ignoring the epilogue cost.
9392 uint64_t MinTC = std::max(MinTC1, MinTC2);
9393 if (SEL == CM_ScalarEpilogueAllowed)
9394 MinTC = alignTo(MinTC, IntVF);
9396
9397 LLVM_DEBUG(
9398 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9399 << VF.MinProfitableTripCount << "\n");
9400
9401 // Skip vectorization if the expected trip count is less than the minimum
9402 // required trip count.
9403 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9404 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9405 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9406 "trip count < minimum profitable VF ("
9407 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9408 << ")\n");
9409
9410 return false;
9411 }
9412 }
9413 return true;
9414}
9415
9417 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9419 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9421
9422/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9423/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9424/// don't have a corresponding wide induction in \p EpiPlan.
9425static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9426 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9427 // will need their resume-values computed in the main vector loop. Others
9428 // can be removed from the main VPlan.
9429 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9430 for (VPRecipeBase &R :
9433 continue;
9434 EpiWidenedPhis.insert(
9435 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9436 }
9437 for (VPRecipeBase &R :
9438 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9439 auto *VPIRInst = cast<VPIRPhi>(&R);
9440 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9441 continue;
9442 // There is no corresponding wide induction in the epilogue plan that would
9443 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9444 // together with the corresponding ResumePhi. The resume values for the
9445 // scalar loop will be created during execution of EpiPlan.
9446 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9447 VPIRInst->eraseFromParent();
9448 ResumePhi->eraseFromParent();
9449 }
9451
9452 using namespace VPlanPatternMatch;
9453 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9454 // introduce multiple uses of undef/poison. If the reduction start value may
9455 // be undef or poison it needs to be frozen and the frozen start has to be
9456 // used when computing the reduction result. We also need to use the frozen
9457 // value in the resume phi generated by the main vector loop, as this is also
9458 // used to compute the reduction result after the epilogue vector loop.
9459 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9460 bool UpdateResumePhis) {
9461 VPBuilder Builder(Plan.getEntry());
9462 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9463 auto *VPI = dyn_cast<VPInstruction>(&R);
9464 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9465 continue;
9466 VPValue *OrigStart = VPI->getOperand(1);
9468 continue;
9469 VPInstruction *Freeze =
9470 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9471 VPI->setOperand(1, Freeze);
9472 if (UpdateResumePhis)
9473 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9474 return Freeze != &U && isa<VPPhi>(&U);
9475 });
9476 }
9477 };
9478 AddFreezeForFindLastIVReductions(MainPlan, true);
9479 AddFreezeForFindLastIVReductions(EpiPlan, false);
9480
9481 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9482 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9483 // If there is a suitable resume value for the canonical induction in the
9484 // scalar (which will become vector) epilogue loop, use it and move it to the
9485 // beginning of the scalar preheader. Otherwise create it below.
9486 auto ResumePhiIter =
9487 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9488 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9489 m_ZeroInt()));
9490 });
9491 VPPhi *ResumePhi = nullptr;
9492 if (ResumePhiIter == MainScalarPH->phis().end()) {
9493 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9494 ResumePhi = ScalarPHBuilder.createScalarPhi(
9495 {VectorTC, MainPlan.getCanonicalIV()->getStartValue()}, {},
9496 "vec.epilog.resume.val");
9497 } else {
9498 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9499 if (MainScalarPH->begin() == MainScalarPH->end())
9500 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9501 else if (&*MainScalarPH->begin() != ResumePhi)
9502 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9503 }
9504 // Add a user to to make sure the resume phi won't get removed.
9505 VPBuilder(MainScalarPH)
9507}
9508
9509/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9510/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9511/// reductions require creating new instructions to compute the resume values.
9512/// They are collected in a vector and returned. They must be moved to the
9513/// preheader of the vector epilogue loop, after created by the execution of \p
9514/// Plan.
9516 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9518 ScalarEvolution &SE) {
9519 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9520 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9521 Header->setName("vec.epilog.vector.body");
9522
9524 SmallVector<Instruction *> InstsToMove;
9525 // Ensure that the start values for all header phi recipes are updated before
9526 // vectorizing the epilogue loop.
9527 for (VPRecipeBase &R : Header->phis()) {
9528 if (auto *IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
9529 // When vectorizing the epilogue loop, the canonical induction start
9530 // value needs to be changed from zero to the value after the main
9531 // vector loop. Find the resume value created during execution of the main
9532 // VPlan. It must be the first phi in the loop preheader.
9533 // FIXME: Improve modeling for canonical IV start values in the epilogue
9534 // loop.
9535 using namespace llvm::PatternMatch;
9536 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9537 for (Value *Inc : EPResumeVal->incoming_values()) {
9538 if (match(Inc, m_SpecificInt(0)))
9539 continue;
9540 assert(!EPI.VectorTripCount &&
9541 "Must only have a single non-zero incoming value");
9542 EPI.VectorTripCount = Inc;
9543 }
9544 // If we didn't find a non-zero vector trip count, all incoming values
9545 // must be zero, which also means the vector trip count is zero. Pick the
9546 // first zero as vector trip count.
9547 // TODO: We should not choose VF * UF so the main vector loop is known to
9548 // be dead.
9549 if (!EPI.VectorTripCount) {
9550 assert(
9551 EPResumeVal->getNumIncomingValues() > 0 &&
9552 all_of(EPResumeVal->incoming_values(),
9553 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9554 "all incoming values must be 0");
9555 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9556 }
9557 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9558 assert(all_of(IV->users(),
9559 [](const VPUser *U) {
9560 return isa<VPScalarIVStepsRecipe>(U) ||
9561 isa<VPDerivedIVRecipe>(U) ||
9562 cast<VPRecipeBase>(U)->isScalarCast() ||
9563 cast<VPInstruction>(U)->getOpcode() ==
9564 Instruction::Add;
9565 }) &&
9566 "the canonical IV should only be used by its increment or "
9567 "ScalarIVSteps when resetting the start value");
9568 IV->setOperand(0, VPV);
9569 continue;
9570 }
9571
9572 Value *ResumeV = nullptr;
9573 // TODO: Move setting of resume values to prepareToExecute.
9574 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9575 auto *RdxResult =
9576 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9577 auto *VPI = dyn_cast<VPInstruction>(U);
9578 return VPI &&
9579 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9580 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9581 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9582 }));
9583 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9584 ->getIncomingValueForBlock(L->getLoopPreheader());
9585 RecurKind RK = ReductionPhi->getRecurrenceKind();
9587 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9588 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9589 // start value; compare the final value from the main vector loop
9590 // to the start value.
9591 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9592 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9593 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9594 if (auto *I = dyn_cast<Instruction>(ResumeV))
9595 InstsToMove.push_back(I);
9597 Value *StartV = getStartValueFromReductionResult(RdxResult);
9598 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9600
9601 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9602 // an adjustment to the resume value. The resume value is adjusted to
9603 // the sentinel value when the final value from the main vector loop
9604 // equals the start value. This ensures correctness when the start value
9605 // might not be less than the minimum value of a monotonically
9606 // increasing induction variable.
9607 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9608 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9609 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9610 if (auto *I = dyn_cast<Instruction>(Cmp))
9611 InstsToMove.push_back(I);
9612 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9613 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9614 if (auto *I = dyn_cast<Instruction>(ResumeV))
9615 InstsToMove.push_back(I);
9616 } else {
9617 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9618 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9619 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9620 assert(VPI->getOpcode() == VPInstruction::ReductionStartVector &&
9621 "unexpected start value");
9622 VPI->setOperand(0, StartVal);
9623 continue;
9624 }
9625 }
9626 } else {
9627 // Retrieve the induction resume values for wide inductions from
9628 // their original phi nodes in the scalar loop.
9629 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9630 // Hook up to the PHINode generated by a ResumePhi recipe of main
9631 // loop VPlan, which feeds the scalar loop.
9632 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9633 }
9634 assert(ResumeV && "Must have a resume value");
9635 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9636 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9637 }
9638
9639 // For some VPValues in the epilogue plan we must re-use the generated IR
9640 // values from the main plan. Replace them with live-in VPValues.
9641 // TODO: This is a workaround needed for epilogue vectorization and it
9642 // should be removed once induction resume value creation is done
9643 // directly in VPlan.
9644 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9645 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9646 // epilogue plan. This ensures all users use the same frozen value.
9647 auto *VPI = dyn_cast<VPInstruction>(&R);
9648 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9649 VPI->replaceAllUsesWith(Plan.getOrAddLiveIn(
9650 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9651 continue;
9652 }
9653
9654 // Re-use the trip count and steps expanded for the main loop, as
9655 // skeleton creation needs it as a value that dominates both the scalar
9656 // and vector epilogue loops
9657 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9658 if (!ExpandR)
9659 continue;
9660 VPValue *ExpandedVal =
9661 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9662 ExpandR->replaceAllUsesWith(ExpandedVal);
9663 if (Plan.getTripCount() == ExpandR)
9664 Plan.resetTripCount(ExpandedVal);
9665 ExpandR->eraseFromParent();
9666 }
9667
9668 auto VScale = CM.getVScaleForTuning();
9669 unsigned MainLoopStep =
9670 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9671 unsigned EpilogueLoopStep =
9672 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9674 Plan, EPI.TripCount, EPI.VectorTripCount,
9676 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9677
9678 return InstsToMove;
9679}
9680
9681// Generate bypass values from the additional bypass block. Note that when the
9682// vectorized epilogue is skipped due to iteration count check, then the
9683// resume value for the induction variable comes from the trip count of the
9684// main vector loop, passed as the second argument.
9686 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9687 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9688 Instruction *OldInduction) {
9689 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9690 // For the primary induction the additional bypass end value is known.
9691 // Otherwise it is computed.
9692 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9693 if (OrigPhi != OldInduction) {
9694 auto *BinOp = II.getInductionBinOp();
9695 // Fast-math-flags propagate from the original induction instruction.
9697 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9698
9699 // Compute the end value for the additional bypass.
9700 EndValueFromAdditionalBypass =
9701 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9702 II.getStartValue(), Step, II.getKind(), BinOp);
9703 EndValueFromAdditionalBypass->setName("ind.end");
9704 }
9705 return EndValueFromAdditionalBypass;
9706}
9707
9709 VPlan &BestEpiPlan,
9711 const SCEV2ValueTy &ExpandedSCEVs,
9712 Value *MainVectorTripCount) {
9713 // Fix reduction resume values from the additional bypass block.
9714 BasicBlock *PH = L->getLoopPreheader();
9715 for (auto *Pred : predecessors(PH)) {
9716 for (PHINode &Phi : PH->phis()) {
9717 if (Phi.getBasicBlockIndex(Pred) != -1)
9718 continue;
9719 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9720 }
9721 }
9722 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9723 if (ScalarPH->hasPredecessors()) {
9724 // If ScalarPH has predecessors, we may need to update its reduction
9725 // resume values.
9726 for (const auto &[R, IRPhi] :
9727 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9729 BypassBlock);
9730 }
9731 }
9732
9733 // Fix induction resume values from the additional bypass block.
9734 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9735 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9736 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9738 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9739 LVL.getPrimaryInduction());
9740 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9741 Inc->setIncomingValueForBlock(BypassBlock, V);
9742 }
9743}
9744
9745/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9746// loop, after both plans have executed, updating branches from the iteration
9747// and runtime checks of the main loop, as well as updating various phis. \p
9748// InstsToMove contains instructions that need to be moved to the preheader of
9749// the epilogue vector loop.
9751 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9753 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9754 ArrayRef<Instruction *> InstsToMove) {
9755 BasicBlock *VecEpilogueIterationCountCheck =
9756 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9757
9758 BasicBlock *VecEpiloguePreHeader =
9759 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9760 ->getSuccessor(1);
9761 // Adjust the control flow taking the state info from the main loop
9762 // vectorization into account.
9764 "expected this to be saved from the previous pass.");
9765 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9767 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9768
9770 VecEpilogueIterationCountCheck},
9772 VecEpiloguePreHeader}});
9773
9774 BasicBlock *ScalarPH =
9775 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9777 VecEpilogueIterationCountCheck, ScalarPH);
9778 DTU.applyUpdates(
9780 VecEpilogueIterationCountCheck},
9782
9783 // Adjust the terminators of runtime check blocks and phis using them.
9784 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9785 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9786 if (SCEVCheckBlock) {
9787 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9788 VecEpilogueIterationCountCheck, ScalarPH);
9789 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9790 VecEpilogueIterationCountCheck},
9791 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9792 }
9793 if (MemCheckBlock) {
9794 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9795 VecEpilogueIterationCountCheck, ScalarPH);
9796 DTU.applyUpdates(
9797 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9798 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9799 }
9800
9801 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9802 // or reductions which merge control-flow from the latch block and the
9803 // middle block. Update the incoming values here and move the Phi into the
9804 // preheader.
9805 SmallVector<PHINode *, 4> PhisInBlock(
9806 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9807
9808 for (PHINode *Phi : PhisInBlock) {
9809 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9810 Phi->replaceIncomingBlockWith(
9811 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9812 VecEpilogueIterationCountCheck);
9813
9814 // If the phi doesn't have an incoming value from the
9815 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9816 // incoming value and also those from other check blocks. This is needed
9817 // for reduction phis only.
9818 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9819 return EPI.EpilogueIterationCountCheck == IncB;
9820 }))
9821 continue;
9822 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9823 if (SCEVCheckBlock)
9824 Phi->removeIncomingValue(SCEVCheckBlock);
9825 if (MemCheckBlock)
9826 Phi->removeIncomingValue(MemCheckBlock);
9827 }
9828
9829 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9830 for (auto *I : InstsToMove)
9831 I->moveBefore(IP);
9832
9833 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9834 // after executing the main loop. We need to update the resume values of
9835 // inductions and reductions during epilogue vectorization.
9836 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9837 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9838}
9839
9841 assert((EnableVPlanNativePath || L->isInnermost()) &&
9842 "VPlan-native path is not enabled. Only process inner loops.");
9843
9844 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9845 << L->getHeader()->getParent()->getName() << "' from "
9846 << L->getLocStr() << "\n");
9847
9848 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9849
9850 LLVM_DEBUG(
9851 dbgs() << "LV: Loop hints:"
9852 << " force="
9854 ? "disabled"
9856 ? "enabled"
9857 : "?"))
9858 << " width=" << Hints.getWidth()
9859 << " interleave=" << Hints.getInterleave() << "\n");
9860
9861 // Function containing loop
9862 Function *F = L->getHeader()->getParent();
9863
9864 // Looking at the diagnostic output is the only way to determine if a loop
9865 // was vectorized (other than looking at the IR or machine code), so it
9866 // is important to generate an optimization remark for each loop. Most of
9867 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9868 // generated as OptimizationRemark and OptimizationRemarkMissed are
9869 // less verbose reporting vectorized loops and unvectorized loops that may
9870 // benefit from vectorization, respectively.
9871
9872 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9873 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9874 return false;
9875 }
9876
9877 PredicatedScalarEvolution PSE(*SE, *L);
9878
9879 // Check if it is legal to vectorize the loop.
9880 LoopVectorizationRequirements Requirements;
9881 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9882 &Requirements, &Hints, DB, AC, BFI, PSI, AA);
9884 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9885 Hints.emitRemarkWithHints();
9886 return false;
9887 }
9888
9890 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9891 "early exit is not enabled",
9892 "UncountableEarlyExitLoopsDisabled", ORE, L);
9893 return false;
9894 }
9895
9896 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9897 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9898 "faulting load is not supported",
9899 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9900 return false;
9901 }
9902
9903 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9904 // here. They may require CFG and instruction level transformations before
9905 // even evaluating whether vectorization is profitable. Since we cannot modify
9906 // the incoming IR, we need to build VPlan upfront in the vectorization
9907 // pipeline.
9908 if (!L->isInnermost())
9909 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9910 ORE, BFI, PSI, Hints, Requirements);
9911
9912 assert(L->isInnermost() && "Inner loop expected.");
9913
9914 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9915 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9916
9917 // If an override option has been passed in for interleaved accesses, use it.
9918 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9919 UseInterleaved = EnableInterleavedMemAccesses;
9920
9921 // Analyze interleaved memory accesses.
9922 if (UseInterleaved)
9924
9925 if (LVL.hasUncountableEarlyExit()) {
9926 BasicBlock *LoopLatch = L->getLoopLatch();
9927 if (IAI.requiresScalarEpilogue() ||
9929 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9930 reportVectorizationFailure("Auto-vectorization of early exit loops "
9931 "requiring a scalar epilogue is unsupported",
9932 "UncountableEarlyExitUnsupported", ORE, L);
9933 return false;
9934 }
9935 }
9936
9937 // Check the function attributes and profiles to find out if this function
9938 // should be optimized for size.
9940 getScalarEpilogueLowering(F, L, Hints, PSI, BFI, TTI, TLI, LVL, &IAI);
9941
9942 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9943 // count by optimizing for size, to minimize overheads.
9944 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9945 if (ExpectedTC && ExpectedTC->isFixed() &&
9946 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9947 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9948 << "This loop is worth vectorizing only if no scalar "
9949 << "iteration overheads are incurred.");
9951 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9952 else {
9953 LLVM_DEBUG(dbgs() << "\n");
9954 // Predicate tail-folded loops are efficient even when the loop
9955 // iteration count is low. However, setting the epilogue policy to
9956 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9957 // with runtime checks. It's more effective to let
9958 // `isOutsideLoopWorkProfitable` determine if vectorization is
9959 // beneficial for the loop.
9962 }
9963 }
9964
9965 // Check the function attributes to see if implicit floats or vectors are
9966 // allowed.
9967 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9969 "Can't vectorize when the NoImplicitFloat attribute is used",
9970 "loop not vectorized due to NoImplicitFloat attribute",
9971 "NoImplicitFloat", ORE, L);
9972 Hints.emitRemarkWithHints();
9973 return false;
9974 }
9975
9976 // Check if the target supports potentially unsafe FP vectorization.
9977 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9978 // for the target we're vectorizing for, to make sure none of the
9979 // additional fp-math flags can help.
9980 if (Hints.isPotentiallyUnsafe() &&
9981 TTI->isFPVectorizationPotentiallyUnsafe()) {
9983 "Potentially unsafe FP op prevents vectorization",
9984 "loop not vectorized due to unsafe FP support.",
9985 "UnsafeFP", ORE, L);
9986 Hints.emitRemarkWithHints();
9987 return false;
9988 }
9989
9990 bool AllowOrderedReductions;
9991 // If the flag is set, use that instead and override the TTI behaviour.
9992 if (ForceOrderedReductions.getNumOccurrences() > 0)
9993 AllowOrderedReductions = ForceOrderedReductions;
9994 else
9995 AllowOrderedReductions = TTI->enableOrderedReductions();
9996 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9997 ORE->emit([&]() {
9998 auto *ExactFPMathInst = Requirements.getExactFPInst();
9999 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10000 ExactFPMathInst->getDebugLoc(),
10001 ExactFPMathInst->getParent())
10002 << "loop not vectorized: cannot prove it is safe to reorder "
10003 "floating-point operations";
10004 });
10005 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10006 "reorder floating-point operations\n");
10007 Hints.emitRemarkWithHints();
10008 return false;
10009 }
10010
10011 // Use the cost model.
10012 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10013 F, &Hints, IAI, PSI, BFI);
10014 // Use the planner for vectorization.
10015 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
10016 ORE);
10017
10018 // Get user vectorization factor and interleave count.
10019 ElementCount UserVF = Hints.getWidth();
10020 unsigned UserIC = Hints.getInterleave();
10021
10022 // Plan how to best vectorize.
10023 LVP.plan(UserVF, UserIC);
10025 unsigned IC = 1;
10026
10027 if (ORE->allowExtraAnalysis(LV_NAME))
10029
10030 GeneratedRTChecks Checks(PSE, DT, LI, TTI, F->getDataLayout(), CM.CostKind);
10031 if (LVP.hasPlanWithVF(VF.Width)) {
10032 // Select the interleave count.
10033 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
10034
10035 unsigned SelectedIC = std::max(IC, UserIC);
10036 // Optimistically generate runtime checks if they are needed. Drop them if
10037 // they turn out to not be profitable.
10038 if (VF.Width.isVector() || SelectedIC > 1) {
10039 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10040
10041 // Bail out early if either the SCEV or memory runtime checks are known to
10042 // fail. In that case, the vector loop would never execute.
10043 using namespace llvm::PatternMatch;
10044 if (Checks.getSCEVChecks().first &&
10045 match(Checks.getSCEVChecks().first, m_One()))
10046 return false;
10047 if (Checks.getMemRuntimeChecks().first &&
10048 match(Checks.getMemRuntimeChecks().first, m_One()))
10049 return false;
10050 }
10051
10052 // Check if it is profitable to vectorize with runtime checks.
10053 bool ForceVectorization =
10055 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10056 CM.CostKind);
10057 if (!ForceVectorization &&
10058 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10059 LVP.getPlanFor(VF.Width), SEL,
10060 CM.getVScaleForTuning())) {
10061 ORE->emit([&]() {
10063 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10064 L->getHeader())
10065 << "loop not vectorized: cannot prove it is safe to reorder "
10066 "memory operations";
10067 });
10068 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10069 Hints.emitRemarkWithHints();
10070 return false;
10071 }
10072 }
10073
10074 // Identify the diagnostic messages that should be produced.
10075 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10076 bool VectorizeLoop = true, InterleaveLoop = true;
10077 if (VF.Width.isScalar()) {
10078 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10079 VecDiagMsg = {
10080 "VectorizationNotBeneficial",
10081 "the cost-model indicates that vectorization is not beneficial"};
10082 VectorizeLoop = false;
10083 }
10084
10085 if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10086 // Tell the user interleaving was avoided up-front, despite being explicitly
10087 // requested.
10088 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10089 "interleaving should be avoided up front\n");
10090 IntDiagMsg = {"InterleavingAvoided",
10091 "Ignoring UserIC, because interleaving was avoided up front"};
10092 InterleaveLoop = false;
10093 } else if (IC == 1 && UserIC <= 1) {
10094 // Tell the user interleaving is not beneficial.
10095 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10096 IntDiagMsg = {
10097 "InterleavingNotBeneficial",
10098 "the cost-model indicates that interleaving is not beneficial"};
10099 InterleaveLoop = false;
10100 if (UserIC == 1) {
10101 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10102 IntDiagMsg.second +=
10103 " and is explicitly disabled or interleave count is set to 1";
10104 }
10105 } else if (IC > 1 && UserIC == 1) {
10106 // Tell the user interleaving is beneficial, but it explicitly disabled.
10107 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10108 "disabled.\n");
10109 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10110 "the cost-model indicates that interleaving is beneficial "
10111 "but is explicitly disabled or interleave count is set to 1"};
10112 InterleaveLoop = false;
10113 }
10114
10115 // If there is a histogram in the loop, do not just interleave without
10116 // vectorizing. The order of operations will be incorrect without the
10117 // histogram intrinsics, which are only used for recipes with VF > 1.
10118 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10119 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10120 << "to histogram operations.\n");
10121 IntDiagMsg = {
10122 "HistogramPreventsScalarInterleaving",
10123 "Unable to interleave without vectorization due to constraints on "
10124 "the order of histogram operations"};
10125 InterleaveLoop = false;
10126 }
10127
10128 // Override IC if user provided an interleave count.
10129 IC = UserIC > 0 ? UserIC : IC;
10130
10131 // Emit diagnostic messages, if any.
10132 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10133 if (!VectorizeLoop && !InterleaveLoop) {
10134 // Do not vectorize or interleaving the loop.
10135 ORE->emit([&]() {
10136 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10137 L->getStartLoc(), L->getHeader())
10138 << VecDiagMsg.second;
10139 });
10140 ORE->emit([&]() {
10141 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10142 L->getStartLoc(), L->getHeader())
10143 << IntDiagMsg.second;
10144 });
10145 return false;
10146 }
10147
10148 if (!VectorizeLoop && InterleaveLoop) {
10149 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10150 ORE->emit([&]() {
10151 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10152 L->getStartLoc(), L->getHeader())
10153 << VecDiagMsg.second;
10154 });
10155 } else if (VectorizeLoop && !InterleaveLoop) {
10156 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10157 << ") in " << L->getLocStr() << '\n');
10158 ORE->emit([&]() {
10159 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10160 L->getStartLoc(), L->getHeader())
10161 << IntDiagMsg.second;
10162 });
10163 } else if (VectorizeLoop && InterleaveLoop) {
10164 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10165 << ") in " << L->getLocStr() << '\n');
10166 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10167 }
10168
10169 // Report the vectorization decision.
10170 if (VF.Width.isScalar()) {
10171 using namespace ore;
10172 assert(IC > 1);
10173 ORE->emit([&]() {
10174 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10175 L->getHeader())
10176 << "interleaved loop (interleaved count: "
10177 << NV("InterleaveCount", IC) << ")";
10178 });
10179 } else {
10180 // Report the vectorization decision.
10181 reportVectorization(ORE, L, VF, IC);
10182 }
10183 if (ORE->allowExtraAnalysis(LV_NAME))
10185
10186 // If we decided that it is *legal* to interleave or vectorize the loop, then
10187 // do it.
10188
10189 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10190 // Consider vectorizing the epilogue too if it's profitable.
10191 VectorizationFactor EpilogueVF =
10193 if (EpilogueVF.Width.isVector()) {
10194 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10195
10196 // The first pass vectorizes the main loop and creates a scalar epilogue
10197 // to be vectorized by executing the plan (potentially with a different
10198 // factor) again shortly afterwards.
10199 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10200 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10201 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10202 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10203 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10204 BestEpiPlan);
10205 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM, BFI,
10206 PSI, Checks, *BestMainPlan);
10207 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10208 *BestMainPlan, MainILV, DT, false);
10209 ++LoopsVectorized;
10210
10211 // Second pass vectorizes the epilogue and adjusts the control flow
10212 // edges from the first pass.
10213 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10214 BFI, PSI, Checks, BestEpiPlan);
10216 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10217 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10218 true);
10219 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10220 Checks, InstsToMove);
10221 ++LoopsEpilogueVectorized;
10222 } else {
10223 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, BFI, PSI,
10224 Checks, BestPlan);
10225 // TODO: Move to general VPlan pipeline once epilogue loops are also
10226 // supported.
10229 IC, PSE);
10230 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10232
10233 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10234 ++LoopsVectorized;
10235 }
10236
10237 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10238 "DT not preserved correctly");
10239 assert(!verifyFunction(*F, &dbgs()));
10240
10241 return true;
10242}
10243
10245
10246 // Don't attempt if
10247 // 1. the target claims to have no vector registers, and
10248 // 2. interleaving won't help ILP.
10249 //
10250 // The second condition is necessary because, even if the target has no
10251 // vector registers, loop vectorization may still enable scalar
10252 // interleaving.
10253 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10254 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10255 return LoopVectorizeResult(false, false);
10256
10257 bool Changed = false, CFGChanged = false;
10258
10259 // The vectorizer requires loops to be in simplified form.
10260 // Since simplification may add new inner loops, it has to run before the
10261 // legality and profitability checks. This means running the loop vectorizer
10262 // will simplify all loops, regardless of whether anything end up being
10263 // vectorized.
10264 for (const auto &L : *LI)
10265 Changed |= CFGChanged |=
10266 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10267
10268 // Build up a worklist of inner-loops to vectorize. This is necessary as
10269 // the act of vectorizing or partially unrolling a loop creates new loops
10270 // and can invalidate iterators across the loops.
10271 SmallVector<Loop *, 8> Worklist;
10272
10273 for (Loop *L : *LI)
10274 collectSupportedLoops(*L, LI, ORE, Worklist);
10275
10276 LoopsAnalyzed += Worklist.size();
10277
10278 // Now walk the identified inner loops.
10279 while (!Worklist.empty()) {
10280 Loop *L = Worklist.pop_back_val();
10281
10282 // For the inner loops we actually process, form LCSSA to simplify the
10283 // transform.
10284 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10285
10286 Changed |= CFGChanged |= processLoop(L);
10287
10288 if (Changed) {
10289 LAIs->clear();
10290
10291#ifndef NDEBUG
10292 if (VerifySCEV)
10293 SE->verify();
10294#endif
10295 }
10296 }
10297
10298 // Process each loop nest in the function.
10299 return LoopVectorizeResult(Changed, CFGChanged);
10300}
10301
10304 LI = &AM.getResult<LoopAnalysis>(F);
10305 // There are no loops in the function. Return before computing other
10306 // expensive analyses.
10307 if (LI->empty())
10308 return PreservedAnalyses::all();
10317 AA = &AM.getResult<AAManager>(F);
10318
10319 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10320 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10321 BFI = nullptr;
10322 if (PSI && PSI->hasProfileSummary())
10324 LoopVectorizeResult Result = runImpl(F);
10325 if (!Result.MadeAnyChange)
10326 return PreservedAnalyses::all();
10328
10329 if (isAssignmentTrackingEnabled(*F.getParent())) {
10330 for (auto &BB : F)
10332 }
10333
10334 PA.preserve<LoopAnalysis>();
10338
10339 if (Result.MadeCFGChange) {
10340 // Making CFG changes likely means a loop got vectorized. Indicate that
10341 // extra simplification passes should be run.
10342 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10343 // be run if runtime checks have been added.
10346 } else {
10348 }
10349 return PA;
10350}
10351
10353 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10354 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10355 OS, MapClassName2PassName);
10356
10357 OS << '<';
10358 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10359 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10360 OS << '>';
10361}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static VPInstruction * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:984
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:791
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
A debug info location.
Definition DebugLoc.h:124
static DebugLoc getTemporary()
Definition DebugLoc.h:161
static DebugLoc getUnknown()
Definition DebugLoc.h:162
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:187
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:165
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:229
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:156
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:267
Implements a dense probed hash-table based set.
Definition DenseSet.h:269
Analysis pass which computes a DominatorTree.
Definition Dominators.h:284
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:762
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2780
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
ProfileSummaryInfo * PSI
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:343
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1611
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1662
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1595
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1576
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1740
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1077
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:115
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
void insert_range(Range &&R)
Definition SetVector.h:193
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:279
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:21
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3764
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:3839
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:3791
iterator end()
Definition VPlan.h:3801
iterator begin()
Recipe iterator methods.
Definition VPlan.h:3799
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:3852
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:246
VPRegionBlock * getEnclosingLoopRegion()
Definition VPlan.cpp:619
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:3830
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
VPRegionBlock * getParent()
Definition VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:190
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:165
VPBlockBase * getSinglePredecessor() const
Definition VPlan.h:215
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:170
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:232
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:253
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:191
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:218
VPlan-based builder utility analogous to IRBuilder.
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL)
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:424
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:397
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3641
VPValue * getStartValue() const
Definition VPlan.h:3640
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:1977
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2025
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2014
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:3917
Helper to manage IR metadata for recipes.
Definition VPlan.h:942
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:983
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1016
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1063
@ FirstOrderRecurrenceSplice
Definition VPlan.h:989
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1054
unsigned getOpcode() const
Definition VPlan.h:1119
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2576
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
Definition VPlan.h:2753
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1290
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:394
VPBasicBlock * getParent()
Definition VPlan.h:415
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:482
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
Definition VPlan.h:2331
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
Definition VPlan.h:2391
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2385
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:3952
const VPBlockBase * getEntry() const
Definition VPlan.h:3988
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2856
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:521
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:586
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:199
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:243
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:238
void addOperand(VPValue *Operand)
Definition VPlanValue.h:232
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:135
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:176
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:85
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1412
user_iterator user_begin()
Definition VPlanValue.h:130
unsigned getNumUsers() const
Definition VPlanValue.h:113
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1416
user_range users()
Definition VPlanValue.h:134
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1841
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1482
A recipe for handling GEP instructions.
Definition VPlan.h:1769
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
Definition VPlan.h:2042
VPValue * getStepValue()
Returns the step value of the induction.
Definition VPlan.h:2070
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
Definition VPlan.h:2087
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2117
A common base class for widening memory operations.
Definition VPlan.h:3133
A recipe for widened phis.
Definition VPlan.h:2253
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1439
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4055
bool hasVF(ElementCount VF) const
Definition VPlan.h:4264
VPBasicBlock * getEntry()
Definition VPlan.h:4154
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4244
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
Definition VPlan.h:4250
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4247
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4216
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4271
bool hasUF(unsigned UF) const
Definition VPlan.h:4282
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4206
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1046
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4427
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:1028
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4230
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4179
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4306
bool hasScalarVFOnly() const
Definition VPlan.h:4275
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4197
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:952
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition VPlan.h:4360
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4202
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4159
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1188
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:156
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr bool isZero() const
Definition TypeSize.h:154
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t > m_scev_Mul(const Op0_t &Op0, const Op1_t &Op1)
bool match(const SCEV *S, const Pattern &P)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition VPlanUtils.h:44
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Offset
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:689
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1657
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:293
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:682
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:348
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1767
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:126
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:405
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:155
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1738
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Definition VPlan.cpp:56
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:299
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:836
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
BlockFrequencyInfo * BFI
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:70
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
Definition VPlan.h:2296
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1723
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, ScalarEvolution &SE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void materializeBuildVectors(VPlan &Plan)
Add explicit Build[Struct]Vector recipes that combine multiple scalar values into single vectors.
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE)
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, unsigned VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks