Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
RDFLiveness.cpp
Go to the documentation of this file.
1//===- RDFLiveness.cpp ----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Computation of the liveness information from the data-flow graph.
10//
11// The main functionality of this code is to compute block live-in
12// information. With the live-in information in place, the placement
13// of kill flags can also be recalculated.
14//
15// The block live-in calculation is based on the ideas from the following
16// publication:
17//
18// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20// ACM Transactions on Architecture and Code Optimization, Association for
21// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22// and Embedded Architectures and Compilers", 8 (4),
23// <10.1145/2086696.2086706>. <hal-00647369>
24//
25#include "llvm/ADT/BitVector.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallSet.h"
39#include "llvm/MC/LaneBitmask.h"
44#include <algorithm>
45#include <cassert>
46#include <cstdint>
47#include <iterator>
48#include <map>
49#include <unordered_map>
50#include <utility>
51#include <vector>
52
53using namespace llvm;
54
55static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
57 cl::desc("Maximum recursion level"));
58
59namespace llvm::rdf {
60
62 OS << '{';
63 for (const auto &I : P.Obj) {
64 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
65 for (auto J = I.second.begin(), E = I.second.end(); J != E;) {
66 OS << Print(J->first, P.G) << PrintLaneMaskShort(J->second);
67 if (++J != E)
68 OS << ',';
69 }
70 OS << '}';
71 }
72 OS << " }";
73 return OS;
74}
75
76// The order in the returned sequence is the order of reaching defs in the
77// upward traversal: the first def is the closest to the given reference RefA,
78// the next one is further up, and so on.
79// The list ends at a reaching phi def, or when the reference from RefA is
80// covered by the defs in the list (see FullChain).
81// This function provides two modes of operation:
82// (1) Returning the sequence of reaching defs for a particular reference
83// node. This sequence will terminate at the first phi node [1].
84// (2) Returning a partial sequence of reaching defs, where the final goal
85// is to traverse past phi nodes to the actual defs arising from the code
86// itself.
87// In mode (2), the register reference for which the search was started
88// may be different from the reference node RefA, for which this call was
89// made, hence the argument RefRR, which holds the original register.
90// Also, some definitions may have already been encountered in a previous
91// call that will influence register covering. The register references
92// already defined are passed in through DefRRs.
93// In mode (1), the "continuation" considerations do not apply, and the
94// RefRR is the same as the register in RefA, and the set DefRRs is empty.
95//
96// [1] It is possible for multiple phi nodes to be included in the returned
97// sequence:
98// SubA = phi ...
99// SubB = phi ...
100// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
101// However, these phi nodes are independent from one another in terms of
102// the data-flow.
103
105 NodeAddr<RefNode *> RefA, bool TopShadows,
106 bool FullChain,
107 const RegisterAggr &DefRRs) {
108 NodeList RDefs; // Return value.
111
112 // Dead defs will be treated as if they were live, since they are actually
113 // on the data-flow path. They cannot be ignored because even though they
114 // do not generate meaningful values, they still modify registers.
115
116 // If the reference is undefined, there is nothing to do.
117 if (RefA.Addr->getFlags() & NodeAttrs::Undef)
118 return RDefs;
119
120 // The initial queue should not have reaching defs for shadows. The
121 // whole point of a shadow is that it will have a reaching def that
122 // is not aliased to the reaching defs of the related shadows.
123 NodeId Start = RefA.Id;
124 auto SNA = DFG.addr<RefNode *>(Start);
125 if (NodeId RD = SNA.Addr->getReachingDef())
126 DefQ.insert(RD);
127 if (TopShadows) {
128 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
129 if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef())
130 DefQ.insert(RD);
131 }
132
133 // Collect all the reaching defs, going up until a phi node is encountered,
134 // or there are no more reaching defs. From this set, the actual set of
135 // reaching defs will be selected.
136 // The traversal upwards must go on until a covering def is encountered.
137 // It is possible that a collection of non-covering (individually) defs
138 // will be sufficient, but keep going until a covering one is found.
139 for (unsigned i = 0; i < DefQ.size(); ++i) {
140 auto TA = DFG.addr<DefNode *>(DefQ[i]);
141 if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
142 continue;
143 // Stop at the covering/overwriting def of the initial register reference.
144 RegisterRef RR = TA.Addr->getRegRef(DFG);
145 if (!DFG.IsPreservingDef(TA))
146 if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
147 continue;
148 // Get the next level of reaching defs. This will include multiple
149 // reaching defs for shadows.
150 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
151 if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef())
152 DefQ.insert(RD);
153 // Don't visit sibling defs. They share the same reaching def (which
154 // will be visited anyway), but they define something not aliased to
155 // this ref.
156 }
157
158 // Return the MachineBasicBlock containing a given instruction.
159 auto Block = [this](NodeAddr<InstrNode *> IA) -> MachineBasicBlock * {
160 if (IA.Addr->getKind() == NodeAttrs::Stmt)
161 return NodeAddr<StmtNode *>(IA).Addr->getCode()->getParent();
162 assert(IA.Addr->getKind() == NodeAttrs::Phi);
163 NodeAddr<PhiNode *> PA = IA;
164 NodeAddr<BlockNode *> BA = PA.Addr->getOwner(DFG);
165 return BA.Addr->getCode();
166 };
167
169
170 // Remove all non-phi defs that are not aliased to RefRR, and separate
171 // the the remaining defs into buckets for containing blocks.
172 std::map<NodeId, NodeAddr<InstrNode *>> Owners;
173 std::map<MachineBasicBlock *, SmallVector<NodeId, 32>> Blocks;
174 for (NodeId N : DefQ) {
175 auto TA = DFG.addr<DefNode *>(N);
176 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
177 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
178 continue;
179 Defs.insert(TA.Id);
180 NodeAddr<InstrNode *> IA = TA.Addr->getOwner(DFG);
181 Owners[TA.Id] = IA;
182 Blocks[Block(IA)].push_back(IA.Id);
183 }
184
185 auto Precedes = [this, &OrdMap](NodeId A, NodeId B) {
186 if (A == B)
187 return false;
188 NodeAddr<InstrNode *> OA = DFG.addr<InstrNode *>(A);
189 NodeAddr<InstrNode *> OB = DFG.addr<InstrNode *>(B);
190 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
191 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
192 if (StmtA && StmtB) {
193 const MachineInstr *InA = NodeAddr<StmtNode *>(OA).Addr->getCode();
194 const MachineInstr *InB = NodeAddr<StmtNode *>(OB).Addr->getCode();
195 assert(InA->getParent() == InB->getParent());
196 auto FA = OrdMap.find(InA);
197 if (FA != OrdMap.end())
198 return FA->second < OrdMap.find(InB)->second;
199 const MachineBasicBlock *BB = InA->getParent();
200 for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
201 if (It == InA->getIterator())
202 return true;
203 if (It == InB->getIterator())
204 return false;
205 }
206 llvm_unreachable("InA and InB should be in the same block");
207 }
208 // One of them is a phi node.
209 if (!StmtA && !StmtB) {
210 // Both are phis, which are unordered. Break the tie by id numbers.
211 return A < B;
212 }
213 // Only one of them is a phi. Phis always precede statements.
214 return !StmtA;
215 };
216
217 auto GetOrder = [&OrdMap](MachineBasicBlock &B) {
218 uint32_t Pos = 0;
219 for (MachineInstr &In : B)
220 OrdMap.insert({&In, ++Pos});
221 };
222
223 // For each block, sort the nodes in it.
224 std::vector<MachineBasicBlock *> TmpBB;
225 for (auto &Bucket : Blocks) {
226 TmpBB.push_back(Bucket.first);
227 if (Bucket.second.size() > 2)
228 GetOrder(*Bucket.first);
229 llvm::sort(Bucket.second, Precedes);
230 }
231
232 // Sort the blocks with respect to dominance.
233 llvm::sort(TmpBB,
234 [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
235
236 std::vector<NodeId> TmpInst;
237 for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) {
238 auto &Bucket = Blocks[MBB];
239 TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
240 }
241
242 // The vector is a list of instructions, so that defs coming from
243 // the same instruction don't need to be artificially ordered.
244 // Then, when computing the initial segment, and iterating over an
245 // instruction, pick the defs that contribute to the covering (i.e. is
246 // not covered by previously added defs). Check the defs individually,
247 // i.e. first check each def if is covered or not (without adding them
248 // to the tracking set), and then add all the selected ones.
249
250 // The reason for this is this example:
251 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
252 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
253 // covered if we added A first, and A would be covered
254 // if we added B first.
255 // In this example we want both A and B, because we don't want to give
256 // either one priority over the other, since they belong to the same
257 // statement.
258
259 RegisterAggr RRs(DefRRs);
260
261 auto DefInSet = [&Defs](NodeAddr<RefNode *> TA) -> bool {
262 return TA.Addr->getKind() == NodeAttrs::Def && Defs.count(TA.Id);
263 };
264
265 for (NodeId T : TmpInst) {
266 if (!FullChain && RRs.hasCoverOf(RefRR))
267 break;
268 auto TA = DFG.addr<InstrNode *>(T);
269 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
270 NodeList Ds;
271 for (NodeAddr<DefNode *> DA : TA.Addr->members_if(DefInSet, DFG)) {
272 RegisterRef QR = DA.Addr->getRegRef(DFG);
273 // Add phi defs even if they are covered by subsequent defs. This is
274 // for cases where the reached use is not covered by any of the defs
275 // encountered so far: the phi def is needed to expose the liveness
276 // of that use to the entry of the block.
277 // Example:
278 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
279 // d2<R3>(d1,,u3), ...
280 // ..., u3<D1>(d2) This use needs to be live on entry.
281 if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
282 Ds.push_back(DA);
283 }
284 llvm::append_range(RDefs, Ds);
285 for (NodeAddr<DefNode *> DA : Ds) {
286 // When collecting a full chain of definitions, do not consider phi
287 // defs to actually define a register.
288 uint16_t Flags = DA.Addr->getFlags();
289 if (!FullChain || !(Flags & NodeAttrs::PhiRef))
290 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
291 RRs.insert(DA.Addr->getRegRef(DFG));
292 }
293 }
294
295 auto DeadP = [](const NodeAddr<DefNode *> DA) -> bool {
296 return DA.Addr->getFlags() & NodeAttrs::Dead;
297 };
298 llvm::erase_if(RDefs, DeadP);
299
300 return RDefs;
301}
302
303std::pair<NodeSet, bool>
305 NodeSet &Visited, const NodeSet &Defs) {
306 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
307}
308
309std::pair<NodeSet, bool>
310Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode *> RefA,
311 NodeSet &Visited, const NodeSet &Defs,
312 unsigned Nest, unsigned MaxNest) {
313 if (Nest > MaxNest)
314 return {NodeSet(), false};
315 // Collect all defined registers. Do not consider phis to be defining
316 // anything, only collect "real" definitions.
317 RegisterAggr DefRRs(PRI);
318 for (NodeId D : Defs) {
319 const auto DA = DFG.addr<const DefNode *>(D);
320 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
321 DefRRs.insert(DA.Addr->getRegRef(DFG));
322 }
323
324 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
325 if (RDs.empty())
326 return {Defs, true};
327
328 // Make a copy of the preexisting definitions and add the newly found ones.
329 NodeSet TmpDefs = Defs;
330 for (NodeAddr<NodeBase *> R : RDs)
331 TmpDefs.insert(R.Id);
332
333 NodeSet Result = Defs;
334
335 for (NodeAddr<DefNode *> DA : RDs) {
336 Result.insert(DA.Id);
337 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
338 continue;
339 NodeAddr<PhiNode *> PA = DA.Addr->getOwner(DFG);
340 if (!Visited.insert(PA.Id).second)
341 continue;
342 // Go over all phi uses and get the reaching defs for each use.
343 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
344 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
345 Nest + 1, MaxNest);
346 if (!T.second)
347 return {T.first, false};
348 Result.insert(T.first.begin(), T.first.end());
349 }
350 }
351
352 return {Result, true};
353}
354
355/// Find the nearest ref node aliased to RefRR, going upwards in the data
356/// flow, starting from the instruction immediately preceding Inst.
359 NodeAddr<BlockNode *> BA = IA.Addr->getOwner(DFG);
360 NodeList Ins = BA.Addr->members(DFG);
361 NodeId FindId = IA.Id;
362 auto E = Ins.rend();
363 auto B =
364 std::find_if(Ins.rbegin(), E, [FindId](const NodeAddr<InstrNode *> T) {
365 return T.Id == FindId;
366 });
367 // Do not scan IA (which is what B would point to).
368 if (B != E)
369 ++B;
370
371 do {
372 // Process the range of instructions from B to E.
373 for (NodeAddr<InstrNode *> I : make_range(B, E)) {
374 NodeList Refs = I.Addr->members(DFG);
376 // Scan all the refs in I aliased to RefRR, and return the one that
377 // is the closest to the output of I, i.e. def > clobber > use.
378 for (NodeAddr<RefNode *> R : Refs) {
379 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
380 continue;
381 if (DFG.IsDef(R)) {
382 // If it's a non-clobbering def, just return it.
383 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
384 return R;
385 Clob = R;
386 } else {
387 Use = R;
388 }
389 }
390 if (Clob.Id != 0)
391 return Clob;
392 if (Use.Id != 0)
393 return Use;
394 }
395
396 // Go up to the immediate dominator, if any.
397 MachineBasicBlock *BB = BA.Addr->getCode();
399 if (MachineDomTreeNode *N = MDT.getNode(BB)) {
400 if ((N = N->getIDom()))
401 BA = DFG.findBlock(N->getBlock());
402 }
403 if (!BA.Id)
404 break;
405
406 Ins = BA.Addr->members(DFG);
407 B = Ins.rbegin();
408 E = Ins.rend();
409 } while (true);
410
411 return NodeAddr<RefNode *>();
412}
413
415 const RegisterAggr &DefRRs) {
417
418 // If the original register is already covered by all the intervening
419 // defs, no more uses can be reached.
420 if (DefRRs.hasCoverOf(RefRR))
421 return Uses;
422
423 // Add all directly reached uses.
424 // If the def is dead, it does not provide a value for any use.
425 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
426 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
427 while (U != 0) {
428 auto UA = DFG.addr<UseNode *>(U);
429 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
430 RegisterRef UR = UA.Addr->getRegRef(DFG);
431 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
432 Uses.insert(U);
433 }
434 U = UA.Addr->getSibling();
435 }
436
437 // Traverse all reached defs. This time dead defs cannot be ignored.
438 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
439 auto DA = DFG.addr<DefNode *>(D);
440 NextD = DA.Addr->getSibling();
441 RegisterRef DR = DA.Addr->getRegRef(DFG);
442 // If this def is already covered, it cannot reach anything new.
443 // Similarly, skip it if it is not aliased to the interesting register.
444 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
445 continue;
446 NodeSet T;
447 if (DFG.IsPreservingDef(DA)) {
448 // If it is a preserving def, do not update the set of intervening defs.
449 T = getAllReachedUses(RefRR, DA, DefRRs);
450 } else {
451 RegisterAggr NewDefRRs = DefRRs;
452 NewDefRRs.insert(DR);
453 T = getAllReachedUses(RefRR, DA, NewDefRRs);
454 }
455 Uses.insert(T.begin(), T.end());
456 }
457 return Uses;
458}
459
461 RealUseMap.clear();
462
463 NodeList Phis;
464 NodeAddr<FuncNode *> FA = DFG.getFunc();
465 NodeList Blocks = FA.Addr->members(DFG);
466 for (NodeAddr<BlockNode *> BA : Blocks) {
467 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
468 llvm::append_range(Phis, Ps);
469 }
470
471 // phi use -> (map: reaching phi -> set of registers defined in between)
472 std::map<NodeId, std::map<NodeId, RegisterAggr>> PhiUp;
473 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
474 std::unordered_map<NodeId, RegisterAggr>
475 PhiDRs; // Phi -> registers defined by it.
476
477 // Go over all phis.
478 for (NodeAddr<PhiNode *> PhiA : Phis) {
479 // Go over all defs and collect the reached uses that are non-phi uses
480 // (i.e. the "real uses").
481 RefMap &RealUses = RealUseMap[PhiA.Id];
482 NodeList PhiRefs = PhiA.Addr->members(DFG);
483
484 // Have a work queue of defs whose reached uses need to be found.
485 // For each def, add to the queue all reached (non-phi) defs.
487 NodeSet PhiDefs;
488 RegisterAggr DRs(PRI);
489 for (NodeAddr<RefNode *> R : PhiRefs) {
490 if (!DFG.IsRef<NodeAttrs::Def>(R))
491 continue;
492 DRs.insert(R.Addr->getRegRef(DFG));
493 DefQ.insert(R.Id);
494 PhiDefs.insert(R.Id);
495 }
496 PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
497
498 // Collect the super-set of all possible reached uses. This set will
499 // contain all uses reached from this phi, either directly from the
500 // phi defs, or (recursively) via non-phi defs reached by the phi defs.
501 // This set of uses will later be trimmed to only contain these uses that
502 // are actually reached by the phi defs.
503 for (unsigned i = 0; i < DefQ.size(); ++i) {
504 NodeAddr<DefNode *> DA = DFG.addr<DefNode *>(DefQ[i]);
505 // Visit all reached uses. Phi defs should not really have the "dead"
506 // flag set, but check it anyway for consistency.
507 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
508 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
509 while (UN != 0) {
510 NodeAddr<UseNode *> A = DFG.addr<UseNode *>(UN);
511 uint16_t F = A.Addr->getFlags();
512 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
513 RegisterRef R = A.Addr->getRegRef(DFG);
514 RealUses[R.Reg].insert({A.Id, R.Mask});
515 }
516 UN = A.Addr->getSibling();
517 }
518 // Visit all reached defs, and add them to the queue. These defs may
519 // override some of the uses collected here, but that will be handled
520 // later.
521 NodeId DN = DA.Addr->getReachedDef();
522 while (DN != 0) {
523 NodeAddr<DefNode *> A = DFG.addr<DefNode *>(DN);
524 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
525 uint16_t Flags = NodeAddr<DefNode *>(T).Addr->getFlags();
526 // Must traverse the reached-def chain. Consider:
527 // def(D0) -> def(R0) -> def(R0) -> use(D0)
528 // The reachable use of D0 passes through a def of R0.
529 if (!(Flags & NodeAttrs::PhiRef))
530 DefQ.insert(T.Id);
531 }
532 DN = A.Addr->getSibling();
533 }
534 }
535 // Filter out these uses that appear to be reachable, but really
536 // are not. For example:
537 //
538 // R1:0 = d1
539 // = R1:0 u2 Reached by d1.
540 // R0 = d3
541 // = R1:0 u4 Still reached by d1: indirectly through
542 // the def d3.
543 // R1 = d5
544 // = R1:0 u6 Not reached by d1 (covered collectively
545 // by d3 and d5), but following reached
546 // defs and uses from d1 will lead here.
547 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE;) {
548 // For each reached register UI->first, there is a set UI->second, of
549 // uses of it. For each such use, check if it is reached by this phi,
550 // i.e. check if the set of its reaching uses intersects the set of
551 // this phi's defs.
552 NodeRefSet Uses = UI->second;
553 UI->second.clear();
554 for (std::pair<NodeId, LaneBitmask> I : Uses) {
555 auto UA = DFG.addr<UseNode *>(I.first);
556 // Undef flag is checked above.
557 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
558 RegisterRef UseR(UI->first, I.second); // Ref from Uses
559 // R = intersection of the ref from the phi and the ref from Uses
560 RegisterRef R = PhiDRs.at(PhiA.Id).intersectWith(UseR);
561 if (!R)
562 continue;
563 // Calculate the exposed part of the reached use.
564 RegisterAggr Covered(PRI);
565 for (NodeAddr<DefNode *> DA : getAllReachingDefs(R, UA)) {
566 if (PhiDefs.count(DA.Id))
567 break;
568 Covered.insert(DA.Addr->getRegRef(DFG));
569 }
570 if (RegisterRef RC = Covered.clearIn(R)) {
571 // We are updating the map for register UI->first, so we need
572 // to map RC to be expressed in terms of that register.
573 RegisterRef S = PRI.mapTo(RC, UI->first);
574 UI->second.insert({I.first, S.Mask});
575 }
576 }
577 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
578 }
579
580 // If this phi reaches some "real" uses, add it to the queue for upward
581 // propagation.
582 if (!RealUses.empty())
583 PhiUQ.push_back(PhiA.Id);
584
585 // Go over all phi uses and check if the reaching def is another phi.
586 // Collect the phis that are among the reaching defs of these uses.
587 // While traversing the list of reaching defs for each phi use, accumulate
588 // the set of registers defined between this phi (PhiA) and the owner phi
589 // of the reaching def.
590 NodeSet SeenUses;
591
592 for (auto I : PhiRefs) {
593 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
594 continue;
596 if (PUA.Addr->getReachingDef() == 0)
597 continue;
598
599 RegisterRef UR = PUA.Addr->getRegRef(DFG);
600 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
601 RegisterAggr DefRRs(PRI);
602
603 for (NodeAddr<DefNode *> D : Ds) {
604 if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
605 NodeId RP = D.Addr->getOwner(DFG).Id;
606 auto [F, Inserted] = PhiUp[PUA.Id].try_emplace(RP, DefRRs);
607 if (!Inserted)
608 F->second.insert(DefRRs);
609 }
610 DefRRs.insert(D.Addr->getRegRef(DFG));
611 }
612
613 for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(PhiA, PUA))
614 SeenUses.insert(T.Id);
615 }
616 }
617
618 if (Trace) {
619 dbgs() << "Phi-up-to-phi map with intervening defs:\n";
620 for (auto I : PhiUp) {
621 dbgs() << "phi " << Print(I.first, DFG) << " -> {";
622 for (auto R : I.second)
623 dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG);
624 dbgs() << " }\n";
625 }
626 }
627
628 // Propagate the reached registers up in the phi chain.
629 //
630 // The following type of situation needs careful handling:
631 //
632 // phi d1<R1:0> (1)
633 // |
634 // ... d2<R1>
635 // |
636 // phi u3<R1:0> (2)
637 // |
638 // ... u4<R1>
639 //
640 // The phi node (2) defines a register pair R1:0, and reaches a "real"
641 // use u4 of just R1. The same phi node is also known to reach (upwards)
642 // the phi node (1). However, the use u4 is not reached by phi (1),
643 // because of the intervening definition d2 of R1. The data flow between
644 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
645 //
646 // When propagating uses up the phi chains, get the all reaching defs
647 // for a given phi use, and traverse the list until the propagated ref
648 // is covered, or until reaching the final phi. Only assume that the
649 // reference reaches the phi in the latter case.
650
651 // The operation "clearIn" can be expensive. For a given set of intervening
652 // defs, cache the result of subtracting these defs from a given register
653 // ref.
654 using RefHash = std::hash<RegisterRef>;
655 using RefEqual = std::equal_to<RegisterRef>;
656 using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
657 std::unordered_map<RegisterAggr, SubMap> Subs;
658 auto ClearIn = [](RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
659 if (Mid.empty())
660 return RR;
661 auto F = SM.find(RR);
662 if (F != SM.end())
663 return F->second;
664 RegisterRef S = Mid.clearIn(RR);
665 SM.insert({RR, S});
666 return S;
667 };
668
669 // Go over all phis.
670 for (unsigned i = 0; i < PhiUQ.size(); ++i) {
671 auto PA = DFG.addr<PhiNode *>(PhiUQ[i]);
672 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
673 RefMap &RUM = RealUseMap[PA.Id];
674
675 for (NodeAddr<UseNode *> UA : PUs) {
676 std::map<NodeId, RegisterAggr> &PUM = PhiUp[UA.Id];
677 RegisterRef UR = UA.Addr->getRegRef(DFG);
678 for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
679 bool Changed = false;
680 const RegisterAggr &MidDefs = P.second;
681 // Collect the set PropUp of uses that are reached by the current
682 // phi PA, and are not covered by any intervening def between the
683 // currently visited use UA and the upward phi P.
684
685 if (MidDefs.hasCoverOf(UR))
686 continue;
687 SubMap &SM = Subs.try_emplace(MidDefs, 1, RefHash(), RefEqual(PRI))
688 .first->second;
689
690 // General algorithm:
691 // for each (R,U) : U is use node of R, U is reached by PA
692 // if MidDefs does not cover (R,U)
693 // then add (R-MidDefs,U) to RealUseMap[P]
694 //
695 for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
696 RegisterRef R(T.first);
697 // The current phi (PA) could be a phi for a regmask. It could
698 // reach a whole variety of uses that are not related to the
699 // specific upward phi (P.first).
700 const RegisterAggr &DRs = PhiDRs.at(P.first);
701 if (!DRs.hasAliasOf(R))
702 continue;
703 R = PRI.mapTo(DRs.intersectWith(R), T.first);
704 for (std::pair<NodeId, LaneBitmask> V : T.second) {
705 LaneBitmask M = R.Mask & V.second;
706 if (M.none())
707 continue;
708 if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
709 NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
710 Changed |= RS.insert({V.first, SS.Mask}).second;
711 }
712 }
713 }
714
715 if (Changed)
716 PhiUQ.push_back(P.first);
717 }
718 }
719 }
720
721 if (Trace) {
722 dbgs() << "Real use map:\n";
723 for (auto I : RealUseMap) {
724 dbgs() << "phi " << Print(I.first, DFG);
725 NodeAddr<PhiNode *> PA = DFG.addr<PhiNode *>(I.first);
726 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
727 if (!Ds.empty()) {
728 RegisterRef RR = NodeAddr<DefNode *>(Ds[0]).Addr->getRegRef(DFG);
729 dbgs() << '<' << Print(RR, DFG) << '>';
730 } else {
731 dbgs() << "<noreg>";
732 }
733 dbgs() << " -> " << Print(I.second, DFG) << '\n';
734 }
735 }
736}
737
739 // Populate the node-to-block map. This speeds up the calculations
740 // significantly.
741 NBMap.clear();
742 for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
743 MachineBasicBlock *BB = BA.Addr->getCode();
744 for (NodeAddr<InstrNode *> IA : BA.Addr->members(DFG)) {
745 for (NodeAddr<RefNode *> RA : IA.Addr->members(DFG))
746 NBMap.insert(std::make_pair(RA.Id, BB));
747 NBMap.insert(std::make_pair(IA.Id, BB));
748 }
749 }
750
751 MachineFunction &MF = DFG.getMF();
752
753 // Compute IDF first, then the inverse.
754 decltype(IIDF) IDF;
755 for (MachineBasicBlock &B : MF) {
756 auto F1 = MDF.find(&B);
757 if (F1 == MDF.end())
758 continue;
760 for (unsigned i = 0; i < IDFB.size(); ++i) {
761 auto F2 = MDF.find(IDFB[i]);
762 if (F2 != MDF.end())
763 IDFB.insert_range(F2->second);
764 }
765 // Add B to the IDF(B). This will put B in the IIDF(B).
766 IDFB.insert(&B);
767 IDF[&B].insert(IDFB.begin(), IDFB.end());
768 }
769
770 for (auto I : IDF)
771 for (auto *S : I.second)
772 IIDF[S].insert(I.first);
773
775
776 NodeAddr<FuncNode *> FA = DFG.getFunc();
777 NodeList Blocks = FA.Addr->members(DFG);
778
779 // Build the phi live-on-entry map.
780 for (NodeAddr<BlockNode *> BA : Blocks) {
781 MachineBasicBlock *MB = BA.Addr->getCode();
782 RefMap &LON = PhiLON[MB];
783 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) {
784 for (const RefMap::value_type &S : RealUseMap[P.Id])
785 LON[S.first].insert(S.second.begin(), S.second.end());
786 }
787 }
788
789 if (Trace) {
790 dbgs() << "Phi live-on-entry map:\n";
791 for (auto &I : PhiLON)
792 dbgs() << "block #" << I.first->getNumber() << " -> "
793 << Print(I.second, DFG) << '\n';
794 }
795
796 // Build the phi live-on-exit map. Each phi node has some set of reached
797 // "real" uses. Propagate this set backwards into the block predecessors
798 // through the reaching defs of the corresponding phi uses.
799 for (NodeAddr<BlockNode *> BA : Blocks) {
800 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
801 for (NodeAddr<PhiNode *> PA : Phis) {
802 RefMap &RUs = RealUseMap[PA.Id];
803 if (RUs.empty())
804 continue;
805
806 NodeSet SeenUses;
807 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
808 if (!SeenUses.insert(U.Id).second)
809 continue;
811 if (PUA.Addr->getReachingDef() == 0)
812 continue;
813
814 // Each phi has some set (possibly empty) of reached "real" uses,
815 // that is, uses that are part of the compiled program. Such a use
816 // may be located in some farther block, but following a chain of
817 // reaching defs will eventually lead to this phi.
818 // Any chain of reaching defs may fork at a phi node, but there
819 // will be a path upwards that will lead to this phi. Now, this
820 // chain will need to fork at this phi, since some of the reached
821 // uses may have definitions joining in from multiple predecessors.
822 // For each reached "real" use, identify the set of reaching defs
823 // coming from each predecessor P, and add them to PhiLOX[P].
824 //
825 auto PrA = DFG.addr<BlockNode *>(PUA.Addr->getPredecessor());
826 RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
827
828 for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
829 // We need to visit each individual use.
830 for (std::pair<NodeId, LaneBitmask> P : RS.second) {
831 // Create a register ref corresponding to the use, and find
832 // all reaching defs starting from the phi use, and treating
833 // all related shadows as a single use cluster.
834 RegisterRef S(RS.first, P.second);
835 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
836 for (NodeAddr<DefNode *> D : Ds) {
837 // Calculate the mask corresponding to the visited def.
838 RegisterAggr TA(PRI);
839 TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
840 LaneBitmask TM = TA.makeRegRef().Mask;
841 LOX[S.Reg].insert({D.Id, TM});
842 }
843 }
844 }
845
846 for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(PA, PUA))
847 SeenUses.insert(T.Id);
848 } // for U : phi uses
849 } // for P : Phis
850 } // for B : Blocks
851
852 if (Trace) {
853 dbgs() << "Phi live-on-exit map:\n";
854 for (auto &I : PhiLOX)
855 dbgs() << "block #" << I.first->getNumber() << " -> "
856 << Print(I.second, DFG) << '\n';
857 }
858
859 RefMap LiveIn;
860 traverse(&MF.front(), LiveIn);
861
862 // Add function live-ins to the live-in set of the function entry block.
863 LiveMap[&MF.front()].insert(DFG.getLiveIns());
864
865 if (Trace) {
866 // Dump the liveness map
867 for (MachineBasicBlock &B : MF) {
868 std::vector<RegisterRef> LV;
869 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
870 LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask));
871 llvm::sort(LV, std::less<RegisterRef>(PRI));
872 dbgs() << printMBBReference(B) << "\t rec = {";
873 for (auto I : LV)
874 dbgs() << ' ' << Print(I, DFG);
875 dbgs() << " }\n";
876 // dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n';
877
878 LV.clear();
879 for (RegisterRef RR : LiveMap[&B].refs())
880 LV.push_back(RR);
881 llvm::sort(LV, std::less<RegisterRef>(PRI));
882 dbgs() << "\tcomp = {";
883 for (auto I : LV)
884 dbgs() << ' ' << Print(I, DFG);
885 dbgs() << " }\n";
886 }
887 }
888}
889
891 for (auto &B : DFG.getMF()) {
892 // Remove all live-ins.
893 std::vector<MCRegister> T;
894 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
895 T.push_back(LI.PhysReg);
896 for (auto I : T)
897 B.removeLiveIn(I);
898 // Add the newly computed live-ins.
899 const RegisterAggr &LiveIns = LiveMap[&B];
900 for (RegisterRef R : LiveIns.refs())
901 B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
902 }
903}
904
906 for (auto &B : DFG.getMF())
907 resetKills(&B);
908}
909
911 auto CopyLiveIns = [this](MachineBasicBlock *B, BitVector &LV) -> void {
912 for (auto I : B->liveins()) {
913 MCSubRegIndexIterator S(I.PhysReg, &TRI);
914 if (!S.isValid()) {
915 LV.set(I.PhysReg.id());
916 continue;
917 }
918 do {
919 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
920 if ((M & I.LaneMask).any())
921 LV.set(S.getSubReg());
922 ++S;
923 } while (S.isValid());
924 }
925 };
926
927 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
928 CopyLiveIns(B, LiveIn);
929 for (auto *SI : B->successors())
930 CopyLiveIns(SI, Live);
931
932 for (MachineInstr &MI : llvm::reverse(*B)) {
933 if (MI.isDebugInstr())
934 continue;
935
936 MI.clearKillInfo();
937 for (auto &Op : MI.all_defs()) {
938 // An implicit def of a super-register may not necessarily start a
939 // live range of it, since an implicit use could be used to keep parts
940 // of it live. Instead of analyzing the implicit operands, ignore
941 // implicit defs.
942 if (Op.isImplicit())
943 continue;
944 Register R = Op.getReg();
945 if (!R.isPhysical())
946 continue;
947 for (MCPhysReg SR : TRI.subregs_inclusive(R))
948 Live.reset(SR);
949 }
950 for (auto &Op : MI.all_uses()) {
951 if (Op.isUndef())
952 continue;
953 Register R = Op.getReg();
954 if (!R.isPhysical())
955 continue;
956 bool IsLive = false;
957 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
958 if (!Live[(*AR).id()])
959 continue;
960 IsLive = true;
961 break;
962 }
963 if (!IsLive)
964 Op.setIsKill(true);
965 for (MCPhysReg SR : TRI.subregs_inclusive(R))
966 Live.set(SR);
967 }
968 }
969}
970
971// Helper function to obtain the basic block containing the reaching def
972// of the given use.
973MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
974 auto F = NBMap.find(RN);
975 if (F != NBMap.end())
976 return F->second;
977 llvm_unreachable("Node id not in map");
978}
979
980void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
981 // The LiveIn map, for each (physical) register, contains the set of live
982 // reaching defs of that register that are live on entry to the associated
983 // block.
984
985 // The summary of the traversal algorithm:
986 //
987 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
988 // and (U \in IDF(B) or B dom U).
989 //
990 // for (C : children) {
991 // LU = {}
992 // traverse(C, LU)
993 // LiveUses += LU
994 // }
995 //
996 // LiveUses -= Defs(B);
997 // LiveUses += UpwardExposedUses(B);
998 // for (C : IIDF[B])
999 // for (U : LiveUses)
1000 // if (Rdef(U) dom C)
1001 // C.addLiveIn(U)
1002 //
1003
1004 // Go up the dominator tree (depth-first).
1005 MachineDomTreeNode *N = MDT.getNode(B);
1006 for (auto *I : *N) {
1007 RefMap L;
1008 MachineBasicBlock *SB = I->getBlock();
1009 traverse(SB, L);
1010
1011 for (auto S : L)
1012 LiveIn[S.first].insert(S.second.begin(), S.second.end());
1013 }
1014
1015 if (Trace) {
1016 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1017 << " after recursion into: {";
1018 for (auto *I : *N)
1019 dbgs() << ' ' << I->getBlock()->getNumber();
1020 dbgs() << " }\n";
1021 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1022 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1023 }
1024
1025 // Add reaching defs of phi uses that are live on exit from this block.
1026 RefMap &PUs = PhiLOX[B];
1027 for (auto &S : PUs)
1028 LiveIn[S.first].insert(S.second.begin(), S.second.end());
1029
1030 if (Trace) {
1031 dbgs() << "after LOX\n";
1032 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1033 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1034 }
1035
1036 // The LiveIn map at this point has all defs that are live-on-exit from B,
1037 // as if they were live-on-entry to B. First, we need to filter out all
1038 // defs that are present in this block. Then we will add reaching defs of
1039 // all upward-exposed uses.
1040
1041 // To filter out the defs, first make a copy of LiveIn, and then re-populate
1042 // LiveIn with the defs that should remain.
1043 RefMap LiveInCopy = LiveIn;
1044 LiveIn.clear();
1045
1046 for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1047 RegisterRef LRef(LE.first);
1048 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1049 const NodeRefSet &OldDefs = LE.second;
1050 for (NodeRef OR : OldDefs) {
1051 // R is a def node that was live-on-exit
1052 auto DA = DFG.addr<DefNode *>(OR.first);
1053 NodeAddr<InstrNode *> IA = DA.Addr->getOwner(DFG);
1054 NodeAddr<BlockNode *> BA = IA.Addr->getOwner(DFG);
1055 if (B != BA.Addr->getCode()) {
1056 // Defs from a different block need to be preserved. Defs from this
1057 // block will need to be processed further, except for phi defs, the
1058 // liveness of which is handled through the PhiLON/PhiLOX maps.
1059 NewDefs.insert(OR);
1060 continue;
1061 }
1062
1063 // Defs from this block need to stop the liveness from being
1064 // propagated upwards. This only applies to non-preserving defs,
1065 // and to the parts of the register actually covered by those defs.
1066 // (Note that phi defs should always be preserving.)
1067 RegisterAggr RRs(PRI);
1068 LRef.Mask = OR.second;
1069
1070 if (!DFG.IsPreservingDef(DA)) {
1071 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1072 // DA is a non-phi def that is live-on-exit from this block, and
1073 // that is also located in this block. LRef is a register ref
1074 // whose use this def reaches. If DA covers LRef, then no part
1075 // of LRef is exposed upwards.A
1076 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1077 continue;
1078 }
1079
1080 // DA itself was not sufficient to cover LRef. In general, it is
1081 // the last in a chain of aliased defs before the exit from this block.
1082 // There could be other defs in this block that are a part of that
1083 // chain. Check that now: accumulate the registers from these defs,
1084 // and if they all together cover LRef, it is not live-on-entry.
1085 for (NodeAddr<DefNode *> TA : getAllReachingDefs(DA)) {
1086 // DefNode -> InstrNode -> BlockNode.
1087 NodeAddr<InstrNode *> ITA = TA.Addr->getOwner(DFG);
1088 NodeAddr<BlockNode *> BTA = ITA.Addr->getOwner(DFG);
1089 // Reaching defs are ordered in the upward direction.
1090 if (BTA.Addr->getCode() != B) {
1091 // We have reached past the beginning of B, and the accumulated
1092 // registers are not covering LRef. The first def from the
1093 // upward chain will be live.
1094 // Subtract all accumulated defs (RRs) from LRef.
1095 RegisterRef T = RRs.clearIn(LRef);
1096 assert(T);
1097 NewDefs.insert({TA.Id, T.Mask});
1098 break;
1099 }
1100
1101 // TA is in B. Only add this def to the accumulated cover if it is
1102 // not preserving.
1103 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1104 RRs.insert(TA.Addr->getRegRef(DFG));
1105 // If this is enough to cover LRef, then stop.
1106 if (RRs.hasCoverOf(LRef))
1107 break;
1108 }
1109 }
1110 }
1111
1112 emptify(LiveIn);
1113
1114 if (Trace) {
1115 dbgs() << "after defs in block\n";
1116 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1117 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1118 }
1119
1120 // Scan the block for upward-exposed uses and add them to the tracking set.
1121 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1122 NodeAddr<InstrNode *> IA = I;
1123 if (IA.Addr->getKind() != NodeAttrs::Stmt)
1124 continue;
1125 for (NodeAddr<UseNode *> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1126 if (UA.Addr->getFlags() & NodeAttrs::Undef)
1127 continue;
1128 RegisterRef RR = UA.Addr->getRegRef(DFG);
1129 for (NodeAddr<DefNode *> D : getAllReachingDefs(UA))
1130 if (getBlockWithRef(D.Id) != B)
1131 LiveIn[RR.Reg].insert({D.Id, RR.Mask});
1132 }
1133 }
1134
1135 if (Trace) {
1136 dbgs() << "after uses in block\n";
1137 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1138 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n';
1139 }
1140
1141 // Phi uses should not be propagated up the dominator tree, since they
1142 // are not dominated by their corresponding reaching defs.
1143 RegisterAggr &Local = LiveMap[B];
1144 RefMap &LON = PhiLON[B];
1145 for (auto &R : LON) {
1146 LaneBitmask M;
1147 for (auto P : R.second)
1148 M |= P.second;
1149 Local.insert(RegisterRef(R.first, M));
1150 }
1151
1152 if (Trace) {
1153 dbgs() << "after phi uses in block\n";
1154 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n';
1155 dbgs() << " Local: " << Print(Local, DFG) << '\n';
1156 }
1157
1158 for (auto *C : IIDF[B]) {
1159 RegisterAggr &LiveC = LiveMap[C];
1160 for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1161 for (auto R : S.second)
1162 if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1163 LiveC.insert(RegisterRef(S.first, R.second));
1164 }
1165}
1166
1167void Liveness::emptify(RefMap &M) {
1168 for (auto I = M.begin(), E = M.end(); I != E;)
1169 I = I->second.empty() ? M.erase(I) : std::next(I);
1170}
1171
1172} // namespace llvm::rdf
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file defines the DenseMap class.
IRTranslator LLVM IR MI
A common definition of LaneBitmask for use in TableGen and CodeGen.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define T
#define P(N)
static cl::opt< unsigned > MaxRecNest("rdf-liveness-max-rec", cl::init(25), cl::Hidden, cl::desc("Maximum recursion level"))
Remove Loads Into Fake Uses
bool IsDead
SI optimize exec mask operations pre RA
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallSet class.
BitVector & reset()
Definition BitVector.h:392
BitVector & set()
Definition BitVector.h:351
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:165
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:214
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
MCRegAliasIterator enumerates all registers aliasing Reg.
Iterator that enumerates the sub-registers of a Reg and the associated sub-register indices.
bool isValid() const
Returns true if this iterator is not yet at the end.
unsigned getSubRegIndex() const
Returns sub-register index of the current sub-register.
MCRegister getSubReg() const
Returns current sub-register.
const MachineBasicBlock & front() const
void insert(iterator MBBI, MachineBasicBlock *MBB)
Representation of each machine instruction.
const MachineBasicBlock * getParent() const
bool insert(SUnit *SU)
Wrapper class representing virtual and physical registers.
Definition Register.h:19
A vector that has set insertion semantics.
Definition SetVector.h:59
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
void insert_range(Range &&R)
Definition SetVector.h:193
iterator end()
Get an iterator to the end of the SetVector.
Definition SetVector.h:119
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition SetVector.h:109
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition SmallSet.h:175
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:181
self_iterator getIterator()
Definition ilist_node.h:130
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
initializer< Ty > init(const Ty &Val)
NodeAddr< BlockNode * > Block
Definition RDFGraph.h:392
Print(const T &, const DataFlowGraph &) -> Print< T >
uint32_t NodeId
Definition RDFGraph.h:262
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
raw_ostream & operator<<(raw_ostream &OS, const Print< RegisterRef > &P)
Definition RDFGraph.cpp:44
std::set< NodeId > NodeSet
Definition RDFGraph.h:551
SmallVector< Node, 4 > NodeList
Definition RDFGraph.h:550
This is an optimization pass for GlobalISel generic memory operations.
constexpr from_range_t from_range
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
DomTreeNodeBase< MachineBasicBlock > MachineDomTreeNode
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
DWARFExpression::Operation Op
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2100
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
#define N
Pair of physical register and lane mask.
NodeAddr< T > addr(NodeId N) const
Definition RDFGraph.h:689
NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr< RefNode * > RefA, bool TopShadows, bool FullChain, const RegisterAggr &DefRRs)
std::unordered_set< NodeRef > NodeRefSet
Definition RDFLiveness.h:59
NodeAddr< RefNode * > getNearestAliasedRef(RegisterRef RefRR, NodeAddr< InstrNode * > IA)
Find the nearest ref node aliased to RefRR, going upwards in the data flow, starting from the instruc...
detail::NodeRef NodeRef
Definition RDFLiveness.h:58
std::pair< NodeSet, bool > getAllReachingDefsRec(RegisterRef RefRR, NodeAddr< RefNode * > RefA, NodeSet &Visited, const NodeSet &Defs)
std::unordered_map< RegisterId, NodeRefSet > RefMap
Definition RDFLiveness.h:60
NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr< DefNode * > DefA, const RegisterAggr &DefRRs)
NodeId getSibling() const
Definition RDFGraph.h:569
iterator_range< ref_iterator > refs() const
RegisterAggr & insert(RegisterRef RR)
RegisterRef clearIn(RegisterRef RR) const
bool hasAliasOf(RegisterRef RR) const
RegisterRef intersectWith(RegisterRef RR) const
bool hasCoverOf(RegisterRef RR) const
static bool isCoverOf(RegisterRef RA, RegisterRef RB, const PhysicalRegisterInfo &PRI)