Thanks to visit codestin.com
Credit goes to llvm.org

LLVM 22.0.0git
RuntimeDyldELF.cpp
Go to the documentation of this file.
1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RuntimeDyldELF.h"
15#include "llvm/ADT/StringRef.h"
20#include "llvm/Support/Endian.h"
23
24using namespace llvm;
25using namespace llvm::object;
26using namespace llvm::support::endian;
27
28#define DEBUG_TYPE "dyld"
29
30static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
31
32static void or32AArch64Imm(void *L, uint64_t Imm) {
33 or32le(L, (Imm & 0xFFF) << 10);
34}
35
36template <class T> static void write(bool isBE, void *P, T V) {
39}
40
41static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
46}
47
48// Return the bits [Start, End] from Val shifted Start bits.
49// For instance, getBits(0xF0, 4, 8) returns 0xF.
50static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
53}
54
55namespace {
56
57template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59
60 typedef typename ELFT::uint addr_type;
61
62 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
63
64public:
65 static Expected<std::unique_ptr<DyldELFObject>>
66 create(MemoryBufferRef Wrapper);
67
68 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
69
70 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
71
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary *v) {
74 return (isa<ELFObjectFile<ELFT>>(v) &&
75 classof(cast<ELFObjectFile<ELFT>>(v)));
76 }
77 static bool classof(const ELFObjectFile<ELFT> *v) {
78 return v->isDyldType();
79 }
80};
81
82
83
84// The MemoryBuffer passed into this constructor is just a wrapper around the
85// actual memory. Ultimately, the Binary parent class will take ownership of
86// this MemoryBuffer object but not the underlying memory.
87template <class ELFT>
88DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89 : ELFObjectFile<ELFT>(std::move(Obj)) {
90 this->isDyldELFObject = true;
91}
92
93template <class ELFT>
95DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
97 if (auto E = Obj.takeError())
98 return std::move(E);
99 std::unique_ptr<DyldELFObject<ELFT>> Ret(
100 new DyldELFObject<ELFT>(std::move(*Obj)));
101 return std::move(Ret);
102}
103
104template <class ELFT>
105void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106 uint64_t Addr) {
107 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108 Elf_Shdr *shdr =
109 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
110
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr->sh_addr = static_cast<addr_type>(Addr);
114}
115
116template <class ELFT>
117void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118 uint64_t Addr) {
119
120 Elf_Sym *sym = const_cast<Elf_Sym *>(
122
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym->st_value = static_cast<addr_type>(Addr);
126}
127
128class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130 RuntimeDyld::LoadedObjectInfo> {
131public:
132 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
134
135 OwningBinary<ObjectFile>
136 getObjectForDebug(const ObjectFile &Obj) const override;
137};
138
139template <typename ELFT>
141createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142 const LoadedELFObjectInfo &L) {
143 typedef typename ELFT::Shdr Elf_Shdr;
144 typedef typename ELFT::uint addr_type;
145
147 DyldELFObject<ELFT>::create(Buffer);
148 if (Error E = ObjOrErr.takeError())
149 return std::move(E);
150
151 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
152
153 // Iterate over all sections in the object.
154 auto SI = SourceObject.section_begin();
155 for (const auto &Sec : Obj->sections()) {
156 Expected<StringRef> NameOrErr = Sec.getName();
157 if (!NameOrErr) {
158 consumeError(NameOrErr.takeError());
159 continue;
160 }
161
162 if (*NameOrErr != "") {
163 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
166
167 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
171 }
172 }
173 ++SI;
174 }
175
176 return std::move(Obj);
177}
178
180createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181 assert(Obj.isELF() && "Not an ELF object file.");
182
183 std::unique_ptr<MemoryBuffer> Buffer =
185
186 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187 handleAllErrors(DebugObj.takeError());
188 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189 DebugObj =
190 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200 else
201 llvm_unreachable("Unexpected ELF format");
202
203 handleAllErrors(DebugObj.takeError());
204 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
205}
206
208LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209 return createELFDebugObject(Obj, *this);
210}
211
212} // anonymous namespace
213
214namespace llvm {
215
220
222 for (SID EHFrameSID : UnregisteredEHFrameSections) {
223 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
224 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
225 size_t EHFrameSize = Sections[EHFrameSID].getSize();
226 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
227 }
228 UnregisteredEHFrameSections.clear();
229}
230
231std::unique_ptr<RuntimeDyldELF>
235 switch (Arch) {
236 default:
237 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
238 case Triple::mips:
239 case Triple::mipsel:
240 case Triple::mips64:
241 case Triple::mips64el:
242 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
243 }
244}
245
246std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
249 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
250 else {
251 HasError = true;
252 raw_string_ostream ErrStream(ErrorStr);
253 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
254 return nullptr;
255 }
256}
257
258void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260 uint32_t Type, int64_t Addend,
261 uint64_t SymOffset) {
262 switch (Type) {
263 default:
264 report_fatal_error("Relocation type not implemented yet!");
265 break;
266 case ELF::R_X86_64_NONE:
267 break;
268 case ELF::R_X86_64_8: {
269 Value += Addend;
270 assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
271 uint8_t TruncatedAddr = (Value & 0xFF);
272 *Section.getAddressWithOffset(Offset) = TruncatedAddr;
273 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
274 << format("%p\n", Section.getAddressWithOffset(Offset)));
275 break;
276 }
277 case ELF::R_X86_64_16: {
278 Value += Addend;
279 assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
280 uint16_t TruncatedAddr = (Value & 0xFFFF);
281 support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
282 TruncatedAddr;
283 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
284 << format("%p\n", Section.getAddressWithOffset(Offset)));
285 break;
286 }
287 case ELF::R_X86_64_64: {
288 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
289 Value + Addend;
290 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
291 << format("%p\n", Section.getAddressWithOffset(Offset)));
292 break;
293 }
294 case ELF::R_X86_64_32:
295 case ELF::R_X86_64_32S: {
296 Value += Addend;
297 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
298 (Type == ELF::R_X86_64_32S &&
299 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
300 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
301 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
302 TruncatedAddr;
303 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
304 << format("%p\n", Section.getAddressWithOffset(Offset)));
305 break;
306 }
307 case ELF::R_X86_64_PC8: {
308 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
309 int64_t RealOffset = Value + Addend - FinalAddress;
310 assert(isInt<8>(RealOffset));
311 int8_t TruncOffset = (RealOffset & 0xFF);
312 Section.getAddress()[Offset] = TruncOffset;
313 break;
314 }
315 case ELF::R_X86_64_PC32: {
316 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
317 int64_t RealOffset = Value + Addend - FinalAddress;
318 assert(isInt<32>(RealOffset));
319 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
320 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
321 TruncOffset;
322 break;
323 }
324 case ELF::R_X86_64_PC64: {
325 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
326 int64_t RealOffset = Value + Addend - FinalAddress;
327 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
328 RealOffset;
329 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
330 << format("%p\n", FinalAddress));
331 break;
332 }
333 case ELF::R_X86_64_GOTOFF64: {
334 // Compute Value - GOTBase.
335 uint64_t GOTBase = 0;
336 for (const auto &Section : Sections) {
337 if (Section.getName() == ".got") {
338 GOTBase = Section.getLoadAddressWithOffset(0);
339 break;
340 }
341 }
342 assert(GOTBase != 0 && "missing GOT");
343 int64_t GOTOffset = Value - GOTBase + Addend;
344 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
345 break;
346 }
347 case ELF::R_X86_64_DTPMOD64: {
348 // We only have one DSO, so the module id is always 1.
349 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
350 break;
351 }
352 case ELF::R_X86_64_DTPOFF64:
353 case ELF::R_X86_64_TPOFF64: {
354 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
355 // offset in the *initial* TLS block. Since we are statically linking, all
356 // TLS blocks already exist in the initial block, so resolve both
357 // relocations equally.
358 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
359 Value + Addend;
360 break;
361 }
362 case ELF::R_X86_64_DTPOFF32:
363 case ELF::R_X86_64_TPOFF32: {
364 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
365 // be resolved equally.
366 int64_t RealValue = Value + Addend;
367 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
368 int32_t TruncValue = RealValue;
369 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
370 TruncValue;
371 break;
372 }
373 }
374}
375
376void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
377 uint64_t Offset, uint32_t Value,
378 uint32_t Type, int32_t Addend) {
379 switch (Type) {
380 case ELF::R_386_32: {
381 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
382 Value + Addend;
383 break;
384 }
385 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
386 // reach any 32 bit address.
387 case ELF::R_386_PLT32:
388 case ELF::R_386_PC32: {
389 uint32_t FinalAddress =
390 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
391 uint32_t RealOffset = Value + Addend - FinalAddress;
392 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
393 RealOffset;
394 break;
395 }
396 default:
397 // There are other relocation types, but it appears these are the
398 // only ones currently used by the LLVM ELF object writer
399 report_fatal_error("Relocation type not implemented yet!");
400 break;
401 }
402}
403
404void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
405 uint64_t Offset, uint64_t Value,
406 uint32_t Type, int64_t Addend) {
407 uint32_t *TargetPtr =
408 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
409 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
410 // Data should use target endian. Code should always use little endian.
411 bool isBE = Arch == Triple::aarch64_be;
412
413 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
414 << format("%llx", Section.getAddressWithOffset(Offset))
415 << " FinalAddress: 0x" << format("%llx", FinalAddress)
416 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
417 << format("%x", Type) << " Addend: 0x"
418 << format("%llx", Addend) << "\n");
419
420 switch (Type) {
421 default:
422 report_fatal_error("Relocation type not implemented yet!");
423 break;
424 case ELF::R_AARCH64_NONE:
425 break;
426 case ELF::R_AARCH64_ABS16: {
427 uint64_t Result = Value + Addend;
428 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
429 (Result >> 16) == 0);
430 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
431 break;
432 }
433 case ELF::R_AARCH64_ABS32: {
434 uint64_t Result = Value + Addend;
435 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
436 (Result >> 32) == 0);
437 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
438 break;
439 }
440 case ELF::R_AARCH64_ABS64:
441 write(isBE, TargetPtr, Value + Addend);
442 break;
443 case ELF::R_AARCH64_PLT32: {
444 uint64_t Result = Value + Addend - FinalAddress;
445 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
446 static_cast<int64_t>(Result) <= INT32_MAX);
447 write(isBE, TargetPtr, static_cast<uint32_t>(Result));
448 break;
449 }
450 case ELF::R_AARCH64_PREL16: {
451 uint64_t Result = Value + Addend - FinalAddress;
452 assert(static_cast<int64_t>(Result) >= INT16_MIN &&
453 static_cast<int64_t>(Result) <= UINT16_MAX);
454 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
455 break;
456 }
457 case ELF::R_AARCH64_PREL32: {
458 uint64_t Result = Value + Addend - FinalAddress;
459 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
460 static_cast<int64_t>(Result) <= UINT32_MAX);
461 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
462 break;
463 }
464 case ELF::R_AARCH64_PREL64:
465 write(isBE, TargetPtr, Value + Addend - FinalAddress);
466 break;
467 case ELF::R_AARCH64_CONDBR19: {
468 uint64_t BranchImm = Value + Addend - FinalAddress;
469
470 assert(isInt<21>(BranchImm));
471 *TargetPtr &= 0xff00001fU;
472 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
473 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
474 break;
475 }
476 case ELF::R_AARCH64_TSTBR14: {
477 uint64_t BranchImm = Value + Addend - FinalAddress;
478
479 assert(isInt<16>(BranchImm));
480
481 uint32_t RawInstr = *(support::little32_t *)TargetPtr;
482 *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
483
484 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
485 or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
486 break;
487 }
488 case ELF::R_AARCH64_CALL26: // fallthrough
489 case ELF::R_AARCH64_JUMP26: {
490 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
491 // calculation.
492 uint64_t BranchImm = Value + Addend - FinalAddress;
493
494 // "Check that -2^27 <= result < 2^27".
495 assert(isInt<28>(BranchImm));
496 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
497 break;
498 }
499 case ELF::R_AARCH64_MOVW_UABS_G3:
500 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
501 break;
502 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
503 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
504 break;
505 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
506 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
507 break;
508 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
509 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
510 break;
511 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
512 // Operation: Page(S+A) - Page(P)
513 uint64_t Result =
514 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
515
516 // Check that -2^32 <= X < 2^32
517 assert(isInt<33>(Result) && "overflow check failed for relocation");
518
519 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
520 // from bits 32:12 of X.
521 write32AArch64Addr(TargetPtr, Result >> 12);
522 break;
523 }
524 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
525 // Operation: S + A
526 // Immediate goes in bits 21:10 of LD/ST instruction, taken
527 // from bits 11:0 of X
528 or32AArch64Imm(TargetPtr, Value + Addend);
529 break;
530 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
531 // Operation: S + A
532 // Immediate goes in bits 21:10 of LD/ST instruction, taken
533 // from bits 11:0 of X
534 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
535 break;
536 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
537 // Operation: S + A
538 // Immediate goes in bits 21:10 of LD/ST instruction, taken
539 // from bits 11:1 of X
540 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
541 break;
542 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
543 // Operation: S + A
544 // Immediate goes in bits 21:10 of LD/ST instruction, taken
545 // from bits 11:2 of X
546 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
547 break;
548 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
549 // Operation: S + A
550 // Immediate goes in bits 21:10 of LD/ST instruction, taken
551 // from bits 11:3 of X
552 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
553 break;
554 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
555 // Operation: S + A
556 // Immediate goes in bits 21:10 of LD/ST instruction, taken
557 // from bits 11:4 of X
558 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
559 break;
560 case ELF::R_AARCH64_LD_PREL_LO19: {
561 // Operation: S + A - P
562 uint64_t Result = Value + Addend - FinalAddress;
563
564 // "Check that -2^20 <= result < 2^20".
565 assert(isInt<21>(Result));
566
567 *TargetPtr &= 0xff00001fU;
568 // Immediate goes in bits 23:5 of LD imm instruction, taken
569 // from bits 20:2 of X
570 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
571 break;
572 }
573 case ELF::R_AARCH64_ADR_PREL_LO21: {
574 // Operation: S + A - P
575 uint64_t Result = Value + Addend - FinalAddress;
576
577 // "Check that -2^20 <= result < 2^20".
578 assert(isInt<21>(Result));
579
580 *TargetPtr &= 0x9f00001fU;
581 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
582 // from bits 20:0 of X
583 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
584 *TargetPtr |= (Result & 0x3) << 29;
585 break;
586 }
587 }
588}
589
590void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
591 uint64_t Offset, uint32_t Value,
592 uint32_t Type, int32_t Addend) {
593 // TODO: Add Thumb relocations.
594 uint32_t *TargetPtr =
595 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
596 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
597 Value += Addend;
598
599 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
600 << Section.getAddressWithOffset(Offset)
601 << " FinalAddress: " << format("%p", FinalAddress)
602 << " Value: " << format("%x", Value)
603 << " Type: " << format("%x", Type)
604 << " Addend: " << format("%x", Addend) << "\n");
605
606 switch (Type) {
607 default:
608 llvm_unreachable("Not implemented relocation type!");
609
610 case ELF::R_ARM_NONE:
611 break;
612 // Write a 31bit signed offset
613 case ELF::R_ARM_PREL31:
614 support::ulittle32_t::ref{TargetPtr} =
615 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
616 ((Value - FinalAddress) & ~0x80000000);
617 break;
618 case ELF::R_ARM_TARGET1:
619 case ELF::R_ARM_ABS32:
620 support::ulittle32_t::ref{TargetPtr} = Value;
621 break;
622 // Write first 16 bit of 32 bit value to the mov instruction.
623 // Last 4 bit should be shifted.
624 case ELF::R_ARM_MOVW_ABS_NC:
625 case ELF::R_ARM_MOVT_ABS:
626 if (Type == ELF::R_ARM_MOVW_ABS_NC)
627 Value = Value & 0xFFFF;
628 else if (Type == ELF::R_ARM_MOVT_ABS)
629 Value = (Value >> 16) & 0xFFFF;
630 support::ulittle32_t::ref{TargetPtr} =
631 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
632 (((Value >> 12) & 0xF) << 16);
633 break;
634 // Write 24 bit relative value to the branch instruction.
635 case ELF::R_ARM_PC24: // Fall through.
636 case ELF::R_ARM_CALL: // Fall through.
637 case ELF::R_ARM_JUMP24:
638 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
639 RelValue = (RelValue & 0x03FFFFFC) >> 2;
640 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
641 support::ulittle32_t::ref{TargetPtr} =
642 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
643 break;
644 }
645}
646
647bool RuntimeDyldELF::resolveLoongArch64ShortBranch(
648 unsigned SectionID, relocation_iterator RelI,
649 const RelocationValueRef &Value) {
650 uint64_t Address;
651 if (Value.SymbolName) {
652 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
653 // Don't create direct branch for external symbols.
654 if (Loc == GlobalSymbolTable.end())
655 return false;
656 const auto &SymInfo = Loc->second;
657 Address = Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
658 SymInfo.getOffset());
659 } else {
660 Address = Sections[Value.SectionID].getLoadAddress();
661 }
662 uint64_t Offset = RelI->getOffset();
663 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
664 uint64_t Delta = Address + Value.Addend - SourceAddress;
665 // Normal call
666 if (RelI->getType() == ELF::R_LARCH_B26) {
667 if (!isInt<28>(Delta))
668 return false;
669 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
670 Value.Addend);
671 return true;
672 }
673 // Medium call: R_LARCH_CALL36
674 // Range: [-128G - 0x20000, +128G - 0x20000)
675 if (((int64_t)Delta + 0x20000) != llvm::SignExtend64(Delta + 0x20000, 38))
676 return false;
677 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
678 Value.Addend);
679 return true;
680}
681
682void RuntimeDyldELF::resolveLoongArch64Branch(unsigned SectionID,
685 StubMap &Stubs) {
686 LLVM_DEBUG(dbgs() << "\t\tThis is an LoongArch64 branch relocation.\n");
687
688 if (resolveLoongArch64ShortBranch(SectionID, RelI, Value))
689 return;
690
691 SectionEntry &Section = Sections[SectionID];
692 uint64_t Offset = RelI->getOffset();
693 unsigned RelType = RelI->getType();
694 // Look for an existing stub.
695 auto [It, Inserted] = Stubs.try_emplace(Value);
696 if (!Inserted) {
697 resolveRelocation(Section, Offset,
698 (uint64_t)Section.getAddressWithOffset(It->second),
699 RelType, 0);
700 LLVM_DEBUG(dbgs() << " Stub function found\n");
701 return;
702 }
703 // Create a new stub function.
704 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
705 It->second = Section.getStubOffset();
706 uint8_t *StubTargetAddr =
707 createStubFunction(Section.getAddressWithOffset(Section.getStubOffset()));
708 RelocationEntry LU12I_W(SectionID, StubTargetAddr - Section.getAddress(),
709 ELF::R_LARCH_ABS_HI20, Value.Addend);
710 RelocationEntry ORI(SectionID, StubTargetAddr - Section.getAddress() + 4,
711 ELF::R_LARCH_ABS_LO12, Value.Addend);
712 RelocationEntry LU32I_D(SectionID, StubTargetAddr - Section.getAddress() + 8,
713 ELF::R_LARCH_ABS64_LO20, Value.Addend);
714 RelocationEntry LU52I_D(SectionID, StubTargetAddr - Section.getAddress() + 12,
715 ELF::R_LARCH_ABS64_HI12, Value.Addend);
716 if (Value.SymbolName) {
717 addRelocationForSymbol(LU12I_W, Value.SymbolName);
718 addRelocationForSymbol(ORI, Value.SymbolName);
719 addRelocationForSymbol(LU32I_D, Value.SymbolName);
720 addRelocationForSymbol(LU52I_D, Value.SymbolName);
721 } else {
722 addRelocationForSection(LU12I_W, Value.SectionID);
723 addRelocationForSection(ORI, Value.SectionID);
724 addRelocationForSection(LU32I_D, Value.SectionID);
725
726 addRelocationForSection(LU52I_D, Value.SectionID);
727 }
728 resolveRelocation(Section, Offset,
729 reinterpret_cast<uint64_t>(
730 Section.getAddressWithOffset(Section.getStubOffset())),
731 RelType, 0);
732 Section.advanceStubOffset(getMaxStubSize());
733}
734
735// Returns extract bits Val[Hi:Lo].
737 return Hi == 63 ? Val >> Lo : (Val & (((1ULL << (Hi + 1)) - 1))) >> Lo;
738}
739
740// Calculate the adjusted page delta between dest and PC. The code is copied
741// from lld and see comments there for more details.
743 uint32_t type) {
744 uint64_t pcalau12i_pc;
745 switch (type) {
746 case ELF::R_LARCH_PCALA64_LO20:
747 case ELF::R_LARCH_GOT64_PC_LO20:
748 pcalau12i_pc = pc - 8;
749 break;
750 case ELF::R_LARCH_PCALA64_HI12:
751 case ELF::R_LARCH_GOT64_PC_HI12:
752 pcalau12i_pc = pc - 12;
753 break;
754 default:
755 pcalau12i_pc = pc;
756 break;
757 }
758 uint64_t result = (dest & ~0xfffULL) - (pcalau12i_pc & ~0xfffULL);
759 if (dest & 0x800)
760 result += 0x1000 - 0x1'0000'0000;
761 if (result & 0x8000'0000)
762 result += 0x1'0000'0000;
763 return result;
764}
765
766void RuntimeDyldELF::resolveLoongArch64Relocation(const SectionEntry &Section,
769 int64_t Addend) {
770 auto *TargetPtr = Section.getAddressWithOffset(Offset);
771 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
772
773 LLVM_DEBUG(dbgs() << "resolveLoongArch64Relocation, LocalAddress: 0x"
774 << format("%llx", Section.getAddressWithOffset(Offset))
775 << " FinalAddress: 0x" << format("%llx", FinalAddress)
776 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
777 << format("%x", Type) << " Addend: 0x"
778 << format("%llx", Addend) << "\n");
779
780 switch (Type) {
781 default:
782 report_fatal_error("Relocation type not implemented yet!");
783 break;
784 case ELF::R_LARCH_MARK_LA:
785 // ignore
786 break;
787 case ELF::R_LARCH_32:
788 support::ulittle32_t::ref{TargetPtr} =
789 static_cast<uint32_t>(Value + Addend);
790 break;
791 case ELF::R_LARCH_64:
792 support::ulittle64_t::ref{TargetPtr} = Value + Addend;
793 break;
794 case ELF::R_LARCH_32_PCREL:
795 support::ulittle32_t::ref{TargetPtr} =
796 static_cast<uint32_t>(Value + Addend - FinalAddress);
797 break;
798 case ELF::R_LARCH_B26: {
799 uint64_t B26 = (Value + Addend - FinalAddress) >> 2;
800 auto Instr = support::ulittle32_t::ref(TargetPtr);
801 uint32_t Imm15_0 = extractBits(B26, /*Hi=*/15, /*Lo=*/0) << 10;
802 uint32_t Imm25_16 = extractBits(B26, /*Hi=*/25, /*Lo=*/16);
803 Instr = (Instr & 0xfc000000) | Imm15_0 | Imm25_16;
804 break;
805 }
806 case ELF::R_LARCH_CALL36: {
807 uint64_t Call36 = (Value + Addend - FinalAddress) >> 2;
808 auto Pcaddu18i = support::ulittle32_t::ref(TargetPtr);
809 uint32_t Imm35_16 =
810 extractBits((Call36 + (1UL << 15)), /*Hi=*/35, /*Lo=*/16) << 5;
811 Pcaddu18i = (Pcaddu18i & 0xfe00001f) | Imm35_16;
812 auto Jirl = support::ulittle32_t::ref(TargetPtr + 4);
813 uint32_t Imm15_0 = extractBits(Call36, /*Hi=*/15, /*Lo=*/0) << 10;
814 Jirl = (Jirl & 0xfc0003ff) | Imm15_0;
815 break;
816 }
817 case ELF::R_LARCH_GOT_PC_HI20:
818 case ELF::R_LARCH_PCALA_HI20: {
819 uint64_t Target = Value + Addend;
820 int64_t PageDelta = getLoongArchPageDelta(Target, FinalAddress, Type);
821 auto Instr = support::ulittle32_t::ref(TargetPtr);
822 uint32_t Imm31_12 = extractBits(PageDelta, /*Hi=*/31, /*Lo=*/12) << 5;
823 Instr = (Instr & 0xfe00001f) | Imm31_12;
824 break;
825 }
826 case ELF::R_LARCH_GOT_PC_LO12:
827 case ELF::R_LARCH_PCALA_LO12: {
828 uint64_t TargetOffset = (Value + Addend) & 0xfff;
829 auto Instr = support::ulittle32_t::ref(TargetPtr);
830 uint32_t Imm11_0 = TargetOffset << 10;
831 Instr = (Instr & 0xffc003ff) | Imm11_0;
832 break;
833 }
834 case ELF::R_LARCH_GOT64_PC_LO20:
835 case ELF::R_LARCH_PCALA64_LO20: {
836 uint64_t Target = Value + Addend;
837 int64_t PageDelta = getLoongArchPageDelta(Target, FinalAddress, Type);
838 auto Instr = support::ulittle32_t::ref(TargetPtr);
839 uint32_t Imm51_32 = extractBits(PageDelta, /*Hi=*/51, /*Lo=*/32) << 5;
840 Instr = (Instr & 0xfe00001f) | Imm51_32;
841 break;
842 }
843 case ELF::R_LARCH_GOT64_PC_HI12:
844 case ELF::R_LARCH_PCALA64_HI12: {
845 uint64_t Target = Value + Addend;
846 int64_t PageDelta = getLoongArchPageDelta(Target, FinalAddress, Type);
847 auto Instr = support::ulittle32_t::ref(TargetPtr);
848 uint32_t Imm63_52 = extractBits(PageDelta, /*Hi=*/63, /*Lo=*/52) << 10;
849 Instr = (Instr & 0xffc003ff) | Imm63_52;
850 break;
851 }
852 case ELF::R_LARCH_ABS_HI20: {
853 uint64_t Target = Value + Addend;
854 auto Instr = support::ulittle32_t::ref(TargetPtr);
855 uint32_t Imm31_12 = extractBits(Target, /*Hi=*/31, /*Lo=*/12) << 5;
856 Instr = (Instr & 0xfe00001f) | Imm31_12;
857 break;
858 }
859 case ELF::R_LARCH_ABS_LO12: {
860 uint64_t Target = Value + Addend;
861 auto Instr = support::ulittle32_t::ref(TargetPtr);
862 uint32_t Imm11_0 = extractBits(Target, /*Hi=*/11, /*Lo=*/0) << 10;
863 Instr = (Instr & 0xffc003ff) | Imm11_0;
864 break;
865 }
866 case ELF::R_LARCH_ABS64_LO20: {
867 uint64_t Target = Value + Addend;
868 auto Instr = support::ulittle32_t::ref(TargetPtr);
869 uint32_t Imm51_32 = extractBits(Target, /*Hi=*/51, /*Lo=*/32) << 5;
870 Instr = (Instr & 0xfe00001f) | Imm51_32;
871 break;
872 }
873 case ELF::R_LARCH_ABS64_HI12: {
874 uint64_t Target = Value + Addend;
875 auto Instr = support::ulittle32_t::ref(TargetPtr);
876 uint32_t Imm63_52 = extractBits(Target, /*Hi=*/63, /*Lo=*/52) << 10;
877 Instr = (Instr & 0xffc003ff) | Imm63_52;
878 break;
879 }
880 case ELF::R_LARCH_ADD32:
881 support::ulittle32_t::ref{TargetPtr} =
882 (support::ulittle32_t::ref{TargetPtr} +
883 static_cast<uint32_t>(Value + Addend));
884 break;
885 case ELF::R_LARCH_SUB32:
886 support::ulittle32_t::ref{TargetPtr} =
887 (support::ulittle32_t::ref{TargetPtr} -
888 static_cast<uint32_t>(Value + Addend));
889 break;
890 case ELF::R_LARCH_ADD64:
891 support::ulittle64_t::ref{TargetPtr} =
892 (support::ulittle64_t::ref{TargetPtr} + Value + Addend);
893 break;
894 case ELF::R_LARCH_SUB64:
895 support::ulittle64_t::ref{TargetPtr} =
896 (support::ulittle64_t::ref{TargetPtr} - Value - Addend);
897 break;
898 }
899}
900
901void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
902 if (Arch == Triple::UnknownArch ||
903 Triple::getArchTypePrefix(Arch) != "mips") {
904 IsMipsO32ABI = false;
905 IsMipsN32ABI = false;
906 IsMipsN64ABI = false;
907 return;
908 }
909 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
910 unsigned AbiVariant = E->getPlatformFlags();
911 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
912 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
913 }
914 IsMipsN64ABI = Obj.getFileFormatName() == "elf64-mips";
915}
916
917// Return the .TOC. section and offset.
918Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
919 ObjSectionToIDMap &LocalSections,
920 RelocationValueRef &Rel) {
921 // Set a default SectionID in case we do not find a TOC section below.
922 // This may happen for references to TOC base base (sym@toc, .odp
923 // relocation) without a .toc directive. In this case just use the
924 // first section (which is usually the .odp) since the code won't
925 // reference the .toc base directly.
926 Rel.SymbolName = nullptr;
927 Rel.SectionID = 0;
928
929 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
930 // order. The TOC starts where the first of these sections starts.
931 for (auto &Section : Obj.sections()) {
932 Expected<StringRef> NameOrErr = Section.getName();
933 if (!NameOrErr)
934 return NameOrErr.takeError();
935 StringRef SectionName = *NameOrErr;
936
937 if (SectionName == ".got"
938 || SectionName == ".toc"
939 || SectionName == ".tocbss"
940 || SectionName == ".plt") {
941 if (auto SectionIDOrErr =
942 findOrEmitSection(Obj, Section, false, LocalSections))
943 Rel.SectionID = *SectionIDOrErr;
944 else
945 return SectionIDOrErr.takeError();
946 break;
947 }
948 }
949
950 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
951 // thus permitting a full 64 Kbytes segment.
952 Rel.Addend = 0x8000;
953
954 return Error::success();
955}
956
957// Returns the sections and offset associated with the ODP entry referenced
958// by Symbol.
959Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
960 ObjSectionToIDMap &LocalSections,
961 RelocationValueRef &Rel) {
962 // Get the ELF symbol value (st_value) to compare with Relocation offset in
963 // .opd entries
964 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
965 si != se; ++si) {
966
967 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
968 if (!RelSecOrErr)
969 report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
970
971 section_iterator RelSecI = *RelSecOrErr;
972 if (RelSecI == Obj.section_end())
973 continue;
974
975 Expected<StringRef> NameOrErr = RelSecI->getName();
976 if (!NameOrErr)
977 return NameOrErr.takeError();
978 StringRef RelSectionName = *NameOrErr;
979
980 if (RelSectionName != ".opd")
981 continue;
982
983 for (elf_relocation_iterator i = si->relocation_begin(),
984 e = si->relocation_end();
985 i != e;) {
986 // The R_PPC64_ADDR64 relocation indicates the first field
987 // of a .opd entry
988 uint64_t TypeFunc = i->getType();
989 if (TypeFunc != ELF::R_PPC64_ADDR64) {
990 ++i;
991 continue;
992 }
993
994 uint64_t TargetSymbolOffset = i->getOffset();
995 symbol_iterator TargetSymbol = i->getSymbol();
996 int64_t Addend;
997 if (auto AddendOrErr = i->getAddend())
998 Addend = *AddendOrErr;
999 else
1000 return AddendOrErr.takeError();
1001
1002 ++i;
1003 if (i == e)
1004 break;
1005
1006 // Just check if following relocation is a R_PPC64_TOC
1007 uint64_t TypeTOC = i->getType();
1008 if (TypeTOC != ELF::R_PPC64_TOC)
1009 continue;
1010
1011 // Finally compares the Symbol value and the target symbol offset
1012 // to check if this .opd entry refers to the symbol the relocation
1013 // points to.
1014 if (Rel.Addend != (int64_t)TargetSymbolOffset)
1015 continue;
1016
1017 section_iterator TSI = Obj.section_end();
1018 if (auto TSIOrErr = TargetSymbol->getSection())
1019 TSI = *TSIOrErr;
1020 else
1021 return TSIOrErr.takeError();
1022 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
1023
1024 bool IsCode = TSI->isText();
1025 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
1026 LocalSections))
1027 Rel.SectionID = *SectionIDOrErr;
1028 else
1029 return SectionIDOrErr.takeError();
1030 Rel.Addend = (intptr_t)Addend;
1031 return Error::success();
1032 }
1033 }
1034 llvm_unreachable("Attempting to get address of ODP entry!");
1035}
1036
1037// Relocation masks following the #lo(value), #hi(value), #ha(value),
1038// #higher(value), #highera(value), #highest(value), and #highesta(value)
1039// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
1040// document.
1041
1042static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
1043
1044static inline uint16_t applyPPChi(uint64_t value) {
1045 return (value >> 16) & 0xffff;
1046}
1047
1048static inline uint16_t applyPPCha (uint64_t value) {
1049 return ((value + 0x8000) >> 16) & 0xffff;
1050}
1051
1052static inline uint16_t applyPPChigher(uint64_t value) {
1053 return (value >> 32) & 0xffff;
1054}
1055
1056static inline uint16_t applyPPChighera (uint64_t value) {
1057 return ((value + 0x8000) >> 32) & 0xffff;
1058}
1059
1060static inline uint16_t applyPPChighest(uint64_t value) {
1061 return (value >> 48) & 0xffff;
1062}
1063
1064static inline uint16_t applyPPChighesta (uint64_t value) {
1065 return ((value + 0x8000) >> 48) & 0xffff;
1066}
1067
1068void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
1070 uint32_t Type, int64_t Addend) {
1071 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1072 switch (Type) {
1073 default:
1074 report_fatal_error("Relocation type not implemented yet!");
1075 break;
1076 case ELF::R_PPC_ADDR16_LO:
1077 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
1078 break;
1079 case ELF::R_PPC_ADDR16_HI:
1080 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
1081 break;
1082 case ELF::R_PPC_ADDR16_HA:
1083 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
1084 break;
1085 }
1086}
1087
1088void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
1089 uint64_t Offset, uint64_t Value,
1090 uint32_t Type, int64_t Addend) {
1091 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1092 switch (Type) {
1093 default:
1094 report_fatal_error("Relocation type not implemented yet!");
1095 break;
1096 case ELF::R_PPC64_ADDR16:
1097 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
1098 break;
1099 case ELF::R_PPC64_ADDR16_DS:
1100 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
1101 break;
1102 case ELF::R_PPC64_ADDR16_LO:
1103 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
1104 break;
1105 case ELF::R_PPC64_ADDR16_LO_DS:
1106 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
1107 break;
1108 case ELF::R_PPC64_ADDR16_HI:
1109 case ELF::R_PPC64_ADDR16_HIGH:
1110 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
1111 break;
1112 case ELF::R_PPC64_ADDR16_HA:
1113 case ELF::R_PPC64_ADDR16_HIGHA:
1114 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
1115 break;
1116 case ELF::R_PPC64_ADDR16_HIGHER:
1117 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
1118 break;
1119 case ELF::R_PPC64_ADDR16_HIGHERA:
1120 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
1121 break;
1122 case ELF::R_PPC64_ADDR16_HIGHEST:
1123 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
1124 break;
1125 case ELF::R_PPC64_ADDR16_HIGHESTA:
1126 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
1127 break;
1128 case ELF::R_PPC64_ADDR14: {
1129 assert(((Value + Addend) & 3) == 0);
1130 // Preserve the AA/LK bits in the branch instruction
1131 uint8_t aalk = *(LocalAddress + 3);
1132 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
1133 } break;
1134 case ELF::R_PPC64_REL16_LO: {
1135 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1136 uint64_t Delta = Value - FinalAddress + Addend;
1137 writeInt16BE(LocalAddress, applyPPClo(Delta));
1138 } break;
1139 case ELF::R_PPC64_REL16_HI: {
1140 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1141 uint64_t Delta = Value - FinalAddress + Addend;
1142 writeInt16BE(LocalAddress, applyPPChi(Delta));
1143 } break;
1144 case ELF::R_PPC64_REL16_HA: {
1145 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1146 uint64_t Delta = Value - FinalAddress + Addend;
1147 writeInt16BE(LocalAddress, applyPPCha(Delta));
1148 } break;
1149 case ELF::R_PPC64_ADDR32: {
1150 int64_t Result = static_cast<int64_t>(Value + Addend);
1151 if (SignExtend64<32>(Result) != Result)
1152 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
1153 writeInt32BE(LocalAddress, Result);
1154 } break;
1155 case ELF::R_PPC64_REL24: {
1156 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1157 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
1158 if (SignExtend64<26>(delta) != delta)
1159 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
1160 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
1161 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
1162 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
1163 } break;
1164 case ELF::R_PPC64_REL32: {
1165 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1166 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
1167 if (SignExtend64<32>(delta) != delta)
1168 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
1169 writeInt32BE(LocalAddress, delta);
1170 } break;
1171 case ELF::R_PPC64_REL64: {
1172 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1173 uint64_t Delta = Value - FinalAddress + Addend;
1174 writeInt64BE(LocalAddress, Delta);
1175 } break;
1176 case ELF::R_PPC64_ADDR64:
1177 writeInt64BE(LocalAddress, Value + Addend);
1178 break;
1179 }
1180}
1181
1182void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
1183 uint64_t Offset, uint64_t Value,
1184 uint32_t Type, int64_t Addend) {
1185 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
1186 switch (Type) {
1187 default:
1188 report_fatal_error("Relocation type not implemented yet!");
1189 break;
1190 case ELF::R_390_PC16DBL:
1191 case ELF::R_390_PLT16DBL: {
1192 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1193 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
1194 writeInt16BE(LocalAddress, Delta / 2);
1195 break;
1196 }
1197 case ELF::R_390_PC32DBL:
1198 case ELF::R_390_PLT32DBL: {
1199 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1200 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
1201 writeInt32BE(LocalAddress, Delta / 2);
1202 break;
1203 }
1204 case ELF::R_390_PC16: {
1205 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1206 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
1207 writeInt16BE(LocalAddress, Delta);
1208 break;
1209 }
1210 case ELF::R_390_PC32: {
1211 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1212 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
1213 writeInt32BE(LocalAddress, Delta);
1214 break;
1215 }
1216 case ELF::R_390_PC64: {
1217 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
1218 writeInt64BE(LocalAddress, Delta);
1219 break;
1220 }
1221 case ELF::R_390_8:
1222 *LocalAddress = (uint8_t)(Value + Addend);
1223 break;
1224 case ELF::R_390_16:
1225 writeInt16BE(LocalAddress, Value + Addend);
1226 break;
1227 case ELF::R_390_32:
1228 writeInt32BE(LocalAddress, Value + Addend);
1229 break;
1230 case ELF::R_390_64:
1231 writeInt64BE(LocalAddress, Value + Addend);
1232 break;
1233 }
1234}
1235
1236void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
1237 uint64_t Offset, uint64_t Value,
1238 uint32_t Type, int64_t Addend) {
1239 bool isBE = Arch == Triple::bpfeb;
1240
1241 switch (Type) {
1242 default:
1243 report_fatal_error("Relocation type not implemented yet!");
1244 break;
1245 case ELF::R_BPF_NONE:
1246 case ELF::R_BPF_64_64:
1247 case ELF::R_BPF_64_32:
1248 case ELF::R_BPF_64_NODYLD32:
1249 break;
1250 case ELF::R_BPF_64_ABS64: {
1251 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
1252 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1253 << format("%p\n", Section.getAddressWithOffset(Offset)));
1254 break;
1255 }
1256 case ELF::R_BPF_64_ABS32: {
1257 Value += Addend;
1258 assert(Value <= UINT32_MAX);
1259 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1260 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1261 << format("%p\n", Section.getAddressWithOffset(Offset)));
1262 break;
1263 }
1264 }
1265}
1266
1267static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) {
1268 uint32_t UpperImm = (Imm + 0x800) & 0xfffff000;
1269 auto Instr = support::ulittle32_t::ref(InstrAddr);
1270 Instr = (Instr & 0xfff) | UpperImm;
1271}
1272
1273static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm) {
1274 uint32_t LowerImm = Imm & 0xfff;
1275 auto Instr = support::ulittle32_t::ref(InstrAddr);
1276 Instr = (Instr & 0xfffff) | (LowerImm << 20);
1277}
1278
1279void RuntimeDyldELF::resolveRISCVRelocation(const SectionEntry &Section,
1281 uint32_t Type, int64_t Addend,
1282 SID SectionID) {
1283 switch (Type) {
1284 default: {
1285 std::string Err = "Unimplemented reloc type: " + std::to_string(Type);
1286 llvm::report_fatal_error(Err.c_str());
1287 }
1288 // 32-bit PC-relative function call, macros call, tail (PIC)
1289 // Write first 20 bits of 32 bit value to the auipc instruction
1290 // Last 12 bits to the jalr instruction
1291 case ELF::R_RISCV_CALL:
1292 case ELF::R_RISCV_CALL_PLT: {
1293 uint64_t P = Section.getLoadAddressWithOffset(Offset);
1294 uint64_t PCOffset = Value + Addend - P;
1295 applyUTypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1296 applyITypeImmRISCV(Section.getAddressWithOffset(Offset + 4), PCOffset);
1297 break;
1298 }
1299 // High 20 bits of 32-bit absolute address, %hi(symbol)
1300 case ELF::R_RISCV_HI20: {
1301 uint64_t PCOffset = Value + Addend;
1302 applyUTypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1303 break;
1304 }
1305 // Low 12 bits of 32-bit absolute address, %lo(symbol)
1306 case ELF::R_RISCV_LO12_I: {
1307 uint64_t PCOffset = Value + Addend;
1308 applyITypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1309 break;
1310 }
1311 // High 20 bits of 32-bit PC-relative reference, %pcrel_hi(symbol)
1312 case ELF::R_RISCV_GOT_HI20:
1313 case ELF::R_RISCV_PCREL_HI20: {
1314 uint64_t P = Section.getLoadAddressWithOffset(Offset);
1315 uint64_t PCOffset = Value + Addend - P;
1316 applyUTypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1317 break;
1318 }
1319
1320 // label:
1321 // auipc a0, %pcrel_hi(symbol) // R_RISCV_PCREL_HI20
1322 // addi a0, a0, %pcrel_lo(label) // R_RISCV_PCREL_LO12_I
1323 //
1324 // The low 12 bits of relative address between pc and symbol.
1325 // The symbol is related to the high part instruction which is marked by
1326 // label.
1327 case ELF::R_RISCV_PCREL_LO12_I: {
1328 for (auto &&PendingReloc : PendingRelocs) {
1329 const RelocationValueRef &MatchingValue = PendingReloc.first;
1330 RelocationEntry &Reloc = PendingReloc.second;
1331 uint64_t HIRelocPC =
1332 getSectionLoadAddress(Reloc.SectionID) + Reloc.Offset;
1333 if (Value + Addend == HIRelocPC) {
1334 uint64_t Symbol = getSectionLoadAddress(MatchingValue.SectionID) +
1335 MatchingValue.Addend;
1336 auto PCOffset = Symbol - HIRelocPC;
1337 applyITypeImmRISCV(Section.getAddressWithOffset(Offset), PCOffset);
1338 return;
1339 }
1340 }
1341
1343 "R_RISCV_PCREL_LO12_I without matching R_RISCV_PCREL_HI20");
1344 }
1345 case ELF::R_RISCV_32_PCREL: {
1346 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
1347 int64_t RealOffset = Value + Addend - FinalAddress;
1348 int32_t TruncOffset = Lo_32(RealOffset);
1349 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
1350 TruncOffset;
1351 break;
1352 }
1353 case ELF::R_RISCV_32: {
1354 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1355 Ref = Value + Addend;
1356 break;
1357 }
1358 case ELF::R_RISCV_64: {
1359 auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(Offset));
1360 Ref = Value + Addend;
1361 break;
1362 }
1363 case ELF::R_RISCV_ADD8: {
1364 auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(Offset));
1365 Ref = Ref + Value + Addend;
1366 break;
1367 }
1368 case ELF::R_RISCV_ADD16: {
1369 auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(Offset));
1370 Ref = Ref + Value + Addend;
1371 break;
1372 }
1373 case ELF::R_RISCV_ADD32: {
1374 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1375 Ref = Ref + Value + Addend;
1376 break;
1377 }
1378 case ELF::R_RISCV_ADD64: {
1379 auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(Offset));
1380 Ref = Ref + Value + Addend;
1381 break;
1382 }
1383 case ELF::R_RISCV_SUB8: {
1384 auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(Offset));
1385 Ref = Ref - Value - Addend;
1386 break;
1387 }
1388 case ELF::R_RISCV_SUB16: {
1389 auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(Offset));
1390 Ref = Ref - Value - Addend;
1391 break;
1392 }
1393 case ELF::R_RISCV_SUB32: {
1394 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1395 Ref = Ref - Value - Addend;
1396 break;
1397 }
1398 case ELF::R_RISCV_SUB64: {
1399 auto Ref = support::ulittle64_t::ref(Section.getAddressWithOffset(Offset));
1400 Ref = Ref - Value - Addend;
1401 break;
1402 }
1403 case ELF::R_RISCV_SET8: {
1404 auto Ref = support::ulittle8_t::ref(Section.getAddressWithOffset(Offset));
1405 Ref = Value + Addend;
1406 break;
1407 }
1408 case ELF::R_RISCV_SET16: {
1409 auto Ref = support::ulittle16_t::ref(Section.getAddressWithOffset(Offset));
1410 Ref = Value + Addend;
1411 break;
1412 }
1413 case ELF::R_RISCV_SET32: {
1414 auto Ref = support::ulittle32_t::ref(Section.getAddressWithOffset(Offset));
1415 Ref = Value + Addend;
1416 break;
1417 }
1418 }
1419}
1420
1421// The target location for the relocation is described by RE.SectionID and
1422// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1423// SectionEntry has three members describing its location.
1424// SectionEntry::Address is the address at which the section has been loaded
1425// into memory in the current (host) process. SectionEntry::LoadAddress is the
1426// address that the section will have in the target process.
1427// SectionEntry::ObjAddress is the address of the bits for this section in the
1428// original emitted object image (also in the current address space).
1429//
1430// Relocations will be applied as if the section were loaded at
1431// SectionEntry::LoadAddress, but they will be applied at an address based
1432// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1433// Target memory contents if they are required for value calculations.
1434//
1435// The Value parameter here is the load address of the symbol for the
1436// relocation to be applied. For relocations which refer to symbols in the
1437// current object Value will be the LoadAddress of the section in which
1438// the symbol resides (RE.Addend provides additional information about the
1439// symbol location). For external symbols, Value will be the address of the
1440// symbol in the target address space.
1441void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1442 uint64_t Value) {
1443 const SectionEntry &Section = Sections[RE.SectionID];
1444 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1445 RE.SymOffset, RE.SectionID);
1446}
1447
1448void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1450 uint32_t Type, int64_t Addend,
1451 uint64_t SymOffset, SID SectionID) {
1452 switch (Arch) {
1453 case Triple::x86_64:
1454 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1455 break;
1456 case Triple::x86:
1457 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1458 (uint32_t)(Addend & 0xffffffffL));
1459 break;
1460 case Triple::aarch64:
1461 case Triple::aarch64_be:
1462 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1463 break;
1464 case Triple::arm: // Fall through.
1465 case Triple::armeb:
1466 case Triple::thumb:
1467 case Triple::thumbeb:
1468 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1469 (uint32_t)(Addend & 0xffffffffL));
1470 break;
1472 resolveLoongArch64Relocation(Section, Offset, Value, Type, Addend);
1473 break;
1474 case Triple::ppc: // Fall through.
1475 case Triple::ppcle:
1476 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1477 break;
1478 case Triple::ppc64: // Fall through.
1479 case Triple::ppc64le:
1480 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1481 break;
1482 case Triple::systemz:
1483 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1484 break;
1485 case Triple::bpfel:
1486 case Triple::bpfeb:
1487 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1488 break;
1489 case Triple::riscv32: // Fall through.
1490 case Triple::riscv64:
1491 resolveRISCVRelocation(Section, Offset, Value, Type, Addend, SectionID);
1492 break;
1493 default:
1494 llvm_unreachable("Unsupported CPU type!");
1495 }
1496}
1497
1498void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID,
1499 uint64_t Offset) const {
1500 return (void *)(Sections[SectionID].getObjAddress() + Offset);
1501}
1502
1503void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1504 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1505 if (Value.SymbolName)
1506 addRelocationForSymbol(RE, Value.SymbolName);
1507 else
1508 addRelocationForSection(RE, Value.SectionID);
1509}
1510
1511uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1512 bool IsLocal) const {
1513 switch (RelType) {
1514 case ELF::R_MICROMIPS_GOT16:
1515 if (IsLocal)
1516 return ELF::R_MICROMIPS_LO16;
1517 break;
1518 case ELF::R_MICROMIPS_HI16:
1519 return ELF::R_MICROMIPS_LO16;
1520 case ELF::R_MIPS_GOT16:
1521 if (IsLocal)
1522 return ELF::R_MIPS_LO16;
1523 break;
1524 case ELF::R_MIPS_HI16:
1525 return ELF::R_MIPS_LO16;
1526 case ELF::R_MIPS_PCHI16:
1527 return ELF::R_MIPS_PCLO16;
1528 default:
1529 break;
1530 }
1531 return ELF::R_MIPS_NONE;
1532}
1533
1534// Sometimes we don't need to create thunk for a branch.
1535// This typically happens when branch target is located
1536// in the same object file. In such case target is either
1537// a weak symbol or symbol in a different executable section.
1538// This function checks if branch target is located in the
1539// same object file and if distance between source and target
1540// fits R_AARCH64_CALL26 relocation. If both conditions are
1541// met, it emits direct jump to the target and returns true.
1542// Otherwise false is returned and thunk is created.
1543bool RuntimeDyldELF::resolveAArch64ShortBranch(
1544 unsigned SectionID, relocation_iterator RelI,
1545 const RelocationValueRef &Value) {
1546 uint64_t TargetOffset;
1547 unsigned TargetSectionID;
1548 if (Value.SymbolName) {
1549 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1550
1551 // Don't create direct branch for external symbols.
1552 if (Loc == GlobalSymbolTable.end())
1553 return false;
1554
1555 const auto &SymInfo = Loc->second;
1556
1557 TargetSectionID = SymInfo.getSectionID();
1558 TargetOffset = SymInfo.getOffset();
1559 } else {
1560 TargetSectionID = Value.SectionID;
1561 TargetOffset = 0;
1562 }
1563
1564 // We don't actually know the load addresses at this point, so if the
1565 // branch is cross-section, we don't know exactly how far away it is.
1566 if (TargetSectionID != SectionID)
1567 return false;
1568
1569 uint64_t SourceOffset = RelI->getOffset();
1570
1571 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1572 // If distance between source and target is out of range then we should
1573 // create thunk.
1574 if (!isInt<28>(TargetOffset + Value.Addend - SourceOffset))
1575 return false;
1576
1577 RelocationEntry RE(SectionID, SourceOffset, RelI->getType(), Value.Addend);
1578 if (Value.SymbolName)
1579 addRelocationForSymbol(RE, Value.SymbolName);
1580 else
1581 addRelocationForSection(RE, Value.SectionID);
1582
1583 return true;
1584}
1585
1586void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1589 StubMap &Stubs) {
1590
1591 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1592 SectionEntry &Section = Sections[SectionID];
1593
1594 uint64_t Offset = RelI->getOffset();
1595 unsigned RelType = RelI->getType();
1596 // Look for an existing stub.
1597 StubMap::const_iterator i = Stubs.find(Value);
1598 if (i != Stubs.end()) {
1599 resolveRelocation(Section, Offset,
1600 Section.getLoadAddressWithOffset(i->second), RelType, 0);
1601 LLVM_DEBUG(dbgs() << " Stub function found\n");
1602 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1603 // Create a new stub function.
1604 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1605 Stubs[Value] = Section.getStubOffset();
1606 uint8_t *StubTargetAddr = createStubFunction(
1607 Section.getAddressWithOffset(Section.getStubOffset()));
1608
1609 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1610 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1611 RelocationEntry REmovk_g2(SectionID,
1612 StubTargetAddr - Section.getAddress() + 4,
1613 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1614 RelocationEntry REmovk_g1(SectionID,
1615 StubTargetAddr - Section.getAddress() + 8,
1616 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1617 RelocationEntry REmovk_g0(SectionID,
1618 StubTargetAddr - Section.getAddress() + 12,
1619 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1620
1621 if (Value.SymbolName) {
1622 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1623 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1624 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1625 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1626 } else {
1627 addRelocationForSection(REmovz_g3, Value.SectionID);
1628 addRelocationForSection(REmovk_g2, Value.SectionID);
1629 addRelocationForSection(REmovk_g1, Value.SectionID);
1630 addRelocationForSection(REmovk_g0, Value.SectionID);
1631 }
1632 resolveRelocation(Section, Offset,
1633 Section.getLoadAddressWithOffset(Section.getStubOffset()),
1634 RelType, 0);
1635 Section.advanceStubOffset(getMaxStubSize());
1636 }
1637}
1638
1641 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1642 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1643 const auto &Obj = cast<ELFObjectFileBase>(O);
1644 uint64_t RelType = RelI->getType();
1645 int64_t Addend = 0;
1646 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1647 Addend = *AddendOrErr;
1648 else
1649 consumeError(AddendOrErr.takeError());
1650 elf_symbol_iterator Symbol = RelI->getSymbol();
1651
1652 // Obtain the symbol name which is referenced in the relocation
1653 StringRef TargetName;
1654 if (Symbol != Obj.symbol_end()) {
1655 if (auto TargetNameOrErr = Symbol->getName())
1656 TargetName = *TargetNameOrErr;
1657 else
1658 return TargetNameOrErr.takeError();
1659 }
1660 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1661 << " TargetName: " << TargetName << "\n");
1663 // First search for the symbol in the local symbol table
1665
1666 // Search for the symbol in the global symbol table
1668 if (Symbol != Obj.symbol_end()) {
1669 gsi = GlobalSymbolTable.find(TargetName.data());
1670 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1671 if (!SymTypeOrErr) {
1672 std::string Buf;
1673 raw_string_ostream OS(Buf);
1674 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1676 }
1677 SymType = *SymTypeOrErr;
1678 }
1679 if (gsi != GlobalSymbolTable.end()) {
1680 const auto &SymInfo = gsi->second;
1681 Value.SectionID = SymInfo.getSectionID();
1682 Value.Offset = SymInfo.getOffset();
1683 Value.Addend = SymInfo.getOffset() + Addend;
1684 } else {
1685 switch (SymType) {
1686 case SymbolRef::ST_Debug: {
1687 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1688 // and can be changed by another developers. Maybe best way is add
1689 // a new symbol type ST_Section to SymbolRef and use it.
1690 auto SectionOrErr = Symbol->getSection();
1691 if (!SectionOrErr) {
1692 std::string Buf;
1693 raw_string_ostream OS(Buf);
1694 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1696 }
1697 section_iterator si = *SectionOrErr;
1698 if (si == Obj.section_end())
1699 llvm_unreachable("Symbol section not found, bad object file format!");
1700 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1701 bool isCode = si->isText();
1702 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1703 ObjSectionToID))
1704 Value.SectionID = *SectionIDOrErr;
1705 else
1706 return SectionIDOrErr.takeError();
1707 Value.Addend = Addend;
1708 break;
1709 }
1710 case SymbolRef::ST_Data:
1713 case SymbolRef::ST_Unknown: {
1714 Value.SymbolName = TargetName.data();
1715 Value.Addend = Addend;
1716
1717 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1718 // will manifest here as a NULL symbol name.
1719 // We can set this as a valid (but empty) symbol name, and rely
1720 // on addRelocationForSymbol to handle this.
1721 if (!Value.SymbolName)
1722 Value.SymbolName = "";
1723 break;
1724 }
1725 default:
1726 llvm_unreachable("Unresolved symbol type!");
1727 break;
1728 }
1729 }
1730
1731 uint64_t Offset = RelI->getOffset();
1732
1733 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1734 << "\n");
1736 if ((RelType == ELF::R_AARCH64_CALL26 ||
1737 RelType == ELF::R_AARCH64_JUMP26) &&
1738 MemMgr.allowStubAllocation()) {
1739 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1740 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1741 // Create new GOT entry or find existing one. If GOT entry is
1742 // to be created, then we also emit ABS64 relocation for it.
1743 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1744 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1745 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1746
1747 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1748 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1749 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1750 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1751 } else {
1752 processSimpleRelocation(SectionID, Offset, RelType, Value);
1753 }
1754 } else if (Arch == Triple::arm) {
1755 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1756 RelType == ELF::R_ARM_JUMP24) {
1757 // This is an ARM branch relocation, need to use a stub function.
1758 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1759 SectionEntry &Section = Sections[SectionID];
1760
1761 // Look for an existing stub.
1762 auto [It, Inserted] = Stubs.try_emplace(Value);
1763 if (!Inserted) {
1764 resolveRelocation(Section, Offset,
1765 Section.getLoadAddressWithOffset(It->second), RelType,
1766 0);
1767 LLVM_DEBUG(dbgs() << " Stub function found\n");
1768 } else {
1769 // Create a new stub function.
1770 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1771 It->second = Section.getStubOffset();
1772 uint8_t *StubTargetAddr = createStubFunction(
1773 Section.getAddressWithOffset(Section.getStubOffset()));
1774 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1775 ELF::R_ARM_ABS32, Value.Addend);
1776 if (Value.SymbolName)
1777 addRelocationForSymbol(RE, Value.SymbolName);
1778 else
1779 addRelocationForSection(RE, Value.SectionID);
1780
1781 resolveRelocation(
1782 Section, Offset,
1783 Section.getLoadAddressWithOffset(Section.getStubOffset()), RelType,
1784 0);
1785 Section.advanceStubOffset(getMaxStubSize());
1786 }
1787 } else {
1788 uint32_t *Placeholder =
1789 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1790 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1791 RelType == ELF::R_ARM_ABS32) {
1792 Value.Addend += *Placeholder;
1793 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1794 // See ELF for ARM documentation
1795 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1796 }
1797 processSimpleRelocation(SectionID, Offset, RelType, Value);
1798 }
1799 } else if (Arch == Triple::loongarch64) {
1800 if ((RelType == ELF::R_LARCH_B26 || RelType == ELF::R_LARCH_CALL36) &&
1801 MemMgr.allowStubAllocation()) {
1802 resolveLoongArch64Branch(SectionID, Value, RelI, Stubs);
1803 } else if (RelType == ELF::R_LARCH_GOT_PC_HI20 ||
1804 RelType == ELF::R_LARCH_GOT_PC_LO12 ||
1805 RelType == ELF::R_LARCH_GOT64_PC_HI12 ||
1806 RelType == ELF::R_LARCH_GOT64_PC_LO20) {
1807 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_LARCH_64);
1808 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1809 RelType);
1810 } else {
1811 processSimpleRelocation(SectionID, Offset, RelType, Value);
1812 }
1813 } else if (IsMipsO32ABI) {
1814 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1815 computePlaceholderAddress(SectionID, Offset));
1816 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1817 if (RelType == ELF::R_MIPS_26) {
1818 // This is an Mips branch relocation, need to use a stub function.
1819 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1820 SectionEntry &Section = Sections[SectionID];
1821
1822 // Extract the addend from the instruction.
1823 // We shift up by two since the Value will be down shifted again
1824 // when applying the relocation.
1825 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1826
1827 Value.Addend += Addend;
1828
1829 // Look up for existing stub.
1830 auto [It, Inserted] = Stubs.try_emplace(Value);
1831 if (!Inserted) {
1832 RelocationEntry RE(SectionID, Offset, RelType, It->second);
1833 addRelocationForSection(RE, SectionID);
1834 LLVM_DEBUG(dbgs() << " Stub function found\n");
1835 } else {
1836 // Create a new stub function.
1837 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1838 It->second = Section.getStubOffset();
1839
1840 unsigned AbiVariant = Obj.getPlatformFlags();
1841
1842 uint8_t *StubTargetAddr = createStubFunction(
1843 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1844
1845 // Creating Hi and Lo relocations for the filled stub instructions.
1846 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1847 ELF::R_MIPS_HI16, Value.Addend);
1848 RelocationEntry RELo(SectionID,
1849 StubTargetAddr - Section.getAddress() + 4,
1850 ELF::R_MIPS_LO16, Value.Addend);
1851
1852 if (Value.SymbolName) {
1853 addRelocationForSymbol(REHi, Value.SymbolName);
1854 addRelocationForSymbol(RELo, Value.SymbolName);
1855 } else {
1856 addRelocationForSection(REHi, Value.SectionID);
1857 addRelocationForSection(RELo, Value.SectionID);
1858 }
1859
1860 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1861 addRelocationForSection(RE, SectionID);
1862 Section.advanceStubOffset(getMaxStubSize());
1863 }
1864 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1865 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1866 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1867 PendingRelocs.push_back(std::make_pair(Value, RE));
1868 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1869 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1870 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1871 const RelocationValueRef &MatchingValue = I->first;
1872 RelocationEntry &Reloc = I->second;
1873 if (MatchingValue == Value &&
1874 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1875 SectionID == Reloc.SectionID) {
1876 Reloc.Addend += Addend;
1877 if (Value.SymbolName)
1878 addRelocationForSymbol(Reloc, Value.SymbolName);
1879 else
1881 I = PendingRelocs.erase(I);
1882 } else
1883 ++I;
1884 }
1885 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1886 if (Value.SymbolName)
1887 addRelocationForSymbol(RE, Value.SymbolName);
1888 else
1889 addRelocationForSection(RE, Value.SectionID);
1890 } else {
1891 if (RelType == ELF::R_MIPS_32)
1892 Value.Addend += Opcode;
1893 else if (RelType == ELF::R_MIPS_PC16)
1894 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1895 else if (RelType == ELF::R_MIPS_PC19_S2)
1896 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1897 else if (RelType == ELF::R_MIPS_PC21_S2)
1898 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1899 else if (RelType == ELF::R_MIPS_PC26_S2)
1900 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1901 processSimpleRelocation(SectionID, Offset, RelType, Value);
1902 }
1903 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1904 uint32_t r_type = RelType & 0xff;
1905 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1906 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1907 || r_type == ELF::R_MIPS_GOT_DISP) {
1908 auto [I, Inserted] = GOTSymbolOffsets.try_emplace(TargetName);
1909 if (Inserted)
1910 I->second = allocateGOTEntries(1);
1911 RE.SymOffset = I->second;
1912 if (Value.SymbolName)
1913 addRelocationForSymbol(RE, Value.SymbolName);
1914 else
1915 addRelocationForSection(RE, Value.SectionID);
1916 } else if (RelType == ELF::R_MIPS_26) {
1917 // This is an Mips branch relocation, need to use a stub function.
1918 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1919 SectionEntry &Section = Sections[SectionID];
1920
1921 // Look up for existing stub.
1922 StubMap::const_iterator i = Stubs.find(Value);
1923 if (i != Stubs.end()) {
1924 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1925 addRelocationForSection(RE, SectionID);
1926 LLVM_DEBUG(dbgs() << " Stub function found\n");
1927 } else {
1928 // Create a new stub function.
1929 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1930 Stubs[Value] = Section.getStubOffset();
1931
1932 unsigned AbiVariant = Obj.getPlatformFlags();
1933
1934 uint8_t *StubTargetAddr = createStubFunction(
1935 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1936
1937 if (IsMipsN32ABI) {
1938 // Creating Hi and Lo relocations for the filled stub instructions.
1939 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1940 ELF::R_MIPS_HI16, Value.Addend);
1941 RelocationEntry RELo(SectionID,
1942 StubTargetAddr - Section.getAddress() + 4,
1943 ELF::R_MIPS_LO16, Value.Addend);
1944 if (Value.SymbolName) {
1945 addRelocationForSymbol(REHi, Value.SymbolName);
1946 addRelocationForSymbol(RELo, Value.SymbolName);
1947 } else {
1948 addRelocationForSection(REHi, Value.SectionID);
1949 addRelocationForSection(RELo, Value.SectionID);
1950 }
1951 } else {
1952 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1953 // instructions.
1954 RelocationEntry REHighest(SectionID,
1955 StubTargetAddr - Section.getAddress(),
1956 ELF::R_MIPS_HIGHEST, Value.Addend);
1957 RelocationEntry REHigher(SectionID,
1958 StubTargetAddr - Section.getAddress() + 4,
1959 ELF::R_MIPS_HIGHER, Value.Addend);
1960 RelocationEntry REHi(SectionID,
1961 StubTargetAddr - Section.getAddress() + 12,
1962 ELF::R_MIPS_HI16, Value.Addend);
1963 RelocationEntry RELo(SectionID,
1964 StubTargetAddr - Section.getAddress() + 20,
1965 ELF::R_MIPS_LO16, Value.Addend);
1966 if (Value.SymbolName) {
1967 addRelocationForSymbol(REHighest, Value.SymbolName);
1968 addRelocationForSymbol(REHigher, Value.SymbolName);
1969 addRelocationForSymbol(REHi, Value.SymbolName);
1970 addRelocationForSymbol(RELo, Value.SymbolName);
1971 } else {
1972 addRelocationForSection(REHighest, Value.SectionID);
1973 addRelocationForSection(REHigher, Value.SectionID);
1974 addRelocationForSection(REHi, Value.SectionID);
1975 addRelocationForSection(RELo, Value.SectionID);
1976 }
1977 }
1978 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1979 addRelocationForSection(RE, SectionID);
1980 Section.advanceStubOffset(getMaxStubSize());
1981 }
1982 } else {
1983 processSimpleRelocation(SectionID, Offset, RelType, Value);
1984 }
1985
1986 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1987 if (RelType == ELF::R_PPC64_REL24) {
1988 // Determine ABI variant in use for this object.
1989 unsigned AbiVariant = Obj.getPlatformFlags();
1990 AbiVariant &= ELF::EF_PPC64_ABI;
1991 // A PPC branch relocation will need a stub function if the target is
1992 // an external symbol (either Value.SymbolName is set, or SymType is
1993 // Symbol::ST_Unknown) or if the target address is not within the
1994 // signed 24-bits branch address.
1995 SectionEntry &Section = Sections[SectionID];
1996 uint8_t *Target = Section.getAddressWithOffset(Offset);
1997 bool RangeOverflow = false;
1998 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1999 if (!IsExtern) {
2000 if (AbiVariant != 2) {
2001 // In the ELFv1 ABI, a function call may point to the .opd entry,
2002 // so the final symbol value is calculated based on the relocation
2003 // values in the .opd section.
2004 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
2005 return std::move(Err);
2006 } else {
2007 // In the ELFv2 ABI, a function symbol may provide a local entry
2008 // point, which must be used for direct calls.
2009 if (Value.SectionID == SectionID){
2010 uint8_t SymOther = Symbol->getOther();
2011 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
2012 }
2013 }
2014 uint8_t *RelocTarget =
2015 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
2016 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
2017 // If it is within 26-bits branch range, just set the branch target
2018 if (SignExtend64<26>(delta) != delta) {
2019 RangeOverflow = true;
2020 } else if ((AbiVariant != 2) ||
2021 (AbiVariant == 2 && Value.SectionID == SectionID)) {
2022 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
2023 addRelocationForSection(RE, Value.SectionID);
2024 }
2025 }
2026 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
2027 RangeOverflow) {
2028 // It is an external symbol (either Value.SymbolName is set, or
2029 // SymType is SymbolRef::ST_Unknown) or out of range.
2030 auto [It, Inserted] = Stubs.try_emplace(Value);
2031 if (!Inserted) {
2032 // Symbol function stub already created, just relocate to it
2033 resolveRelocation(Section, Offset,
2034 Section.getLoadAddressWithOffset(It->second),
2035 RelType, 0);
2036 LLVM_DEBUG(dbgs() << " Stub function found\n");
2037 } else {
2038 // Create a new stub function.
2039 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2040 It->second = Section.getStubOffset();
2041 uint8_t *StubTargetAddr = createStubFunction(
2042 Section.getAddressWithOffset(Section.getStubOffset()),
2043 AbiVariant);
2044 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
2045 ELF::R_PPC64_ADDR64, Value.Addend);
2046
2047 // Generates the 64-bits address loads as exemplified in section
2048 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
2049 // apply to the low part of the instructions, so we have to update
2050 // the offset according to the target endianness.
2051 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
2053 StubRelocOffset += 2;
2054
2055 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
2056 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
2057 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
2058 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
2059 RelocationEntry REh(SectionID, StubRelocOffset + 12,
2060 ELF::R_PPC64_ADDR16_HI, Value.Addend);
2061 RelocationEntry REl(SectionID, StubRelocOffset + 16,
2062 ELF::R_PPC64_ADDR16_LO, Value.Addend);
2063
2064 if (Value.SymbolName) {
2065 addRelocationForSymbol(REhst, Value.SymbolName);
2066 addRelocationForSymbol(REhr, Value.SymbolName);
2067 addRelocationForSymbol(REh, Value.SymbolName);
2068 addRelocationForSymbol(REl, Value.SymbolName);
2069 } else {
2070 addRelocationForSection(REhst, Value.SectionID);
2071 addRelocationForSection(REhr, Value.SectionID);
2072 addRelocationForSection(REh, Value.SectionID);
2073 addRelocationForSection(REl, Value.SectionID);
2074 }
2075
2076 resolveRelocation(
2077 Section, Offset,
2078 Section.getLoadAddressWithOffset(Section.getStubOffset()),
2079 RelType, 0);
2080 Section.advanceStubOffset(getMaxStubSize());
2081 }
2082 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
2083 // Restore the TOC for external calls
2084 if (AbiVariant == 2)
2085 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
2086 else
2087 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
2088 }
2089 }
2090 } else if (RelType == ELF::R_PPC64_TOC16 ||
2091 RelType == ELF::R_PPC64_TOC16_DS ||
2092 RelType == ELF::R_PPC64_TOC16_LO ||
2093 RelType == ELF::R_PPC64_TOC16_LO_DS ||
2094 RelType == ELF::R_PPC64_TOC16_HI ||
2095 RelType == ELF::R_PPC64_TOC16_HA) {
2096 // These relocations are supposed to subtract the TOC address from
2097 // the final value. This does not fit cleanly into the RuntimeDyld
2098 // scheme, since there may be *two* sections involved in determining
2099 // the relocation value (the section of the symbol referred to by the
2100 // relocation, and the TOC section associated with the current module).
2101 //
2102 // Fortunately, these relocations are currently only ever generated
2103 // referring to symbols that themselves reside in the TOC, which means
2104 // that the two sections are actually the same. Thus they cancel out
2105 // and we can immediately resolve the relocation right now.
2106 switch (RelType) {
2107 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
2108 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
2109 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
2110 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
2111 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
2112 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
2113 default: llvm_unreachable("Wrong relocation type.");
2114 }
2115
2116 RelocationValueRef TOCValue;
2117 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
2118 return std::move(Err);
2119 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
2120 llvm_unreachable("Unsupported TOC relocation.");
2121 Value.Addend -= TOCValue.Addend;
2122 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
2123 } else {
2124 // There are two ways to refer to the TOC address directly: either
2125 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
2126 // ignored), or via any relocation that refers to the magic ".TOC."
2127 // symbols (in which case the addend is respected).
2128 if (RelType == ELF::R_PPC64_TOC) {
2129 RelType = ELF::R_PPC64_ADDR64;
2130 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
2131 return std::move(Err);
2132 } else if (TargetName == ".TOC.") {
2133 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
2134 return std::move(Err);
2135 Value.Addend += Addend;
2136 }
2137
2138 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
2139
2140 if (Value.SymbolName)
2141 addRelocationForSymbol(RE, Value.SymbolName);
2142 else
2143 addRelocationForSection(RE, Value.SectionID);
2144 }
2145 } else if (Arch == Triple::systemz &&
2146 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
2147 // Create function stubs for both PLT and GOT references, regardless of
2148 // whether the GOT reference is to data or code. The stub contains the
2149 // full address of the symbol, as needed by GOT references, and the
2150 // executable part only adds an overhead of 8 bytes.
2151 //
2152 // We could try to conserve space by allocating the code and data
2153 // parts of the stub separately. However, as things stand, we allocate
2154 // a stub for every relocation, so using a GOT in JIT code should be
2155 // no less space efficient than using an explicit constant pool.
2156 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
2157 SectionEntry &Section = Sections[SectionID];
2158
2159 // Look for an existing stub.
2160 StubMap::const_iterator i = Stubs.find(Value);
2161 uintptr_t StubAddress;
2162 if (i != Stubs.end()) {
2163 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
2164 LLVM_DEBUG(dbgs() << " Stub function found\n");
2165 } else {
2166 // Create a new stub function.
2167 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2168
2169 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
2170 StubAddress =
2171 alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
2172 unsigned StubOffset = StubAddress - BaseAddress;
2173
2174 Stubs[Value] = StubOffset;
2175 createStubFunction((uint8_t *)StubAddress);
2176 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
2177 Value.Offset);
2178 if (Value.SymbolName)
2179 addRelocationForSymbol(RE, Value.SymbolName);
2180 else
2181 addRelocationForSection(RE, Value.SectionID);
2182 Section.advanceStubOffset(getMaxStubSize());
2183 }
2184
2185 if (RelType == ELF::R_390_GOTENT)
2186 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
2187 Addend);
2188 else
2189 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
2190 } else if (Arch == Triple::x86_64) {
2191 if (RelType == ELF::R_X86_64_PLT32) {
2192 // The way the PLT relocations normally work is that the linker allocates
2193 // the
2194 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
2195 // entry will then jump to an address provided by the GOT. On first call,
2196 // the
2197 // GOT address will point back into PLT code that resolves the symbol. After
2198 // the first call, the GOT entry points to the actual function.
2199 //
2200 // For local functions we're ignoring all of that here and just replacing
2201 // the PLT32 relocation type with PC32, which will translate the relocation
2202 // into a PC-relative call directly to the function. For external symbols we
2203 // can't be sure the function will be within 2^32 bytes of the call site, so
2204 // we need to create a stub, which calls into the GOT. This case is
2205 // equivalent to the usual PLT implementation except that we use the stub
2206 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
2207 // rather than allocating a PLT section.
2208 if (Value.SymbolName && MemMgr.allowStubAllocation()) {
2209 // This is a call to an external function.
2210 // Look for an existing stub.
2211 SectionEntry *Section = &Sections[SectionID];
2212 auto [It, Inserted] = Stubs.try_emplace(Value);
2213 uintptr_t StubAddress;
2214 if (!Inserted) {
2215 StubAddress = uintptr_t(Section->getAddress()) + It->second;
2216 LLVM_DEBUG(dbgs() << " Stub function found\n");
2217 } else {
2218 // Create a new stub function (equivalent to a PLT entry).
2219 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
2220
2221 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
2222 StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
2223 getStubAlignment());
2224 unsigned StubOffset = StubAddress - BaseAddress;
2225 It->second = StubOffset;
2226 createStubFunction((uint8_t *)StubAddress);
2227
2228 // Bump our stub offset counter
2229 Section->advanceStubOffset(getMaxStubSize());
2230
2231 // Allocate a GOT Entry
2232 uint64_t GOTOffset = allocateGOTEntries(1);
2233 // This potentially creates a new Section which potentially
2234 // invalidates the Section pointer, so reload it.
2235 Section = &Sections[SectionID];
2236
2237 // The load of the GOT address has an addend of -4
2238 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
2239 ELF::R_X86_64_PC32);
2240
2241 // Fill in the value of the symbol we're targeting into the GOT
2243 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
2244 Value.SymbolName);
2245 }
2246
2247 // Make the target call a call into the stub table.
2248 resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
2249 Addend);
2250 } else {
2251 Value.Addend += support::ulittle32_t::ref(
2252 computePlaceholderAddress(SectionID, Offset));
2253 processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
2254 }
2255 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
2256 RelType == ELF::R_X86_64_GOTPCRELX ||
2257 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
2258 uint64_t GOTOffset = allocateGOTEntries(1);
2259 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2260 ELF::R_X86_64_PC32);
2261
2262 // Fill in the value of the symbol we're targeting into the GOT
2263 RelocationEntry RE =
2264 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
2265 if (Value.SymbolName)
2266 addRelocationForSymbol(RE, Value.SymbolName);
2267 else
2268 addRelocationForSection(RE, Value.SectionID);
2269 } else if (RelType == ELF::R_X86_64_GOT64) {
2270 // Fill in a 64-bit GOT offset.
2271 uint64_t GOTOffset = allocateGOTEntries(1);
2272 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
2273 ELF::R_X86_64_64, 0);
2274
2275 // Fill in the value of the symbol we're targeting into the GOT
2276 RelocationEntry RE =
2277 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
2278 if (Value.SymbolName)
2279 addRelocationForSymbol(RE, Value.SymbolName);
2280 else
2281 addRelocationForSection(RE, Value.SectionID);
2282 } else if (RelType == ELF::R_X86_64_GOTPC32) {
2283 // Materialize the address of the base of the GOT relative to the PC.
2284 // This doesn't create a GOT entry, but it does mean we need a GOT
2285 // section.
2286 (void)allocateGOTEntries(0);
2287 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
2288 } else if (RelType == ELF::R_X86_64_GOTPC64) {
2289 (void)allocateGOTEntries(0);
2290 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
2291 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
2292 // GOTOFF relocations ultimately require a section difference relocation.
2293 (void)allocateGOTEntries(0);
2294 processSimpleRelocation(SectionID, Offset, RelType, Value);
2295 } else if (RelType == ELF::R_X86_64_PC32) {
2296 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
2297 processSimpleRelocation(SectionID, Offset, RelType, Value);
2298 } else if (RelType == ELF::R_X86_64_PC64) {
2299 Value.Addend += support::ulittle64_t::ref(
2300 computePlaceholderAddress(SectionID, Offset));
2301 processSimpleRelocation(SectionID, Offset, RelType, Value);
2302 } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
2303 processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
2304 } else if (RelType == ELF::R_X86_64_TLSGD ||
2305 RelType == ELF::R_X86_64_TLSLD) {
2306 // The next relocation must be the relocation for __tls_get_addr.
2307 ++RelI;
2308 auto &GetAddrRelocation = *RelI;
2309 processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
2310 GetAddrRelocation);
2311 } else {
2312 processSimpleRelocation(SectionID, Offset, RelType, Value);
2313 }
2314 } else if (Arch == Triple::riscv32 || Arch == Triple::riscv64) {
2315 // *_LO12 relocation receive information about a symbol from the
2316 // corresponding *_HI20 relocation, so we have to collect this information
2317 // before resolving
2318 if (RelType == ELF::R_RISCV_GOT_HI20 ||
2319 RelType == ELF::R_RISCV_PCREL_HI20 ||
2320 RelType == ELF::R_RISCV_TPREL_HI20 ||
2321 RelType == ELF::R_RISCV_TLS_GD_HI20 ||
2322 RelType == ELF::R_RISCV_TLS_GOT_HI20) {
2323 RelocationEntry RE(SectionID, Offset, RelType, Addend);
2324 PendingRelocs.push_back({Value, RE});
2325 }
2326 processSimpleRelocation(SectionID, Offset, RelType, Value);
2327 } else {
2328 if (Arch == Triple::x86) {
2329 Value.Addend += support::ulittle32_t::ref(
2330 computePlaceholderAddress(SectionID, Offset));
2331 }
2332 processSimpleRelocation(SectionID, Offset, RelType, Value);
2333 }
2334 return ++RelI;
2335}
2336
2337void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
2340 int64_t Addend) {
2341 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2342 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
2343 // only mentions one optimization even though there are two different
2344 // code sequences for the Initial Exec TLS Model. We match the code to
2345 // find out which one was used.
2346
2347 // A possible TLS code sequence and its replacement
2348 struct CodeSequence {
2349 // The expected code sequence
2350 ArrayRef<uint8_t> ExpectedCodeSequence;
2351 // The negative offset of the GOTTPOFF relocation to the beginning of
2352 // the sequence
2353 uint64_t TLSSequenceOffset;
2354 // The new code sequence
2355 ArrayRef<uint8_t> NewCodeSequence;
2356 // The offset of the new TPOFF relocation
2357 uint64_t TpoffRelocationOffset;
2358 };
2359
2360 std::array<CodeSequence, 2> CodeSequences;
2361
2362 // Initial Exec Code Model Sequence
2363 {
2364 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
2365 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2366 0x00, // mov %fs:0, %rax
2367 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
2368 // %rax
2369 };
2370 CodeSequences[0].ExpectedCodeSequence =
2371 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
2372 CodeSequences[0].TLSSequenceOffset = 12;
2373
2374 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
2375 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
2376 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
2377 };
2378 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
2379 CodeSequences[0].TpoffRelocationOffset = 12;
2380 }
2381
2382 // Initial Exec Code Model Sequence, II
2383 {
2384 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
2385 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
2386 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
2387 };
2388 CodeSequences[1].ExpectedCodeSequence =
2389 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
2390 CodeSequences[1].TLSSequenceOffset = 3;
2391
2392 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
2393 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
2394 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
2395 };
2396 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
2397 CodeSequences[1].TpoffRelocationOffset = 10;
2398 }
2399
2400 bool Resolved = false;
2401 auto &Section = Sections[SectionID];
2402 for (const auto &C : CodeSequences) {
2403 assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
2404 "Old and new code sequences must have the same size");
2405
2406 if (Offset < C.TLSSequenceOffset ||
2407 (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
2408 Section.getSize()) {
2409 // This can't be a matching sequence as it doesn't fit in the current
2410 // section
2411 continue;
2412 }
2413
2414 auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
2415 auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
2416 if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
2417 C.ExpectedCodeSequence) {
2418 continue;
2419 }
2420
2421 memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
2422
2423 // The original GOTTPOFF relocation has an addend as it is PC relative,
2424 // so it needs to be corrected. The TPOFF32 relocation is used as an
2425 // absolute value (which is an offset from %fs:0), so remove the addend
2426 // again.
2427 RelocationEntry RE(SectionID,
2428 TLSSequenceStartOffset + C.TpoffRelocationOffset,
2429 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2430
2431 if (Value.SymbolName)
2432 addRelocationForSymbol(RE, Value.SymbolName);
2433 else
2434 addRelocationForSection(RE, Value.SectionID);
2435
2436 Resolved = true;
2437 break;
2438 }
2439
2440 if (!Resolved) {
2441 // The GOTTPOFF relocation was not used in one of the sequences
2442 // described in the spec, so we can't optimize it to a TPOFF
2443 // relocation.
2444 uint64_t GOTOffset = allocateGOTEntries(1);
2445 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2446 ELF::R_X86_64_PC32);
2447 RelocationEntry RE =
2448 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2449 if (Value.SymbolName)
2450 addRelocationForSymbol(RE, Value.SymbolName);
2451 else
2452 addRelocationForSection(RE, Value.SectionID);
2453 }
2454}
2455
2456void RuntimeDyldELF::processX86_64TLSRelocation(
2457 unsigned SectionID, uint64_t Offset, uint64_t RelType,
2458 RelocationValueRef Value, int64_t Addend,
2459 const RelocationRef &GetAddrRelocation) {
2460 // Since we are statically linking and have no additional DSOs, we can resolve
2461 // the relocation directly without using __tls_get_addr.
2462 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2463 // to replace it with the Local Exec relocation variant.
2464
2465 // Find out whether the code was compiled with the large or small memory
2466 // model. For this we look at the next relocation which is the relocation
2467 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2468 // small code model, with a 64 bit relocation it's the large code model.
2469 bool IsSmallCodeModel;
2470 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2471 bool IsGOTPCRel = false;
2472
2473 switch (GetAddrRelocation.getType()) {
2474 case ELF::R_X86_64_GOTPCREL:
2475 case ELF::R_X86_64_REX_GOTPCRELX:
2476 case ELF::R_X86_64_GOTPCRELX:
2477 IsGOTPCRel = true;
2478 [[fallthrough]];
2479 case ELF::R_X86_64_PLT32:
2480 IsSmallCodeModel = true;
2481 break;
2482 case ELF::R_X86_64_PLTOFF64:
2483 IsSmallCodeModel = false;
2484 break;
2485 default:
2487 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2488 "expected PLT or GOT relocation for __tls_get_addr function");
2489 }
2490
2491 // The negative offset to the start of the TLS code sequence relative to
2492 // the offset of the TLSGD/TLSLD relocation
2493 uint64_t TLSSequenceOffset;
2494 // The expected start of the code sequence
2495 ArrayRef<uint8_t> ExpectedCodeSequence;
2496 // The new TLS code sequence that will replace the existing code
2497 ArrayRef<uint8_t> NewCodeSequence;
2498
2499 if (RelType == ELF::R_X86_64_TLSGD) {
2500 // The offset of the new TPOFF32 relocation (offset starting from the
2501 // beginning of the whole TLS sequence)
2502 uint64_t TpoffRelocOffset;
2503
2504 if (IsSmallCodeModel) {
2505 if (!IsGOTPCRel) {
2506 static const std::initializer_list<uint8_t> CodeSequence = {
2507 0x66, // data16 (no-op prefix)
2508 0x48, 0x8d, 0x3d, 0x00, 0x00,
2509 0x00, 0x00, // lea <disp32>(%rip), %rdi
2510 0x66, 0x66, // two data16 prefixes
2511 0x48, // rex64 (no-op prefix)
2512 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2513 };
2514 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2515 TLSSequenceOffset = 4;
2516 } else {
2517 // This code sequence is not described in the TLS spec but gcc
2518 // generates it sometimes.
2519 static const std::initializer_list<uint8_t> CodeSequence = {
2520 0x66, // data16 (no-op prefix)
2521 0x48, 0x8d, 0x3d, 0x00, 0x00,
2522 0x00, 0x00, // lea <disp32>(%rip), %rdi
2523 0x66, // data16 prefix (no-op prefix)
2524 0x48, // rex64 (no-op prefix)
2525 0xff, 0x15, 0x00, 0x00, 0x00,
2526 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2527 };
2528 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2529 TLSSequenceOffset = 4;
2530 }
2531
2532 // The replacement code for the small code model. It's the same for
2533 // both sequences.
2534 static const std::initializer_list<uint8_t> SmallSequence = {
2535 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2536 0x00, // mov %fs:0, %rax
2537 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2538 // %rax
2539 };
2540 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2541 TpoffRelocOffset = 12;
2542 } else {
2543 static const std::initializer_list<uint8_t> CodeSequence = {
2544 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2545 // %rdi
2546 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2547 0x00, // movabs $__tls_get_addr@pltoff, %rax
2548 0x48, 0x01, 0xd8, // add %rbx, %rax
2549 0xff, 0xd0 // call *%rax
2550 };
2551 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2552 TLSSequenceOffset = 3;
2553
2554 // The replacement code for the large code model
2555 static const std::initializer_list<uint8_t> LargeSequence = {
2556 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2557 0x00, // mov %fs:0, %rax
2558 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2559 // %rax
2560 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2561 };
2562 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2563 TpoffRelocOffset = 12;
2564 }
2565
2566 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2567 // The new TPOFF32 relocations is used as an absolute offset from
2568 // %fs:0, so remove the TLSGD/TLSLD addend again.
2569 RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2570 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2571 if (Value.SymbolName)
2572 addRelocationForSymbol(RE, Value.SymbolName);
2573 else
2574 addRelocationForSection(RE, Value.SectionID);
2575 } else if (RelType == ELF::R_X86_64_TLSLD) {
2576 if (IsSmallCodeModel) {
2577 if (!IsGOTPCRel) {
2578 static const std::initializer_list<uint8_t> CodeSequence = {
2579 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2580 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2581 };
2582 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2583 TLSSequenceOffset = 3;
2584
2585 // The replacement code for the small code model
2586 static const std::initializer_list<uint8_t> SmallSequence = {
2587 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2588 0x64, 0x48, 0x8b, 0x04, 0x25,
2589 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2590 };
2591 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2592 } else {
2593 // This code sequence is not described in the TLS spec but gcc
2594 // generates it sometimes.
2595 static const std::initializer_list<uint8_t> CodeSequence = {
2596 0x48, 0x8d, 0x3d, 0x00,
2597 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2598 0xff, 0x15, 0x00, 0x00,
2599 0x00, 0x00 // call
2600 // *__tls_get_addr@gotpcrel(%rip)
2601 };
2602 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2603 TLSSequenceOffset = 3;
2604
2605 // The replacement is code is just like above but it needs to be
2606 // one byte longer.
2607 static const std::initializer_list<uint8_t> SmallSequence = {
2608 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2609 0x64, 0x48, 0x8b, 0x04, 0x25,
2610 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2611 };
2612 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2613 }
2614 } else {
2615 // This is the same sequence as for the TLSGD sequence with the large
2616 // memory model above
2617 static const std::initializer_list<uint8_t> CodeSequence = {
2618 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2619 // %rdi
2620 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2621 0x48, // movabs $__tls_get_addr@pltoff, %rax
2622 0x01, 0xd8, // add %rbx, %rax
2623 0xff, 0xd0 // call *%rax
2624 };
2625 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2626 TLSSequenceOffset = 3;
2627
2628 // The replacement code for the large code model
2629 static const std::initializer_list<uint8_t> LargeSequence = {
2630 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2631 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2632 0x00, // 10 byte nop
2633 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2634 };
2635 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2636 }
2637 } else {
2638 llvm_unreachable("both TLS relocations handled above");
2639 }
2640
2641 assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2642 "Old and new code sequences must have the same size");
2643
2644 auto &Section = Sections[SectionID];
2645 if (Offset < TLSSequenceOffset ||
2646 (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2647 Section.getSize()) {
2648 report_fatal_error("unexpected end of section in TLS sequence");
2649 }
2650
2651 auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2652 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2653 ExpectedCodeSequence) {
2655 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2656 }
2657
2658 memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2659}
2660
2662 // We don't use the GOT in all of these cases, but it's essentially free
2663 // to put them all here.
2664 size_t Result = 0;
2665 switch (Arch) {
2666 case Triple::x86_64:
2667 case Triple::aarch64:
2668 case Triple::aarch64_be:
2670 case Triple::ppc64:
2671 case Triple::ppc64le:
2672 case Triple::systemz:
2673 Result = sizeof(uint64_t);
2674 break;
2675 case Triple::x86:
2676 case Triple::arm:
2677 case Triple::thumb:
2678 Result = sizeof(uint32_t);
2679 break;
2680 case Triple::mips:
2681 case Triple::mipsel:
2682 case Triple::mips64:
2683 case Triple::mips64el:
2685 Result = sizeof(uint32_t);
2686 else if (IsMipsN64ABI)
2687 Result = sizeof(uint64_t);
2688 else
2689 llvm_unreachable("Mips ABI not handled");
2690 break;
2691 default:
2692 llvm_unreachable("Unsupported CPU type!");
2693 }
2694 return Result;
2695}
2696
2697uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2698 if (GOTSectionID == 0) {
2699 GOTSectionID = Sections.size();
2700 // Reserve a section id. We'll allocate the section later
2701 // once we know the total size
2702 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2703 }
2704 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2705 CurrentGOTIndex += no;
2706 return StartOffset;
2707}
2708
2709uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2710 unsigned GOTRelType) {
2711 auto E = GOTOffsetMap.insert({Value, 0});
2712 if (E.second) {
2713 uint64_t GOTOffset = allocateGOTEntries(1);
2714
2715 // Create relocation for newly created GOT entry
2716 RelocationEntry RE =
2717 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2718 if (Value.SymbolName)
2719 addRelocationForSymbol(RE, Value.SymbolName);
2720 else
2721 addRelocationForSection(RE, Value.SectionID);
2722
2723 E.first->second = GOTOffset;
2724 }
2725
2726 return E.first->second;
2727}
2728
2729void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2730 uint64_t Offset,
2731 uint64_t GOTOffset,
2732 uint32_t Type) {
2733 // Fill in the relative address of the GOT Entry into the stub
2734 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2735 addRelocationForSection(GOTRE, GOTSectionID);
2736}
2737
2738RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2739 uint64_t SymbolOffset,
2740 uint32_t Type) {
2741 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2742}
2743
2744void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2745 // This should never return an error as `processNewSymbol` wouldn't have been
2746 // called if getFlags() returned an error before.
2747 auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2748
2749 if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2750 if (IFuncStubSectionID == 0) {
2751 // Create a dummy section for the ifunc stubs. It will be actually
2752 // allocated in finalizeLoad() below.
2753 IFuncStubSectionID = Sections.size();
2754 Sections.push_back(
2755 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2756 // First 64B are reserverd for the IFunc resolver
2757 IFuncStubOffset = 64;
2758 }
2759
2760 IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2761 // Modify the symbol so that it points to the ifunc stub instead of to the
2762 // resolver function.
2763 Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2764 Symbol.getFlags());
2765 IFuncStubOffset += getMaxIFuncStubSize();
2766 }
2767}
2768
2770 ObjSectionToIDMap &SectionMap) {
2771 if (IsMipsO32ABI)
2772 if (!PendingRelocs.empty())
2773 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2774
2775 // Create the IFunc stubs if necessary. This must be done before processing
2776 // the GOT entries, as the IFunc stubs may create some.
2777 if (IFuncStubSectionID != 0) {
2778 uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2779 IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2780 if (!IFuncStubsAddr)
2782 "Unable to allocate memory for IFunc stubs!");
2783 Sections[IFuncStubSectionID] =
2784 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2785 IFuncStubOffset, 0);
2786
2787 createIFuncResolver(IFuncStubsAddr);
2788
2789 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2790 << IFuncStubSectionID << " Addr: "
2791 << Sections[IFuncStubSectionID].getAddress() << '\n');
2792 for (auto &IFuncStub : IFuncStubs) {
2793 auto &Symbol = IFuncStub.OriginalSymbol;
2794 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2795 << " Offset: " << format("%p", Symbol.getOffset())
2796 << " IFuncStubOffset: "
2797 << format("%p\n", IFuncStub.StubOffset));
2798 createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2799 Symbol.getSectionID(), Symbol.getOffset());
2800 }
2801
2802 IFuncStubSectionID = 0;
2803 IFuncStubOffset = 0;
2804 IFuncStubs.clear();
2805 }
2806
2807 // If necessary, allocate the global offset table
2808 if (GOTSectionID != 0) {
2809 // Allocate memory for the section
2810 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2811 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2812 GOTSectionID, ".got", false);
2813 if (!Addr)
2814 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2815
2816 Sections[GOTSectionID] =
2817 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2818
2819 // For now, initialize all GOT entries to zero. We'll fill them in as
2820 // needed when GOT-based relocations are applied.
2821 memset(Addr, 0, TotalSize);
2822 if (IsMipsN32ABI || IsMipsN64ABI) {
2823 // To correctly resolve Mips GOT relocations, we need a mapping from
2824 // object's sections to GOTs.
2825 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2826 SI != SE; ++SI) {
2827 if (!SI->relocations().empty()) {
2828 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2829 if (!RelSecOrErr)
2831 toString(RelSecOrErr.takeError()));
2832
2833 section_iterator RelocatedSection = *RelSecOrErr;
2834 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2835 assert(i != SectionMap.end());
2836 SectionToGOTMap[i->second] = GOTSectionID;
2837 }
2838 }
2839 GOTSymbolOffsets.clear();
2840 }
2841 }
2842
2843 // Look for and record the EH frame section.
2844 ObjSectionToIDMap::iterator i, e;
2845 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2846 const SectionRef &Section = i->first;
2847
2848 StringRef Name;
2849 Expected<StringRef> NameOrErr = Section.getName();
2850 if (NameOrErr)
2851 Name = *NameOrErr;
2852 else
2853 consumeError(NameOrErr.takeError());
2854
2855 if (Name == ".eh_frame") {
2856 UnregisteredEHFrameSections.push_back(i->second);
2857 break;
2858 }
2859 }
2860
2861 GOTOffsetMap.clear();
2862 GOTSectionID = 0;
2863 CurrentGOTIndex = 0;
2864
2865 return Error::success();
2866}
2867
2869 return Obj.isELF();
2870}
2871
2872void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2873 if (Arch == Triple::x86_64) {
2874 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2875 // (see createIFuncStub() for details)
2876 // The following code first saves all registers that contain the original
2877 // function arguments as those registers are not saved by the resolver
2878 // function. %r11 is saved as well so that the GOT2 entry can be updated
2879 // afterwards. Then it calls the actual IFunc resolver function whose
2880 // address is stored in GOT2. After the resolver function returns, all
2881 // saved registers are restored and the return value is written to GOT1.
2882 // Finally, jump to the now resolved function.
2883 // clang-format off
2884 const uint8_t StubCode[] = {
2885 0x57, // push %rdi
2886 0x56, // push %rsi
2887 0x52, // push %rdx
2888 0x51, // push %rcx
2889 0x41, 0x50, // push %r8
2890 0x41, 0x51, // push %r9
2891 0x41, 0x53, // push %r11
2892 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2893 0x41, 0x5b, // pop %r11
2894 0x41, 0x59, // pop %r9
2895 0x41, 0x58, // pop %r8
2896 0x59, // pop %rcx
2897 0x5a, // pop %rdx
2898 0x5e, // pop %rsi
2899 0x5f, // pop %rdi
2900 0x49, 0x89, 0x03, // mov %rax,(%r11)
2901 0xff, 0xe0 // jmp *%rax
2902 };
2903 // clang-format on
2904 static_assert(sizeof(StubCode) <= 64,
2905 "maximum size of the IFunc resolver is 64B");
2906 memcpy(Addr, StubCode, sizeof(StubCode));
2907 } else {
2909 "IFunc resolver is not supported for target architecture");
2910 }
2911}
2912
2913void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2914 uint64_t IFuncResolverOffset,
2915 uint64_t IFuncStubOffset,
2916 unsigned IFuncSectionID,
2917 uint64_t IFuncOffset) {
2918 auto &IFuncStubSection = Sections[IFuncStubSectionID];
2919 auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2920
2921 if (Arch == Triple::x86_64) {
2922 // The first instruction loads a PC-relative address into %r11 which is a
2923 // GOT entry for this stub. This initially contains the address to the
2924 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2925 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2926 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2927 // entry.
2928 //
2929 // The next instruction just jumps to the address contained in the GOT
2930 // entry. As mentioned above, we do this two-step jump by first setting
2931 // %r11 so that the IFunc resolver has access to it.
2932 //
2933 // The IFunc resolver of course also needs to know the actual address of
2934 // the actual IFunc resolver function. This will be stored in a GOT entry
2935 // right next to the first one for this stub. So, the IFunc resolver will
2936 // be able to call it with %r11+8.
2937 //
2938 // In total, two adjacent GOT entries (+relocation) and one additional
2939 // relocation are required:
2940 // GOT1: Address of the IFunc resolver.
2941 // GOT2: Address of the IFunc resolver function.
2942 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2943 uint64_t GOT1 = allocateGOTEntries(2);
2944 uint64_t GOT2 = GOT1 + getGOTEntrySize();
2945
2946 RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2947 IFuncResolverOffset, {});
2948 addRelocationForSection(RE1, IFuncStubSectionID);
2949 RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2950 addRelocationForSection(RE2, IFuncSectionID);
2951
2952 const uint8_t StubCode[] = {
2953 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2954 0x41, 0xff, 0x23 // jmpq *(%r11)
2955 };
2956 assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2957 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2958 memcpy(Addr, StubCode, sizeof(StubCode));
2959
2960 // The PC-relative value starts 4 bytes from the end of the leaq
2961 // instruction, so the addend is -4.
2962 resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2963 GOT1 - 4, ELF::R_X86_64_PC32);
2964 } else {
2965 report_fatal_error("IFunc stub is not supported for target architecture");
2966 }
2967}
2968
2969unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2970 if (Arch == Triple::x86_64) {
2971 return 10;
2972 }
2973 return 0;
2974}
2975
2976bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2977 unsigned RelTy = R.getType();
2979 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2980 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2981
2983 return RelTy == ELF::R_LARCH_GOT_PC_HI20 ||
2984 RelTy == ELF::R_LARCH_GOT_PC_LO12 ||
2985 RelTy == ELF::R_LARCH_GOT64_PC_HI12 ||
2986 RelTy == ELF::R_LARCH_GOT64_PC_LO20;
2987
2988 if (Arch == Triple::x86_64)
2989 return RelTy == ELF::R_X86_64_GOTPCREL ||
2990 RelTy == ELF::R_X86_64_GOTPCRELX ||
2991 RelTy == ELF::R_X86_64_GOT64 ||
2992 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2993 return false;
2994}
2995
2996bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2997 if (Arch != Triple::x86_64)
2998 return true; // Conservative answer
2999
3000 switch (R.getType()) {
3001 default:
3002 return true; // Conservative answer
3003
3004
3005 case ELF::R_X86_64_GOTPCREL:
3006 case ELF::R_X86_64_GOTPCRELX:
3007 case ELF::R_X86_64_REX_GOTPCRELX:
3008 case ELF::R_X86_64_GOTPC64:
3009 case ELF::R_X86_64_GOT64:
3010 case ELF::R_X86_64_GOTOFF64:
3011 case ELF::R_X86_64_PC32:
3012 case ELF::R_X86_64_PC64:
3013 case ELF::R_X86_64_64:
3014 // We know that these reloation types won't need a stub function. This list
3015 // can be extended as needed.
3016 return false;
3017 }
3018}
3019
3020} // namespace llvm
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Definition ELFTypes.h:107
#define I(x, y, z)
Definition MD5.cpp:58
#define T
#define P(N)
static void or32le(void *P, int32_t V)
static void or32AArch64Imm(void *L, uint64_t Imm)
static uint64_t getBits(uint64_t Val, int Start, int End)
static void write32AArch64Addr(void *L, uint64_t Imm)
#define LLVM_DEBUG(...)
Definition Debug.h:114
Expected< const Elf_Sym * > getSymbol(DataRefImpl Sym) const
static Expected< ELFObjectFile< ELFT > > create(MemoryBufferRef Object, bool InitContent=true)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
const T * data() const
Definition ArrayRef.h:144
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static ErrorSuccess success()
Create a success value.
Definition Error.h:336
Tagged union holding either a T or a Error.
Definition Error.h:485
Error takeError()
Take ownership of the stored error.
Definition Error.h:612
Symbol resolution interface.
Definition JITSymbol.h:373
static std::unique_ptr< MemoryBuffer > getMemBufferCopy(StringRef InputData, const Twine &BufferName="")
Open the specified memory range as a MemoryBuffer, copying the contents and taking ownership of it.
RelocationEntry - used to represent relocations internally in the dynamic linker.
uint32_t RelType
RelType - relocation type.
uint64_t Offset
Offset - offset into the section.
int64_t Addend
Addend - the relocation addend encoded in the instruction itself.
unsigned SectionID
SectionID - the section this relocation points to.
void registerEHFrames() override
size_t getGOTEntrySize() override
~RuntimeDyldELF() override
static std::unique_ptr< RuntimeDyldELF > create(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Error finalizeLoad(const ObjectFile &Obj, ObjSectionToIDMap &SectionMap) override
DenseMap< SID, SID > SectionToGOTMap
bool isCompatibleFile(const object::ObjectFile &Obj) const override
std::unique_ptr< RuntimeDyld::LoadedObjectInfo > loadObject(const object::ObjectFile &O) override
RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Expected< relocation_iterator > processRelocationRef(unsigned SectionID, relocation_iterator RelI, const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) override
Parses one or more object file relocations (some object files use relocation pairs) and stores it to ...
std::map< SectionRef, unsigned > ObjSectionToIDMap
void writeInt32BE(uint8_t *Addr, uint32_t Value)
RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
void writeInt64BE(uint8_t *Addr, uint64_t Value)
std::map< RelocationValueRef, uintptr_t > StubMap
void writeInt16BE(uint8_t *Addr, uint16_t Value)
void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName)
JITSymbolResolver & Resolver
RuntimeDyld::MemoryManager & MemMgr
void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID)
Expected< unsigned > findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections)
Find Section in LocalSections.
Triple::ArchType Arch
uint8_t * createStubFunction(uint8_t *Addr, unsigned AbiVariant=0)
Emits long jump instruction to Addr.
uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const
Endian-aware read Read the least significant Size bytes from Src.
uint64_t getSectionLoadAddress(unsigned SectionID) const
virtual unsigned getMaxStubSize() const =0
RTDyldSymbolTable GlobalSymbolTable
Expected< ObjSectionToIDMap > loadObjectImpl(const object::ObjectFile &Obj)
SectionEntry - represents a section emitted into memory by the dynamic linker.
StringMapIterBase< SymbolTableEntry, true > const_iterator
Definition StringMap.h:220
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Symbol info for RuntimeDyld.
Target - Wrapper for Target specific information.
@ UnknownArch
Definition Triple.h:50
@ loongarch64
Definition Triple.h:65
static LLVM_ABI StringRef getArchTypePrefix(ArchType Kind)
Get the "prefix" canonical name for the Kind architecture.
Definition Triple.cpp:173
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM Value Representation.
Definition Value.h:75
Expected< uint32_t > getFlags() const
Get symbol flags (bitwise OR of SymbolRef::Flags)
DataRefImpl getRawDataRefImpl() const
StringRef getData() const
Definition Binary.cpp:39
bool isLittleEndian() const
Definition Binary.h:157
StringRef getFileName() const
Definition Binary.cpp:41
bool isELF() const
Definition Binary.h:125
virtual unsigned getPlatformFlags() const =0
Returns platform-specific object flags, if any.
Expected< int64_t > getAddend() const
This class is the base class for all object file types.
Definition ObjectFile.h:231
virtual section_iterator section_end() const =0
virtual uint8_t getBytesInAddress() const =0
The number of bytes used to represent an address in this object file format.
section_iterator_range sections() const
Definition ObjectFile.h:331
virtual StringRef getFileFormatName() const =0
virtual section_iterator section_begin() const =0
uint64_t getType() const
Definition ObjectFile.h:633
uint64_t getOffset() const
Definition ObjectFile.h:625
symbol_iterator getSymbol() const
Definition ObjectFile.h:629
This is a value type class that represents a single section in the list of sections in the object fil...
Definition ObjectFile.h:83
DataRefImpl getRawDataRefImpl() const
Definition ObjectFile.h:603
bool isText() const
Whether this section contains instructions.
Definition ObjectFile.h:555
Expected< StringRef > getName() const
Definition ObjectFile.h:522
This is a value type class that represents a single symbol in the list of symbols in the object file.
Definition ObjectFile.h:170
Expected< section_iterator > getSection() const
Get section this symbol is defined in reference to.
Definition ObjectFile.h:485
virtual basic_symbol_iterator symbol_end() const =0
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const char SectionName[]
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
static int64_t decodePPC64LocalEntryOffset(unsigned Other)
Definition ELF.h:426
@ EF_PPC64_ABI
Definition ELF.h:418
@ EF_MIPS_ABI_O32
Definition ELF.h:534
@ EF_MIPS_ABI2
Definition ELF.h:526
content_iterator< SectionRef > section_iterator
Definition ObjectFile.h:49
content_iterator< RelocationRef > relocation_iterator
Definition ObjectFile.h:79
@ Resolved
Queried, materialization begun.
Definition Core.h:776
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
void write32le(void *P, uint32_t V)
Definition Endian.h:475
uint32_t read32le(const void *P)
Definition Endian.h:432
detail::packed_endian_specific_integral< int32_t, llvm::endianness::little, unaligned > little32_t
Definition Endian.h:300
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
LLVM_ABI void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner={})
Log all errors (if any) in E to OS.
Definition Error.cpp:65
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
static uint16_t applyPPChighera(uint64_t value)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
static uint16_t applyPPChi(uint64_t value)
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
Definition Error.h:990
static void applyITypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm)
static uint16_t applyPPChighesta(uint64_t value)
static uint16_t applyPPChighest(uint64_t value)
LLVM_ABI Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, OnCuIndexOverflow OverflowOptValue)
Definition DWP.cpp:622
static uint16_t applyPPCha(uint64_t value)
static void applyUTypeImmRISCV(uint8_t *InstrAddr, uint32_t Imm)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition MathExtras.h:164
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
static uint16_t applyPPClo(uint64_t value)
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:126
Error make_error(ArgTs &&... Args)
Make a Error instance representing failure using the given error info type.
Definition Error.h:340
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
Definition Error.h:769
static uint16_t applyPPChigher(uint64_t value)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
static void or32le(void *P, int32_t V)
std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral=false, bool UpperCase=true, bool InsertSeparators=false)
constexpr int32_t SignExtend32(uint32_t X)
Sign-extend the number in the bottom B bits of X to a 32-bit integer.
Definition MathExtras.h:565
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1847
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
static uint32_t extractBits(uint64_t Val, uint32_t Hi, uint32_t Lo)
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
static uint64_t getLoongArchPageDelta(uint64_t dest, uint64_t pc, uint32_t type)
void consumeError(Error Err)
Consume a Error without doing anything.
Definition Error.h:1083
static void write32AArch64Addr(void *T, uint64_t s, uint64_t p, int shift)
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
SymInfo contains information about symbol: it's address and section index which is -1LL for absolute ...