99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
102#define DEBUG_TYPE "selectiondag"
106 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
109 cl::desc(
"Number limit for gluing ld/st of memcpy."),
114 cl::desc(
"DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
153 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->
trunc(EltSize);
166 unsigned SplatBitSize;
168 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
173 const bool IsBigEndian =
false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
184 while (
N->getOpcode() == ISD::BITCAST)
185 N =
N->getOperand(0).getNode();
194 unsigned i = 0, e =
N->getNumOperands();
197 while (i != e &&
N->getOperand(i).isUndef())
201 if (i == e)
return false;
213 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
222 for (++i; i != e; ++i)
223 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 while (
N->getOpcode() == ISD::BITCAST)
231 N =
N->getOperand(0).getNode();
240 bool IsAllUndef =
true;
253 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
254 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
303 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
305 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
310 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
315 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
328 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
329 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
331 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
342 if (
N->getNumOperands() == 0)
348 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
351template <
typename ConstNodeType>
353 std::function<
bool(ConstNodeType *)> Match,
354 bool AllowUndefs,
bool AllowTruncation) {
364 EVT SVT =
Op.getValueType().getScalarType();
365 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
388 bool AllowUndefs,
bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
395 return Match(LHSCst, RHSCst);
398 if (LHS.getOpcode() != RHS.getOpcode() ||
404 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
407 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
413 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
416 if (!Match(LHSCst, RHSCst))
438 switch (VecReduceOpcode) {
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
500#include "llvm/IR/VPIntrinsics.def"
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
549#include "llvm/IR/VPIntrinsics.def"
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
561#include "llvm/IR/VPIntrinsics.def"
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
633 bool isIntegerLike) {
658 bool IsInteger =
Type.isInteger();
663 unsigned Op = Op1 | Op2;
679 bool IsInteger =
Type.isInteger();
714 ID.AddPointer(VTList.
VTs);
720 for (
const auto &
Op :
Ops) {
721 ID.AddPointer(
Op.getNode());
722 ID.AddInteger(
Op.getResNo());
729 for (
const auto &
Op :
Ops) {
730 ID.AddPointer(
Op.getNode());
731 ID.AddInteger(
Op.getResNo());
744 switch (
N->getOpcode()) {
753 ID.AddPointer(
C->getConstantIntValue());
754 ID.AddBoolean(
C->isOpaque());
787 case ISD::PSEUDO_PROBE:
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
840 case ISD::VP_LOAD_FF: {
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
848 case ISD::VP_STORE: {
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
870 case ISD::VP_GATHER: {
878 case ISD::VP_SCATTER: {
910 case ISD::MSCATTER: {
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
947 case ISD::ADDRSPACECAST: {
969 case ISD::MDNODE_SDNODE:
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
1003 if (
N->getValueType(0) == MVT::Glue)
1006 switch (
N->getOpcode()) {
1008 case ISD::HANDLENODE:
1014 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1015 if (
N->getValueType(i) == MVT::Glue)
1032 if (
Node.use_empty())
1047 while (!DeadNodes.
empty()) {
1056 DUL->NodeDeleted(
N,
nullptr);
1059 RemoveNodeFromCSEMaps(
N);
1090 RemoveNodeFromCSEMaps(
N);
1094 DeleteNodeNotInCSEMaps(
N);
1097void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1098 assert(
N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1109 assert(!(V->isVariadic() && isParameter));
1111 ByvalParmDbgValues.push_back(V);
1113 DbgValues.push_back(V);
1116 DbgValMap[
Node].push_back(V);
1120 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1121 if (
I == DbgValMap.end())
1123 for (
auto &Val:
I->second)
1124 Val->setIsInvalidated();
1128void SelectionDAG::DeallocateNode(
SDNode *
N) {
1151void SelectionDAG::verifyNode(
SDNode *
N)
const {
1152 switch (
N->getOpcode()) {
1154 if (
N->isTargetOpcode())
1158 EVT VT =
N->getValueType(0);
1159 assert(
N->getNumValues() == 1 &&
"Too many results!");
1161 "Wrong return type!");
1162 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1163 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1166 "Wrong operand type!");
1168 "Wrong return type size");
1172 assert(
N->getNumValues() == 1 &&
"Too many results!");
1173 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1174 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT =
N->getValueType(0).getVectorElementType();
1177 for (
const SDUse &
Op :
N->ops()) {
1178 assert((
Op.getValueType() == EltVT ||
1179 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1180 EltVT.
bitsLE(
Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1195void SelectionDAG::InsertNode(SDNode *
N) {
1196 AllNodes.push_back(
N);
1198 N->PersistentId = NextPersistentId++;
1202 DUL->NodeInserted(
N);
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1210 bool Erased =
false;
1211 switch (
N->getOpcode()) {
1212 case ISD::HANDLENODE:
return false;
1215 "Cond code doesn't exist!");
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1247 Erased = CSEMap.RemoveNode(
N);
1254 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1274 if (Existing !=
N) {
1285 DUL->NodeDeleted(
N, Existing);
1286 DeleteNodeNotInCSEMaps(
N);
1293 DUL->NodeUpdated(
N);
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1306 FoldingSetNodeID
ID;
1309 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1311 Node->intersectFlagsWith(
N->getFlags());
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1326 FoldingSetNodeID
ID;
1329 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1331 Node->intersectFlagsWith(
N->getFlags());
1344 FoldingSetNodeID
ID;
1347 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1349 Node->intersectFlagsWith(
N->getFlags());
1362 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1365 InsertNode(&EntryNode);
1376 SDAGISelPass = PassPtr;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1386 FnVarLocs = VarLocs;
1390 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1392 OperandRecycler.clear(OperandAllocator);
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1406 NextPersistentId = 0;
1412 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1414 switch (
N->getOpcode()) {
1419 "debug location. Use another overload.");
1426 const SDLoc &
DL,
void *&InsertPos) {
1427 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1429 switch (
N->getOpcode()) {
1435 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1442 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1443 N->setDebugLoc(
DL.getDebugLoc());
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1464 EntryNode.UseList =
nullptr;
1465 InsertNode(&EntryNode);
1471 return VT.
bitsGT(
Op.getValueType())
1477std::pair<SDValue, SDValue>
1481 "Strict no-op FP extend/round not allowed.");
1488 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1492 return VT.
bitsGT(
Op.getValueType()) ?
1498 return VT.
bitsGT(
Op.getValueType()) ?
1504 return VT.
bitsGT(
Op.getValueType()) ?
1512 auto Type =
Op.getValueType();
1516 auto Size =
Op.getValueSizeInBits();
1527 auto Type =
Op.getValueType();
1531 auto Size =
Op.getValueSizeInBits();
1542 auto Type =
Op.getValueType();
1546 auto Size =
Op.getValueSizeInBits();
1560 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1564 EVT OpVT =
Op.getValueType();
1566 "Cannot getZeroExtendInReg FP types");
1568 "getZeroExtendInReg type should be vector iff the operand "
1572 "Vector element counts must match in getZeroExtendInReg");
1584 EVT OpVT =
Op.getValueType();
1586 "Cannot getVPZeroExtendInReg FP types");
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1629 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1640 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1642 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1651 switch (TLI->getBooleanContents(OpVT)) {
1662 bool isT,
bool isO) {
1668 bool isT,
bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1673 EVT VT,
bool isT,
bool isO) {
1690 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1696 Elt = ConstantInt::get(*
getContext(), NewVal);
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1715 "Can only handle an even split!");
1719 for (
unsigned i = 0; i != Parts; ++i)
1721 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1722 ViaEltVT, isT, isO));
1727 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1738 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1739 ViaEltVT, isT, isO));
1744 std::reverse(EltParts.
begin(), EltParts.
end());
1763 "APInt size does not match type size!");
1772 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(
N, IP);
1790 bool isT,
bool isO) {
1798 IsTarget, IsOpaque);
1830 EVT VT,
bool isTarget) {
1851 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(
N, IP);
1871 if (EltVT == MVT::f32)
1873 if (EltVT == MVT::f64)
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1887 EVT VT, int64_t
Offset,
bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1908 ID.AddInteger(TargetFlags);
1910 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1913 auto *
N = newSDNode<GlobalAddressSDNode>(
1914 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1915 CSEMap.InsertNode(
N, IP);
1927 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1930 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(
N, IP);
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1945 ID.AddInteger(TargetFlags);
1947 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1950 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(
N, IP);
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO,
DL, MVT::Glue, Chain,
1965 bool isTarget,
unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1976 ID.AddInteger(Alignment->value());
1979 ID.AddInteger(TargetFlags);
1981 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1984 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
1986 CSEMap.InsertNode(
N, IP);
1995 bool isTarget,
unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
2004 ID.AddInteger(Alignment->value());
2006 C->addSelectionDAGCSEId(
ID);
2007 ID.AddInteger(TargetFlags);
2009 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2012 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2014 CSEMap.InsertNode(
N, IP);
2024 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2027 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2028 CSEMap.InsertNode(
N, IP);
2035 ValueTypeNodes.size())
2042 N = newSDNode<VTSDNode>(VT);
2048 SDNode *&
N = ExternalSymbols[Sym];
2050 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2059 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2065 unsigned TargetFlags) {
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2069 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2075 if ((
unsigned)
Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(
Cond+1);
2078 if (!CondCodeNodes[
Cond]) {
2079 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2080 CondCodeNodes[
Cond] =
N;
2088 bool ConstantFold) {
2090 "APInt size does not match type size!");
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2121 const APInt &StepVal) {
2145 "Must have the same number of vector elements as mask elements!");
2147 "Invalid VECTOR_SHUFFLE");
2155 int NElts = Mask.size();
2157 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2166 for (
int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2174 if (TLI->hasVectorBlend()) {
2183 for (
int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2188 if (UndefElements[MaskVec[i] -
Offset]) {
2194 if (!UndefElements[i])
2199 BlendSplat(N1BV, 0);
2201 BlendSplat(N2BV, NElts);
2206 bool AllLHS =
true, AllRHS =
true;
2208 for (
int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2214 }
else if (MaskVec[i] >= 0) {
2218 if (AllLHS && AllRHS)
2220 if (AllLHS && !N2Undef)
2233 bool Identity =
true, AllSame =
true;
2234 for (
int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2238 if (Identity && NElts)
2247 while (V.getOpcode() == ISD::BITCAST)
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2279 NewBV =
getNode(ISD::BITCAST, dl, VT, NewBV);
2289 for (
int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2293 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2299 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2302 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2304 createOperands(
N,
Ops);
2306 CSEMap.InsertNode(
N, IP);
2327 ID.AddInteger(Reg.id());
2329 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2332 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2334 CSEMap.InsertNode(
N, IP);
2342 ID.AddPointer(RegMask);
2344 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2347 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(
N, IP);
2363 ID.AddPointer(Label);
2365 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2370 createOperands(
N,
Ops);
2372 CSEMap.InsertNode(
N, IP);
2378 int64_t
Offset,
bool isTarget,
2379 unsigned TargetFlags) {
2387 ID.AddInteger(TargetFlags);
2389 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2392 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2393 CSEMap.InsertNode(
N, IP);
2404 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2407 auto *
N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(
N, IP);
2419 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2422 auto *
N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(
N, IP);
2429 if (VT == V.getValueType())
2436 unsigned SrcAS,
unsigned DestAS) {
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2445 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2449 VTs, SrcAS, DestAS);
2450 createOperands(
N,
Ops);
2452 CSEMap.InsertNode(
N, IP);
2464 EVT OpTy =
Op.getValueType();
2466 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2481 if (
Op.getNode() != FPNode)
2485 while (!Worklist.
empty()) {
2496 if (
Node == FPNode ||
Node->getOpcode() == ISD::CALLSEQ_START)
2499 if (
Node->getOpcode() == ISD::CALLSEQ_END) {
2518 std::optional<unsigned> CallRetResNo) {
2520 EVT VT =
Node->getValueType(0);
2521 unsigned NumResults =
Node->getNumValues();
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2526 const char *LCName = TLI->getLibcallName(LC);
2530 auto getVecDesc = [&]() ->
VecDesc const * {
2531 for (
bool Masked : {
false,
true}) {
2542 if (VT.
isVector() && !(VD = getVecDesc()))
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.
getResNo();
2556 if (CallRetResNo == ResNo)
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2566 if (ST->getAlign() <
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2582 EVT ArgVT =
Op.getValueType();
2584 Args.emplace_back(
Op, ArgTy);
2591 if (ResNo == CallRetResNo)
2593 EVT ResVT =
Node->getValueType(ResNo);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr,
PointerTy);
2608 Type *RetType = CallRetResNo.has_value()
2609 ?
Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2618 auto [
Call, CallChain] = TLI->LowerCallTo(CLI);
2621 if (ResNo == CallRetResNo) {
2627 getLoad(
Node->getValueType(ResNo),
DL, CallChain, ResultPtr, PtrInfo);
2633 PtrInfo = ST->getPointerInfo();
2639 Results.push_back(LoadResult);
2649 EVT VT =
Node->getValueType(0);
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2696 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2698 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2706 if (RedAlign > StackAlign) {
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2713 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2720 RedAlign = std::min(RedAlign, StackAlign);
2735 false,
nullptr, StackID);
2750 "Don't know how to choose the maximum size when creating a stack "
2759 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2767 auto GetUndefBooleanConstant = [&]() {
2769 TLI->getBooleanContents(OpVT) ==
2806 return GetUndefBooleanConstant();
2811 return GetUndefBooleanConstant();
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2832 if (N1CFP && N2CFP) {
2837 return GetUndefBooleanConstant();
2842 return GetUndefBooleanConstant();
2848 return GetUndefBooleanConstant();
2853 return GetUndefBooleanConstant();
2858 return GetUndefBooleanConstant();
2864 return GetUndefBooleanConstant();
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2909 return GetUndefBooleanConstant();
2920 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2928 unsigned Depth)
const {
2936 const APInt &DemandedElts,
2937 unsigned Depth)
const {
2944 unsigned Depth )
const {
2950 unsigned Depth)
const {
2955 const APInt &DemandedElts,
2956 unsigned Depth)
const {
2957 EVT VT =
Op.getValueType();
2964 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2969 KnownZeroElements.
setBit(EltIdx);
2971 return KnownZeroElements;
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2985 "scalable demanded bits are ignored");
2997 UndefElts = V.getOperand(0).isUndef()
3006 APInt UndefLHS, UndefRHS;
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
3046 for (
unsigned i = 0; i != NumElts; ++i) {
3052 if (!DemandedElts[i])
3054 if (Scl && Scl !=
Op)
3065 for (
int i = 0; i != (int)NumElts; ++i) {
3071 if (!DemandedElts[i])
3073 if (M < (
int)NumElts)
3076 DemandedRHS.
setBit(M - NumElts);
3088 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3090 return (SrcElts.popcount() == 1) ||
3092 (SrcElts & SrcUndefs).
isZero());
3094 if (!DemandedLHS.
isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3102 if (Src.getValueType().isScalableVector())
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3107 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3109 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3120 if (Src.getValueType().isScalableVector())
3124 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3126 UndefElts = UndefSrcElts.
trunc(NumElts);
3131 case ISD::BITCAST: {
3133 EVT SrcVT = Src.getValueType();
3143 if ((
BitWidth % SrcBitWidth) == 0) {
3145 unsigned Scale =
BitWidth / SrcBitWidth;
3147 APInt ScaledDemandedElts =
3149 for (
unsigned I = 0;
I != Scale; ++
I) {
3153 SubDemandedElts &= ScaledDemandedElts;
3157 if (!SubUndefElts.
isZero())
3171 EVT VT = V.getValueType();
3181 (AllowUndefs || !UndefElts);
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3209 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3224 if (!SVN->isSplat())
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3244 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3245 if (LegalSVT.
bitsLT(SVT))
3253std::optional<ConstantRange>
3255 unsigned Depth)
const {
3258 "Unknown shift node");
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3263 const APInt &ShAmt = Cst->getAPIntValue();
3265 return std::nullopt;
3270 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3271 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3276 MinAmt = MaxAmt =
nullptr;
3279 const APInt &ShAmt = SA->getAPIntValue();
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->
ugt(ShAmt))
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3299 return std::nullopt;
3302std::optional<unsigned>
3304 unsigned Depth)
const {
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3310 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3324std::optional<unsigned>
3326 unsigned Depth)
const {
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3345std::optional<unsigned>
3347 unsigned Depth)
const {
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3370 EVT VT =
Op.getValueType();
3385 unsigned Depth)
const {
3386 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3390 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3400 assert((!
Op.getValueType().isFixedLengthVector() ||
3401 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3407 unsigned Opcode =
Op.getOpcode();
3415 "Expected SPLAT_VECTOR implicit truncation");
3422 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3431 const APInt &Step =
Op.getConstantOperandAPInt(0);
3440 const APInt MinNumElts =
3446 .
umul_ov(MinNumElts, Overflow);
3450 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3458 assert(!
Op.getValueType().isScalableVector());
3461 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3471 "Expected BUILD_VECTOR implicit truncation");
3495 assert(!
Op.getValueType().isScalableVector());
3498 APInt DemandedLHS, DemandedRHS;
3502 DemandedLHS, DemandedRHS))
3507 if (!!DemandedLHS) {
3515 if (!!DemandedRHS) {
3524 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3529 if (
Op.getValueType().isScalableVector())
3533 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3535 unsigned NumSubVectors =
Op.getNumOperands();
3536 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3538 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3551 if (
Op.getValueType().isScalableVector())
3558 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3564 if (!!DemandedSubElts) {
3569 if (!!DemandedSrcElts) {
3579 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3588 if (
Op.getValueType().isScalableVector())
3592 if (DemandedElts != 1)
3602 case ISD::BITCAST: {
3603 if (
Op.getValueType().isScalableVector())
3623 if ((
BitWidth % SubBitWidth) == 0) {
3630 unsigned SubScale =
BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (
unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.
setBit(i * SubScale);
3636 for (
unsigned i = 0; i != SubScale; ++i) {
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.
insertBits(Known2, SubBitWidth * Shifts);
3645 if ((SubBitWidth %
BitWidth) == 0) {
3646 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3651 unsigned SubScale = SubBitWidth /
BitWidth;
3652 APInt SubDemandedElts =
3657 for (
unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3690 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3694 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3700 if (
Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) ==
Op.getOperand(1) &&
3728 unsigned SignBits1 =
3732 unsigned SignBits0 =
3738 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3741 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3742 if (
Op.getResNo() == 0)
3749 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3752 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3753 if (
Op.getResNo() == 0)
3806 if (
Op.getResNo() != 1)
3812 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3821 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3823 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3833 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW =
Op->getFlags().hasNoSignedWrap();
3841 if (std::optional<unsigned> ShMinAmt =
3850 Op->getFlags().hasExact());
3853 if (std::optional<unsigned> ShMinAmt =
3861 Op->getFlags().hasExact());
3867 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3882 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3888 DemandedElts,
Depth + 1);
3909 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3912 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3916 Known = Known2.
concat(Known);
3930 if (
Op.getResNo() == 0)
3975 (Opcode == ISD::MGATHER)
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3992 !
Op.getValueType().isScalableVector()) {
4005 for (
unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4035 }
else if (
Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (
const MDNode *MD = LD->getRanges())
4049 Known = KnownScalarMemory;
4056 if (
Op.getValueType().isScalableVector())
4058 EVT InVT =
Op.getOperand(0).getValueType();
4070 if (
Op.getValueType().isScalableVector())
4072 EVT InVT =
Op.getOperand(0).getValueType();
4088 if (
Op.getValueType().isScalableVector())
4090 EVT InVT =
Op.getOperand(0).getValueType();
4110 Known.
Zero |= (~InMask);
4111 Known.
One &= (~Known.Zero);
4135 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4143 if (
Op.getResNo() == 1) {
4145 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4154 "We only compute knownbits for the difference here.");
4161 Borrow = Borrow.
trunc(1);
4175 if (
Op.getResNo() == 1) {
4177 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4186 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4196 Carry = Carry.
trunc(1);
4232 const unsigned Index =
Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4240 Known = Known.
trunc(EltBitWidth);
4256 Known = Known.
trunc(EltBitWidth);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4272 if (
Op.getValueType().isScalableVector())
4281 bool DemandedVal =
true;
4282 APInt DemandedVecElts = DemandedElts;
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4294 if (!!DemandedVecElts) {
4312 Known = Known2.
abs();
4345 if (CstLow && CstHigh) {
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.
sle(ValueHigh)) {
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4377 if (IsMax && CstLow) {
4405 case ISD::ATOMIC_LOAD: {
4407 if (
Op.getResNo() == 0) {
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (
const MDNode *MD = AT->getRanges())
4414 switch (AT->getExtensionType()) {
4422 switch (TLI->getExtendForAtomicOps()) {
4435 Known = KnownScalarMemory;
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (
Op.getResNo() == 1) {
4448 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4469 if (
Op.getResNo() == 0) {
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4493 if (
Op.getValueType().isScalableVector())
4497 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4639 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4647 if (
C &&
C->getAPIntValue() == 1)
4657 if (
C &&
C->getAPIntValue().isSignMask())
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4678 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4725 EVT VT =
Op.getValueType();
4737 unsigned Depth)
const {
4738 EVT VT =
Op.getValueType();
4743 unsigned FirstAnswer = 1;
4746 const APInt &Val =
C->getAPIntValue();
4756 unsigned Opcode =
Op.getOpcode();
4761 return VTBits-Tmp+1;
4770 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4772 if (NumSrcSignBits > (NumSrcBits - VTBits))
4773 return NumSrcSignBits - (NumSrcBits - VTBits);
4779 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4780 if (!DemandedElts[i])
4787 APInt T =
C->getAPIntValue().trunc(VTBits);
4788 Tmp2 =
T.getNumSignBits();
4792 if (
SrcOp.getValueSizeInBits() != VTBits) {
4794 "Expected BUILD_VECTOR implicit truncation");
4795 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4796 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4799 Tmp = std::min(Tmp, Tmp2);
4810 Tmp = std::min(Tmp, Tmp2);
4817 APInt DemandedLHS, DemandedRHS;
4821 DemandedLHS, DemandedRHS))
4824 Tmp = std::numeric_limits<unsigned>::max();
4827 if (!!DemandedRHS) {
4829 Tmp = std::min(Tmp, Tmp2);
4834 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4838 case ISD::BITCAST: {
4850 if (VTBits == SrcBits)
4856 if ((SrcBits % VTBits) == 0) {
4859 unsigned Scale = SrcBits / VTBits;
4860 APInt SrcDemandedElts =
4870 for (
unsigned i = 0; i != NumElts; ++i)
4871 if (DemandedElts[i]) {
4872 unsigned SubOffset = i % Scale;
4873 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4874 SubOffset = SubOffset * VTBits;
4875 if (Tmp <= SubOffset)
4877 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4887 return VTBits - Tmp + 1;
4889 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4896 return std::max(Tmp, Tmp2);
4901 EVT SrcVT = Src.getValueType();
4909 if (std::optional<unsigned> ShAmt =
4911 Tmp = std::min(Tmp + *ShAmt, VTBits);
4914 if (std::optional<ConstantRange> ShAmtRange =
4916 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4917 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4925 EVT ExtVT = Ext.getValueType();
4926 SDValue Extendee = Ext.getOperand(0);
4928 unsigned SizeDifference =
4930 if (SizeDifference <= MinShAmt) {
4931 Tmp = SizeDifference +
4934 return Tmp - MaxShAmt;
4940 return Tmp - MaxShAmt;
4950 FirstAnswer = std::min(Tmp, Tmp2);
4960 if (Tmp == 1)
return 1;
4962 return std::min(Tmp, Tmp2);
4965 if (Tmp == 1)
return 1;
4967 return std::min(Tmp, Tmp2);
4979 if (CstLow && CstHigh) {
4984 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4985 return std::min(Tmp, Tmp2);
4994 return std::min(Tmp, Tmp2);
5002 return std::min(Tmp, Tmp2);
5006 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
5017 if (
Op.getResNo() != 1)
5023 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
5031 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
5033 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
5048 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
5052 RotAmt = (VTBits - RotAmt) % VTBits;
5056 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5064 if (Tmp == 1)
return 1;
5069 if (CRHS->isAllOnes()) {
5075 if ((Known.
Zero | 1).isAllOnes())
5085 if (Tmp2 == 1)
return 1;
5086 return std::min(Tmp, Tmp2) - 1;
5089 if (Tmp2 == 1)
return 1;
5094 if (CLHS->isZero()) {
5099 if ((Known.
Zero | 1).isAllOnes())
5113 if (Tmp == 1)
return 1;
5114 return std::min(Tmp, Tmp2) - 1;
5118 if (SignBitsOp0 == 1)
5121 if (SignBitsOp1 == 1)
5123 unsigned OutValidBits =
5124 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5125 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5133 return std::min(Tmp, Tmp2);
5142 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5144 if (NumSrcSignBits > (NumSrcBits - VTBits))
5145 return NumSrcSignBits - (NumSrcBits - VTBits);
5152 const int BitWidth =
Op.getValueSizeInBits();
5153 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5157 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5172 bool DemandedVal =
true;
5173 APInt DemandedVecElts = DemandedElts;
5175 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5176 unsigned EltIdx = CEltNo->getZExtValue();
5177 DemandedVal = !!DemandedElts[EltIdx];
5180 Tmp = std::numeric_limits<unsigned>::max();
5186 Tmp = std::min(Tmp, Tmp2);
5188 if (!!DemandedVecElts) {
5190 Tmp = std::min(Tmp, Tmp2);
5192 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5203 const unsigned BitWidth =
Op.getValueSizeInBits();
5204 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5217 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5227 if (Src.getValueType().isScalableVector())
5230 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5231 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5239 Tmp = std::numeric_limits<unsigned>::max();
5240 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5242 unsigned NumSubVectors =
Op.getNumOperands();
5243 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5245 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5249 Tmp = std::min(Tmp, Tmp2);
5251 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5262 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5264 APInt DemandedSrcElts = DemandedElts;
5265 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5267 Tmp = std::numeric_limits<unsigned>::max();
5268 if (!!DemandedSubElts) {
5273 if (!!DemandedSrcElts) {
5275 Tmp = std::min(Tmp, Tmp2);
5277 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5282 if (
const MDNode *Ranges = LD->getRanges()) {
5283 if (DemandedElts != 1)
5288 switch (LD->getExtensionType()) {
5308 case ISD::ATOMIC_CMP_SWAP:
5309 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5310 case ISD::ATOMIC_SWAP:
5311 case ISD::ATOMIC_LOAD_ADD:
5312 case ISD::ATOMIC_LOAD_SUB:
5313 case ISD::ATOMIC_LOAD_AND:
5314 case ISD::ATOMIC_LOAD_CLR:
5315 case ISD::ATOMIC_LOAD_OR:
5316 case ISD::ATOMIC_LOAD_XOR:
5317 case ISD::ATOMIC_LOAD_NAND:
5318 case ISD::ATOMIC_LOAD_MIN:
5319 case ISD::ATOMIC_LOAD_MAX:
5320 case ISD::ATOMIC_LOAD_UMIN:
5321 case ISD::ATOMIC_LOAD_UMAX:
5322 case ISD::ATOMIC_LOAD: {
5325 if (
Op.getResNo() == 0) {
5326 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5331 if (
Op->getOpcode() == ISD::ATOMIC_LOAD) {
5332 switch (AT->getExtensionType()) {
5336 return VTBits - Tmp + 1;
5338 return VTBits - Tmp;
5343 return VTBits - Tmp + 1;
5345 return VTBits - Tmp;
5352 if (
Op.getResNo() == 0) {
5355 unsigned ExtType = LD->getExtensionType();
5359 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5360 return VTBits - Tmp + 1;
5362 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5363 return VTBits - Tmp;
5365 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5368 Type *CstTy = Cst->getType();
5373 for (
unsigned i = 0; i != NumElts; ++i) {
5374 if (!DemandedElts[i])
5379 Tmp = std::min(Tmp,
Value.getNumSignBits());
5383 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5384 Tmp = std::min(Tmp,
Value.getNumSignBits());
5408 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5410 FirstAnswer = std::max(FirstAnswer, NumBits);
5421 unsigned Depth)
const {
5423 return Op.getScalarValueSizeInBits() - SignBits + 1;
5427 const APInt &DemandedElts,
5428 unsigned Depth)
const {
5430 return Op.getScalarValueSizeInBits() - SignBits + 1;
5434 unsigned Depth)
const {
5439 EVT VT =
Op.getValueType();
5447 const APInt &DemandedElts,
5449 unsigned Depth)
const {
5450 unsigned Opcode =
Op.getOpcode();
5479 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5480 if (!DemandedElts[i])
5490 if (Src.getValueType().isScalableVector())
5493 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5494 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5500 if (
Op.getValueType().isScalableVector())
5505 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5507 APInt DemandedSrcElts = DemandedElts;
5508 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5522 EVT SrcVT = Src.getValueType();
5526 IndexC->getZExtValue());
5541 if (DemandedElts[IndexC->getZExtValue()] &&
5544 APInt InVecDemandedElts = DemandedElts;
5545 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5546 if (!!InVecDemandedElts &&
5571 APInt DemandedLHS, DemandedRHS;
5574 DemandedElts, DemandedLHS, DemandedRHS,
5577 if (!DemandedLHS.
isZero() &&
5581 if (!DemandedRHS.
isZero() &&
5629 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5630 PoisonOnly, Depth + 1);
5642 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5655 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5661 unsigned Depth)
const {
5662 EVT VT =
Op.getValueType();
5672 unsigned Depth)
const {
5673 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5676 unsigned Opcode =
Op.getOpcode();
5756 if (
Op.getOperand(0).getValueType().isInteger())
5763 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5765 if (((
unsigned)CCCode & 0x10U))
5788 case ISD::FP_EXTEND:
5814 EVT VecVT =
Op.getOperand(0).getValueType();
5823 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5824 if (Elt < 0 && DemandedElts[Idx])
5833 return TLI->canCreateUndefOrPoisonForTargetNode(
5843 unsigned Opcode =
Op.getOpcode();
5845 return Op->getFlags().hasDisjoint() ||
5858 unsigned Depth)
const {
5859 EVT VT =
Op.getValueType();
5872 bool SNaN,
unsigned Depth)
const {
5873 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5884 return !
C->getValueAPF().isNaN() ||
5885 (SNaN && !
C->getValueAPF().isSignaling());
5888 unsigned Opcode =
Op.getOpcode();
5920 case ISD::FROUNDEVEN:
5926 case ISD::FNEARBYINT:
5940 case ISD::FP_EXTEND:
5962 case ISD::FMINIMUMNUM:
5963 case ISD::FMAXIMUMNUM: {
5969 case ISD::FMINNUM_IEEE:
5970 case ISD::FMAXNUM_IEEE: {
5981 case ISD::FMAXIMUM: {
5989 EVT SrcVT = Src.getValueType();
5993 Idx->getZExtValue());
6000 if (Src.getValueType().isFixedLengthVector()) {
6001 unsigned Idx =
Op.getConstantOperandVal(1);
6002 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6003 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
6013 unsigned Idx =
Op.getConstantOperandVal(2);
6019 APInt DemandedMask =
6021 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6024 bool NeverNaN =
true;
6025 if (!DemandedSrcElts.
isZero())
6028 if (NeverNaN && !DemandedSubElts.
isZero())
6037 unsigned NumElts =
Op.getNumOperands();
6038 for (
unsigned I = 0;
I != NumElts; ++
I)
6039 if (DemandedElts[
I] &&
6056 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6065 assert(
Op.getValueType().isFloatingPoint() &&
6066 "Floating point type expected");
6077 assert(!
Op.getValueType().isFloatingPoint() &&
6078 "Floating point types unsupported - use isKnownNeverZeroFloat");
6087 switch (
Op.getOpcode()) {
6101 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6105 if (ValKnown.
One[0])
6165 if (
Op->getFlags().hasExact())
6181 if (
Op->getFlags().hasExact())
6186 if (
Op->getFlags().hasNoUnsignedWrap())
6197 std::optional<bool> ne =
6204 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6215 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6229 return !C1->isNegative();
6231 return Op.getOpcode() == ISD::FABS;
6236 if (
A ==
B)
return true;
6241 if (CA->isZero() && CB->isZero())
return true;
6276 NotOperand = NotOperand->getOperand(0);
6278 if (
Other == NotOperand)
6281 return NotOperand ==
Other->getOperand(0) ||
6282 NotOperand ==
Other->getOperand(1);
6288 A =
A->getOperand(0);
6291 B =
B->getOperand(0);
6294 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6295 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6301 assert(
A.getValueType() ==
B.getValueType() &&
6302 "Values must have the same type");
6324 "BUILD_VECTOR cannot be used with scalable types");
6326 "Incorrect element count in BUILD_VECTOR!");
6334 bool IsIdentity =
true;
6335 for (
int i = 0; i !=
NumOps; ++i) {
6338 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6340 Ops[i].getConstantOperandAPInt(1) != i) {
6344 IdentitySrc =
Ops[i].getOperand(0);
6357 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6360 return Ops[0].getValueType() ==
Op.getValueType();
6362 "Concatenation of vectors with inconsistent value types!");
6365 "Incorrect element count in vector concatenation!");
6367 if (
Ops.size() == 1)
6378 bool IsIdentity =
true;
6379 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6381 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6383 Op.getOperand(0).getValueType() != VT ||
6384 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6385 Op.getConstantOperandVal(1) != IdentityIndex) {
6389 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6390 "Unexpected identity source vector for concat of extracts");
6391 IdentitySrc =
Op.getOperand(0);
6394 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6409 EVT OpVT =
Op.getValueType();
6421 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6445 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6448 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6449 CSEMap.InsertNode(
N, IP);
6461 Flags = Inserter->getFlags();
6462 return getNode(Opcode,
DL, VT, N1, Flags);
6480 case ISD::FP_EXTEND:
6483 case ISD::FP_TO_FP16:
6484 case ISD::FP_TO_BF16:
6491 case ISD::FP16_TO_FP:
6492 case ISD::BF16_TO_FP:
6513 "STEP_VECTOR can only be used with scalable types");
6516 "Unexpected step operand");
6535 case ISD::FP_EXTEND:
6537 "Invalid FP cast!");
6541 "Vector element count mismatch!");
6559 "Invalid SIGN_EXTEND!");
6561 "SIGN_EXTEND result type type should be vector iff the operand "
6566 "Vector element count mismatch!");
6589 unsigned NumSignExtBits =
6600 "Invalid ZERO_EXTEND!");
6602 "ZERO_EXTEND result type type should be vector iff the operand "
6607 "Vector element count mismatch!");
6645 "Invalid ANY_EXTEND!");
6647 "ANY_EXTEND result type type should be vector iff the operand "
6652 "Vector element count mismatch!");
6677 "Invalid TRUNCATE!");
6679 "TRUNCATE result type type should be vector iff the operand "
6684 "Vector element count mismatch!");
6711 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6713 "The input must be the same size or smaller than the result.");
6716 "The destination vector type must have fewer lanes than the input.");
6726 "BSWAP types must be a multiple of 16 bits!");
6740 "Cannot BITCAST between types of different sizes!");
6742 if (OpOpcode == ISD::BITCAST)
6753 "Illegal SCALAR_TO_VECTOR node!");
6768 if (OpOpcode == ISD::FNEG)
6772 if (OpOpcode == ISD::FNEG)
6787 case ISD::VECREDUCE_ADD:
6789 return getNode(ISD::VECREDUCE_XOR,
DL, VT, N1);
6791 case ISD::VECREDUCE_SMIN:
6792 case ISD::VECREDUCE_UMAX:
6794 return getNode(ISD::VECREDUCE_OR,
DL, VT, N1);
6796 case ISD::VECREDUCE_SMAX:
6797 case ISD::VECREDUCE_UMIN:
6799 return getNode(ISD::VECREDUCE_AND,
DL, VT, N1);
6810 "Wrong operand type!");
6817 if (VT != MVT::Glue) {
6821 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6822 E->intersectFlagsWith(Flags);
6826 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6828 createOperands(
N,
Ops);
6829 CSEMap.InsertNode(
N, IP);
6831 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6832 createOperands(
N,
Ops);
6866 if (!C2.getBoolValue())
6870 if (!C2.getBoolValue())
6874 if (!C2.getBoolValue())
6878 if (!C2.getBoolValue())
6898 return std::nullopt;
6903 bool IsUndef1,
const APInt &C2,
6905 if (!(IsUndef1 || IsUndef2))
6913 return std::nullopt;
6921 if (!TLI->isOffsetFoldingLegal(GA))
6926 int64_t
Offset = C2->getSExtValue();
6946 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6953 [](
SDValue V) { return V.isUndef() ||
6954 isNullConstant(V); });
6992 const APInt &Val =
C->getAPIntValue();
6996 C->isTargetOpcode(),
C->isOpaque());
7003 C->isTargetOpcode(),
C->isOpaque());
7008 C->isTargetOpcode(),
C->isOpaque());
7010 C->isTargetOpcode(),
C->isOpaque());
7038 case ISD::FP16_TO_FP:
7039 case ISD::BF16_TO_FP: {
7056 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7058 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7060 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7062 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7096 case ISD::FP_EXTEND: {
7115 case ISD::FP_TO_FP16:
7116 case ISD::FP_TO_BF16: {
7123 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7126 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7129 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7132 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7135 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7136 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7142 if (Opcode == ISD::BITCAST)
7153 if (C1->isOpaque() || C2->isOpaque())
7156 std::optional<APInt> FoldAttempt =
7157 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7163 "Can't fold vectors ops with scalar operands");
7171 if (TLI->isCommutativeBinOp(Opcode))
7187 const APInt &Val = C1->getAPIntValue();
7188 return SignExtendInReg(Val, VT);
7201 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7209 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7220 if (C1 && C2 && C3) {
7221 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7223 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7224 &V3 = C3->getAPIntValue();
7240 if (C1 && C2 && C3) {
7261 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7262 (
Ops[0].getOpcode() == ISD::BITCAST ||
7263 Ops[1].getOpcode() == ISD::BITCAST)) {
7274 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7275 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7279 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7290 BVEltVT = BV1->getOperand(0).getValueType();
7293 BVEltVT = BV2->getOperand(0).getValueType();
7299 DstBits, RawBits, DstUndefs,
7302 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7320 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7321 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7326 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7327 return !
Op.getValueType().isVector() ||
7328 Op.getValueType().getVectorElementCount() == NumElts;
7331 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7357 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7369 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7372 EVT InSVT =
Op.getValueType().getScalarType();
7415 if (LegalSVT != SVT)
7416 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7430 if (
Ops.size() != 2)
7441 if (N1CFP && N2CFP) {
7471 case ISD::FMINIMUMNUM:
7473 case ISD::FMAXIMUMNUM:
7492 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7515 if (SrcEltVT == DstEltVT)
7523 if (SrcBitSize == DstBitSize) {
7528 if (
Op.getValueType() != SrcEltVT)
7571 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7572 if (UndefElements[
I])
7593 ID.AddInteger(
A.value());
7596 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7600 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7601 createOperands(
N, {Val});
7603 CSEMap.InsertNode(
N, IP);
7615 Flags = Inserter->getFlags();
7616 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7621 if (!TLI->isCommutativeBinOp(Opcode))
7630 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7644 "Operand is DELETED_NODE!");
7660 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7664 if (N1 == N2)
return N1;
7680 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7682 N1.
getValueType() == VT &&
"Binary operator types must match!");
7685 if (N2CV && N2CV->
isZero())
7695 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7697 N1.
getValueType() == VT &&
"Binary operator types must match!");
7707 if (N2CV && N2CV->
isZero())
7721 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7723 N1.
getValueType() == VT &&
"Binary operator types must match!");
7726 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7728 const APInt &N2CImm = N2C->getAPIntValue();
7742 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7744 N1.
getValueType() == VT &&
"Binary operator types must match!");
7757 "Types of operands of UCMP/SCMP must match");
7759 "Operands and return type of must both be scalars or vectors");
7763 "Result and operands must have the same number of elements");
7769 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7771 N1.
getValueType() == VT &&
"Binary operator types must match!");
7775 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7777 N1.
getValueType() == VT &&
"Binary operator types must match!");
7783 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7785 N1.
getValueType() == VT &&
"Binary operator types must match!");
7791 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7793 N1.
getValueType() == VT &&
"Binary operator types must match!");
7804 N1.
getValueType() == VT &&
"Binary operator types must match!");
7812 "Invalid FCOPYSIGN!");
7815 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7817 const APInt &ShiftImm = N2C->getAPIntValue();
7829 "Shift operators return type must be the same as their first arg");
7831 "Shifts only work on integers");
7833 "Vector shift amounts must be in the same as their first arg");
7840 "Invalid use of small shift amount with oversized value!");
7847 if (N2CV && N2CV->
isZero())
7853 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7859 "AssertNoFPClass is used for a non-floating type");
7864 "FPClassTest value too large");
7873 "Cannot *_EXTEND_INREG FP types");
7875 "AssertSExt/AssertZExt type should be the vector element type "
7876 "rather than the vector type!");
7885 "Cannot *_EXTEND_INREG FP types");
7887 "SIGN_EXTEND_INREG type should be vector iff the operand "
7891 "Vector element counts must match in SIGN_EXTEND_INREG");
7893 if (
EVT == VT)
return N1;
7901 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7905 "Vector element counts must match in FP_TO_*INT_SAT");
7907 "Type to saturate to must be a scalar.");
7914 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7915 element type of the vector.");
7937 N2C->getZExtValue() % Factor);
7946 "BUILD_VECTOR used for scalable vectors");
7969 if (N1Op2C && N2C) {
7999 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
8003 "Wrong types for EXTRACT_ELEMENT!");
8014 unsigned Shift = ElementSize * N2C->getZExtValue();
8015 const APInt &Val = N1C->getAPIntValue();
8022 "Extract subvector VTs must be vectors!");
8024 "Extract subvector VTs must have the same element type!");
8026 "Cannot extract a scalable vector from a fixed length vector!");
8029 "Extract subvector must be from larger vector to smaller vector!");
8030 assert(N2C &&
"Extract subvector index must be a constant");
8034 "Extract subvector overflow!");
8035 assert(N2C->getAPIntValue().getBitWidth() ==
8037 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8039 "Extract index is not a multiple of the output vector length");
8054 return N1.
getOperand(N2C->getZExtValue() / Factor);
8095 if (TLI->isCommutativeBinOp(Opcode)) {
8174 if (VT != MVT::Glue) {
8178 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8179 E->intersectFlagsWith(Flags);
8183 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8185 createOperands(
N,
Ops);
8186 CSEMap.InsertNode(
N, IP);
8188 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8189 createOperands(
N,
Ops);
8202 Flags = Inserter->getFlags();
8203 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8212 "Operand is DELETED_NODE!");
8231 "SETCC operands must have the same type!");
8233 "SETCC type should be vector iff the operand type is vector!");
8236 "SETCC vector element counts must match!");
8256 "INSERT_VECTOR_ELT vector type mismatch");
8258 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8261 "INSERT_VECTOR_ELT fp scalar type mismatch");
8264 "INSERT_VECTOR_ELT int scalar size mismatch");
8310 "Dest and insert subvector source types must match!");
8312 "Insert subvector VTs must be vectors!");
8314 "Insert subvector VTs must have the same element type!");
8316 "Cannot insert a scalable vector into a fixed length vector!");
8319 "Insert subvector must be from smaller vector to larger vector!");
8321 "Insert subvector index must be constant");
8325 "Insert subvector overflow!");
8328 "Constant index for INSERT_SUBVECTOR has an invalid size");
8372 case ISD::VP_TRUNCATE:
8373 case ISD::VP_SIGN_EXTEND:
8374 case ISD::VP_ZERO_EXTEND:
8383 assert(VT == VecVT &&
"Vector and result type don't match.");
8385 "All inputs must be vectors.");
8386 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8388 "Vector and mask must have same number of elements.");
8395 case ISD::PARTIAL_REDUCE_UMLA:
8396 case ISD::PARTIAL_REDUCE_SMLA:
8397 case ISD::PARTIAL_REDUCE_SUMLA: {
8402 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8403 "node to have the same type!");
8405 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8406 "the same type as its result!");
8409 "Expected the element count of the second and third operands of the "
8410 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8411 "element count of the first operand and the result!");
8413 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8414 "node to have an element type which is the same as or smaller than "
8415 "the element type of the first operand and result!");
8437 if (VT != MVT::Glue) {
8441 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8442 E->intersectFlagsWith(Flags);
8446 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8448 createOperands(
N,
Ops);
8449 CSEMap.InsertNode(
N, IP);
8451 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8452 createOperands(
N,
Ops);
8472 Flags = Inserter->getFlags();
8473 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8488 Flags = Inserter->getFlags();
8489 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8506 if (FI->getIndex() < 0)
8521 assert(
C->getAPIntValue().getBitWidth() == 8);
8526 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8531 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8547 if (VT !=
Value.getValueType())
8560 if (Slice.Array ==
nullptr) {
8563 return DAG.
getNode(ISD::BITCAST, dl, VT,
8569 unsigned NumVTBytes = NumVTBits / 8;
8570 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8572 APInt Val(NumVTBits, 0);
8574 for (
unsigned i = 0; i != NumBytes; ++i)
8577 for (
unsigned i = 0; i != NumBytes; ++i)
8578 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8597 APInt(
Base.getValueSizeInBits().getFixedValue(),
8598 Offset.getKnownMinValue()));
8609 EVT BasePtrVT =
Ptr.getValueType();
8610 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8622 else if (Src->isAnyAdd() &&
8626 SrcDelta = Src.getConstantOperandVal(1);
8632 SrcDelta +
G->getOffset());
8648 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8649 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8651 for (
unsigned i = From; i < To; ++i) {
8653 GluedLoadChains.
push_back(OutLoadChains[i]);
8660 for (
unsigned i = From; i < To; ++i) {
8663 ST->getBasePtr(), ST->getMemoryVT(),
8664 ST->getMemOperand());
8686 std::vector<EVT> MemOps;
8687 bool DstAlignCanChange =
false;
8693 DstAlignCanChange =
true;
8695 if (!SrcAlign || Alignment > *SrcAlign)
8696 SrcAlign = Alignment;
8697 assert(SrcAlign &&
"SrcAlign must be set");
8701 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8703 const MemOp Op = isZeroConstant
8707 *SrcAlign, isVol, CopyFromConstant);
8713 if (DstAlignCanChange) {
8714 Type *Ty = MemOps[0].getTypeForEVT(
C);
8715 Align NewAlign =
DL.getABITypeAlign(Ty);
8721 if (!
TRI->hasStackRealignment(MF))
8723 NewAlign = std::min(NewAlign, *StackAlign);
8725 if (NewAlign > Alignment) {
8729 Alignment = NewAlign;
8739 BatchAA && SrcVal &&
8747 unsigned NumMemOps = MemOps.size();
8749 for (
unsigned i = 0; i != NumMemOps; ++i) {
8754 if (VTSize >
Size) {
8757 assert(i == NumMemOps-1 && i != 0);
8758 SrcOff -= VTSize -
Size;
8759 DstOff -= VTSize -
Size;
8762 if (CopyFromConstant &&
8770 if (SrcOff < Slice.Length) {
8772 SubSlice.
move(SrcOff);
8775 SubSlice.
Array =
nullptr;
8777 SubSlice.
Length = VTSize;
8780 if (
Value.getNode()) {
8784 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8789 if (!Store.getNode()) {
8798 bool isDereferenceable =
8801 if (isDereferenceable)
8816 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8826 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8828 if (NumLdStInMemcpy) {
8834 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8840 if (NumLdStInMemcpy <= GluedLdStLimit) {
8842 NumLdStInMemcpy, OutLoadChains,
8845 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8846 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8847 unsigned GlueIter = 0;
8849 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8850 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8851 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8854 OutLoadChains, OutStoreChains);
8855 GlueIter += GluedLdStLimit;
8859 if (RemainingLdStInMemcpy) {
8861 RemainingLdStInMemcpy, OutLoadChains,
8873 bool isVol,
bool AlwaysInline,
8887 std::vector<EVT> MemOps;
8888 bool DstAlignCanChange =
false;
8894 DstAlignCanChange =
true;
8896 if (!SrcAlign || Alignment > *SrcAlign)
8897 SrcAlign = Alignment;
8898 assert(SrcAlign &&
"SrcAlign must be set");
8908 if (DstAlignCanChange) {
8909 Type *Ty = MemOps[0].getTypeForEVT(
C);
8910 Align NewAlign =
DL.getABITypeAlign(Ty);
8916 if (!
TRI->hasStackRealignment(MF))
8918 NewAlign = std::min(NewAlign, *StackAlign);
8920 if (NewAlign > Alignment) {
8924 Alignment = NewAlign;
8938 unsigned NumMemOps = MemOps.size();
8939 for (
unsigned i = 0; i < NumMemOps; i++) {
8944 bool isDereferenceable =
8947 if (isDereferenceable)
8953 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8960 for (
unsigned i = 0; i < NumMemOps; i++) {
8966 Chain, dl, LoadValues[i],
8968 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
9008 std::vector<EVT> MemOps;
9009 bool DstAlignCanChange =
false;
9016 DstAlignCanChange =
true;
9022 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9026 if (DstAlignCanChange) {
9029 Align NewAlign =
DL.getABITypeAlign(Ty);
9035 if (!
TRI->hasStackRealignment(MF))
9037 NewAlign = std::min(NewAlign, *StackAlign);
9039 if (NewAlign > Alignment) {
9043 Alignment = NewAlign;
9049 unsigned NumMemOps = MemOps.size();
9052 EVT LargestVT = MemOps[0];
9053 for (
unsigned i = 1; i < NumMemOps; i++)
9054 if (MemOps[i].bitsGT(LargestVT))
9055 LargestVT = MemOps[i];
9062 for (
unsigned i = 0; i < NumMemOps; i++) {
9065 if (VTSize >
Size) {
9068 assert(i == NumMemOps-1 && i != 0);
9069 DstOff -= VTSize -
Size;
9076 if (VT.
bitsLT(LargestVT)) {
9091 SDValue TailValue = DAG.
getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9096 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9123 bool AllowReturnsFirstArg) {
9129 AllowReturnsFirstArg &&
9133std::pair<SDValue, SDValue>
9136 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9153 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9159 return TLI->LowerCallTo(CLI);
9166 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9186 return TLI->LowerCallTo(CLI);
9191 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9200 if (ConstantSize->
isZero())
9204 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9205 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9206 if (Result.getNode())
9213 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9214 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9215 DstPtrInfo, SrcPtrInfo);
9216 if (Result.getNode())
9223 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9225 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9226 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9241 Args.emplace_back(Dst, PtrTy);
9242 Args.emplace_back(Src, PtrTy);
9246 bool IsTailCall =
false;
9247 const char *MemCpyName = TLI->getMemcpyName();
9249 if (OverrideTailCall.has_value()) {
9250 IsTailCall = *OverrideTailCall;
9259 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9260 Dst.getValueType().getTypeForEVT(*
getContext()),
9266 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9267 return CallResult.second;
9272 Type *SizeTy,
unsigned ElemSz,
9279 Args.emplace_back(Dst, ArgTy);
9280 Args.emplace_back(Src, ArgTy);
9281 Args.emplace_back(
Size, SizeTy);
9283 RTLIB::Libcall LibraryCall =
9285 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9299 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9300 return CallResult.second;
9306 std::optional<bool> OverrideTailCall,
9316 if (ConstantSize->
isZero())
9320 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9321 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9322 if (Result.getNode())
9330 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9331 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9332 if (Result.getNode())
9345 Args.emplace_back(Dst, PtrTy);
9346 Args.emplace_back(Src, PtrTy);
9351 bool IsTailCall =
false;
9352 if (OverrideTailCall.has_value()) {
9353 IsTailCall = *OverrideTailCall;
9355 bool LowersToMemmove =
9356 TLI->getLibcallName(RTLIB::MEMMOVE) ==
StringRef(
"memmove");
9362 .
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9363 Dst.getValueType().getTypeForEVT(*
getContext()),
9370 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9371 return CallResult.second;
9376 Type *SizeTy,
unsigned ElemSz,
9383 Args.emplace_back(Dst, IntPtrTy);
9384 Args.emplace_back(Src, IntPtrTy);
9385 Args.emplace_back(
Size, SizeTy);
9387 RTLIB::Libcall LibraryCall =
9389 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9403 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9404 return CallResult.second;
9409 bool isVol,
bool AlwaysInline,
9418 if (ConstantSize->
isZero())
9423 isVol,
false, DstPtrInfo, AAInfo);
9425 if (Result.getNode())
9432 SDValue Result = TSI->EmitTargetCodeForMemset(
9433 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9434 if (Result.getNode())
9441 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9444 isVol,
true, DstPtrInfo, AAInfo);
9446 "getMemsetStores must return a valid sequence when AlwaysInline");
9467 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9474 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9475 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9476 CLI.
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9477 Dst.getValueType().getTypeForEVT(Ctx),
9479 TLI->getPointerTy(
DL)),
9482 bool LowersToMemset =
9483 TLI->getLibcallName(RTLIB::MEMSET) ==
StringRef(
"memset");
9493 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9494 return CallResult.second;
9499 Type *SizeTy,
unsigned ElemSz,
9506 Args.emplace_back(
Size, SizeTy);
9508 RTLIB::Libcall LibraryCall =
9510 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9524 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9525 return CallResult.second;
9535 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9536 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9541 E->refineAlignment(MMO);
9542 E->refineRanges(MMO);
9547 VTList, MemVT, MMO, ExtType);
9548 createOperands(
N,
Ops);
9550 CSEMap.InsertNode(
N, IP);
9561 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9562 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9572 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9573 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9574 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9575 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9576 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9577 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9578 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9579 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9580 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9581 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9582 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9583 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9584 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9585 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9586 Opcode == ISD::ATOMIC_STORE) &&
9587 "Invalid Atomic Op");
9602 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs,
Ops, MMO, ExtType);
9607 if (
Ops.size() == 1)
9622 if (
Size.hasValue() && !
Size.getValue())
9627 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9638 Opcode == ISD::PREFETCH ||
9639 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9641 "Opcode is not a memory-accessing opcode!");
9645 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9648 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9649 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9654 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9660 VTList, MemVT, MMO);
9661 createOperands(
N,
Ops);
9663 CSEMap.InsertNode(
N, IP);
9666 VTList, MemVT, MMO);
9667 createOperands(
N,
Ops);
9676 SDValue Chain,
int FrameIndex) {
9677 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9687 ID.AddInteger(FrameIndex);
9689 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9694 createOperands(
N,
Ops);
9695 CSEMap.InsertNode(
N, IP);
9705 const unsigned Opcode = ISD::PSEUDO_PROBE;
9711 ID.AddInteger(Index);
9713 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9716 auto *
N = newSDNode<PseudoProbeSDNode>(
9718 createOperands(
N,
Ops);
9719 CSEMap.InsertNode(
N, IP);
9773 "Invalid chain type");
9785 Alignment, AAInfo, Ranges);
9796 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9800 "Should only be an extending load, not truncating!");
9802 "Cannot convert from FP to Int or Int -> FP!");
9804 "Cannot use an ext load to convert to or from a vector!");
9807 "Cannot use an ext load to change the number of vector elements!");
9814 "Range metadata and load type must match!");
9825 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9826 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9831 E->refineAlignment(MMO);
9832 E->refineRanges(MMO);
9836 ExtType, MemVT, MMO);
9837 createOperands(
N,
Ops);
9839 CSEMap.InsertNode(
N, IP);
9853 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9871 MemVT, Alignment, MMOFlags, AAInfo);
9886 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9889 LD->getMemOperand()->getFlags() &
9892 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9893 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9912 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9926 bool IsTruncating) {
9930 IsTruncating =
false;
9931 }
else if (!IsTruncating) {
9932 assert(VT == SVT &&
"No-truncating store from different memory type!");
9935 "Should only be a truncating store, not extending!");
9938 "Cannot use trunc store to convert to or from a vector!");
9941 "Cannot use trunc store to change the number of vector elements!");
9952 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9953 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9957 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9962 IsTruncating, SVT, MMO);
9963 createOperands(
N,
Ops);
9965 CSEMap.InsertNode(
N, IP);
9978 "Invalid chain type");
9988 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10003 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
10005 ST->getMemoryVT(), ST->getMemOperand(), AM,
10006 ST->isTruncatingStore());
10014 const MDNode *Ranges,
bool IsExpanding) {
10027 Alignment, AAInfo, Ranges);
10028 return getLoadVP(AM, ExtType, VT, dl, Chain,
Ptr,
Offset, Mask, EVL, MemVT,
10037 bool IsExpanding) {
10047 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10048 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10051 void *IP =
nullptr;
10053 E->refineAlignment(MMO);
10054 E->refineRanges(MMO);
10058 ExtType, IsExpanding, MemVT, MMO);
10059 createOperands(
N,
Ops);
10061 CSEMap.InsertNode(
N, IP);
10074 bool IsExpanding) {
10077 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10086 Mask, EVL, VT, MMO, IsExpanding);
10095 const AAMDNodes &AAInfo,
bool IsExpanding) {
10098 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10108 EVL, MemVT, MMO, IsExpanding);
10115 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10118 LD->getMemOperand()->getFlags() &
10121 LD->getChain(),
Base,
Offset, LD->getMask(),
10122 LD->getVectorLength(), LD->getPointerInfo(),
10123 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10124 nullptr, LD->isExpandingLoad());
10131 bool IsCompressing) {
10141 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10142 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10145 void *IP =
nullptr;
10146 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10151 IsTruncating, IsCompressing, MemVT, MMO);
10152 createOperands(
N,
Ops);
10154 CSEMap.InsertNode(
N, IP);
10167 bool IsCompressing) {
10178 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10187 bool IsCompressing) {
10194 false, IsCompressing);
10197 "Should only be a truncating store, not extending!");
10200 "Cannot use trunc store to convert to or from a vector!");
10203 "Cannot use trunc store to change the number of vector elements!");
10211 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10215 void *IP =
nullptr;
10216 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10223 createOperands(
N,
Ops);
10225 CSEMap.InsertNode(
N, IP);
10236 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10239 Offset, ST->getMask(), ST->getVectorLength()};
10242 ID.AddInteger(ST->getMemoryVT().getRawBits());
10243 ID.AddInteger(ST->getRawSubclassData());
10244 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10245 ID.AddInteger(ST->getMemOperand()->getFlags());
10246 void *IP =
nullptr;
10247 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10250 auto *
N = newSDNode<VPStoreSDNode>(
10252 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10253 createOperands(
N,
Ops);
10255 CSEMap.InsertNode(
N, IP);
10275 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10276 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10279 void *IP =
nullptr;
10280 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10286 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10287 ExtType, IsExpanding, MemVT, MMO);
10288 createOperands(
N,
Ops);
10289 CSEMap.InsertNode(
N, IP);
10300 bool IsExpanding) {
10303 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10312 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10321 bool IsTruncating,
bool IsCompressing) {
10331 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10332 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10334 void *IP =
nullptr;
10335 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10339 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10340 VTs, AM, IsTruncating,
10341 IsCompressing, MemVT, MMO);
10342 createOperands(
N,
Ops);
10344 CSEMap.InsertNode(
N, IP);
10356 bool IsCompressing) {
10363 false, IsCompressing);
10366 "Should only be a truncating store, not extending!");
10369 "Cannot use trunc store to convert to or from a vector!");
10372 "Cannot use trunc store to change the number of vector elements!");
10376 SDValue Ops[] = {Chain, Val,
Ptr, Undef, Stride, Mask, EVL};
10380 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10383 void *IP =
nullptr;
10384 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10388 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10390 IsCompressing, SVT, MMO);
10391 createOperands(
N,
Ops);
10393 CSEMap.InsertNode(
N, IP);
10403 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10408 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10412 void *IP =
nullptr;
10413 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10419 VT, MMO, IndexType);
10420 createOperands(
N,
Ops);
10422 assert(
N->getMask().getValueType().getVectorElementCount() ==
10423 N->getValueType(0).getVectorElementCount() &&
10424 "Vector width mismatch between mask and data");
10425 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10426 N->getValueType(0).getVectorElementCount().isScalable() &&
10427 "Scalable flags of index and data do not match");
10429 N->getIndex().getValueType().getVectorElementCount(),
10430 N->getValueType(0).getVectorElementCount()) &&
10431 "Vector width mismatch between index and data");
10433 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10434 "Scale should be a constant power of 2");
10436 CSEMap.InsertNode(
N, IP);
10447 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10452 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10456 void *IP =
nullptr;
10457 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10462 VT, MMO, IndexType);
10463 createOperands(
N,
Ops);
10465 assert(
N->getMask().getValueType().getVectorElementCount() ==
10466 N->getValue().getValueType().getVectorElementCount() &&
10467 "Vector width mismatch between mask and data");
10469 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10470 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10471 "Scalable flags of index and data do not match");
10473 N->getIndex().getValueType().getVectorElementCount(),
10474 N->getValue().getValueType().getVectorElementCount()) &&
10475 "Vector width mismatch between index and data");
10477 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10478 "Scale should be a constant power of 2");
10480 CSEMap.InsertNode(
N, IP);
10495 "Unindexed masked load with an offset!");
10502 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10503 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10506 void *IP =
nullptr;
10507 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10512 AM, ExtTy, isExpanding, MemVT, MMO);
10513 createOperands(
N,
Ops);
10515 CSEMap.InsertNode(
N, IP);
10526 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10528 Offset, LD->getMask(), LD->getPassThru(),
10529 LD->getMemoryVT(), LD->getMemOperand(), AM,
10530 LD->getExtensionType(), LD->isExpandingLoad());
10538 bool IsCompressing) {
10540 "Invalid chain type");
10543 "Unindexed masked store with an offset!");
10550 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10551 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10554 void *IP =
nullptr;
10555 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10561 IsTruncating, IsCompressing, MemVT, MMO);
10562 createOperands(
N,
Ops);
10564 CSEMap.InsertNode(
N, IP);
10575 assert(ST->getOffset().isUndef() &&
10576 "Masked store is already a indexed store!");
10578 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10579 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10587 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10592 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10593 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10596 void *IP =
nullptr;
10597 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10603 VTs, MemVT, MMO, IndexType, ExtTy);
10604 createOperands(
N,
Ops);
10606 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10607 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10608 assert(
N->getMask().getValueType().getVectorElementCount() ==
10609 N->getValueType(0).getVectorElementCount() &&
10610 "Vector width mismatch between mask and data");
10611 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10612 N->getValueType(0).getVectorElementCount().isScalable() &&
10613 "Scalable flags of index and data do not match");
10615 N->getIndex().getValueType().getVectorElementCount(),
10616 N->getValueType(0).getVectorElementCount()) &&
10617 "Vector width mismatch between index and data");
10619 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10620 "Scale should be a constant power of 2");
10622 CSEMap.InsertNode(
N, IP);
10634 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10639 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10640 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10643 void *IP =
nullptr;
10644 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10650 VTs, MemVT, MMO, IndexType, IsTrunc);
10651 createOperands(
N,
Ops);
10653 assert(
N->getMask().getValueType().getVectorElementCount() ==
10654 N->getValue().getValueType().getVectorElementCount() &&
10655 "Vector width mismatch between mask and data");
10657 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10658 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10659 "Scalable flags of index and data do not match");
10661 N->getIndex().getValueType().getVectorElementCount(),
10662 N->getValue().getValueType().getVectorElementCount()) &&
10663 "Vector width mismatch between index and data");
10665 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10666 "Scale should be a constant power of 2");
10668 CSEMap.InsertNode(
N, IP);
10679 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10684 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10685 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10688 void *IP =
nullptr;
10689 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10695 VTs, MemVT, MMO, IndexType);
10696 createOperands(
N,
Ops);
10698 assert(
N->getMask().getValueType().getVectorElementCount() ==
10699 N->getIndex().getValueType().getVectorElementCount() &&
10700 "Vector width mismatch between mask and data");
10702 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10703 "Scale should be a constant power of 2");
10704 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10706 CSEMap.InsertNode(
N, IP);
10721 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10725 void *IP =
nullptr;
10726 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10730 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10732 createOperands(
N,
Ops);
10734 CSEMap.InsertNode(
N, IP);
10749 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10750 ISD::GET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10753 void *IP =
nullptr;
10754 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10757 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.
getIROrder(),
10759 createOperands(
N,
Ops);
10761 CSEMap.InsertNode(
N, IP);
10776 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10777 ISD::SET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10780 void *IP =
nullptr;
10781 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10784 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.
getIROrder(),
10786 createOperands(
N,
Ops);
10788 CSEMap.InsertNode(
N, IP);
10799 if (
Cond.isUndef())
10834 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10840 if (
X.getValueType().getScalarType() == MVT::i1)
10853 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10855 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10858 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10861 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10884 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10899 switch (
Ops.size()) {
10900 case 0:
return getNode(Opcode,
DL, VT);
10910 return getNode(Opcode,
DL, VT, NewOps);
10917 Flags = Inserter->getFlags();
10925 case 0:
return getNode(Opcode,
DL, VT);
10926 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10933 for (
const auto &
Op :
Ops)
10935 "Operand is DELETED_NODE!");
10952 "LHS and RHS of condition must have same type!");
10954 "True and False arms of SelectCC must have same type!");
10956 "select_cc node must be of same type as true and false value!");
10960 "Expected select_cc with vector result to have the same sized "
10961 "comparison type!");
10966 "LHS/RHS of comparison should match types!");
10972 Opcode = ISD::VP_XOR;
10977 Opcode = ISD::VP_AND;
10979 case ISD::VP_REDUCE_MUL:
10982 Opcode = ISD::VP_REDUCE_AND;
10984 case ISD::VP_REDUCE_ADD:
10987 Opcode = ISD::VP_REDUCE_XOR;
10989 case ISD::VP_REDUCE_SMAX:
10990 case ISD::VP_REDUCE_UMIN:
10994 Opcode = ISD::VP_REDUCE_AND;
10996 case ISD::VP_REDUCE_SMIN:
10997 case ISD::VP_REDUCE_UMAX:
11001 Opcode = ISD::VP_REDUCE_OR;
11009 if (VT != MVT::Glue) {
11012 void *IP =
nullptr;
11014 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11015 E->intersectFlagsWith(Flags);
11019 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11020 createOperands(
N,
Ops);
11022 CSEMap.InsertNode(
N, IP);
11024 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11025 createOperands(
N,
Ops);
11028 N->setFlags(Flags);
11039 Flags = Inserter->getFlags();
11053 Flags = Inserter->getFlags();
11063 for (
const auto &
Op :
Ops)
11065 "Operand is DELETED_NODE!");
11074 "Invalid add/sub overflow op!");
11076 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11077 Ops[0].getValueType() == VTList.
VTs[0] &&
11078 "Binary operator types must match!");
11085 if (N2CV && N2CV->
isZero()) {
11116 "Invalid add/sub overflow op!");
11118 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11119 Ops[0].getValueType() == VTList.
VTs[0] &&
11120 Ops[2].getValueType() == VTList.
VTs[1] &&
11121 "Binary operator types must match!");
11125 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11127 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11128 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11129 "Binary operator types must match!");
11135 unsigned OutWidth = Width * 2;
11136 APInt Val = LHS->getAPIntValue();
11139 Val = Val.
sext(OutWidth);
11140 Mul =
Mul.sext(OutWidth);
11142 Val = Val.
zext(OutWidth);
11143 Mul =
Mul.zext(OutWidth);
11154 case ISD::FFREXP: {
11155 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11157 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11173 "Invalid STRICT_FP_EXTEND!");
11175 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11177 "STRICT_FP_EXTEND result type should be vector iff the operand "
11178 "type is vector!");
11181 Ops[1].getValueType().getVectorElementCount()) &&
11182 "Vector element count mismatch!");
11184 "Invalid fpext node, dst <= src!");
11187 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11189 "STRICT_FP_ROUND result type should be vector iff the operand "
11190 "type is vector!");
11193 Ops[1].getValueType().getVectorElementCount()) &&
11194 "Vector element count mismatch!");
11196 Ops[1].getValueType().isFloatingPoint() &&
11199 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11200 "Invalid STRICT_FP_ROUND!");
11206 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11209 void *IP =
nullptr;
11210 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11211 E->intersectFlagsWith(Flags);
11215 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11216 createOperands(
N,
Ops);
11217 CSEMap.InsertNode(
N, IP);
11219 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11220 createOperands(
N,
Ops);
11223 N->setFlags(Flags);
11270 return makeVTList(&(*EVTs.insert(VT).first), 1);
11279 void *IP =
nullptr;
11282 EVT *Array = Allocator.Allocate<
EVT>(2);
11285 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11286 VTListMap.InsertNode(Result, IP);
11288 return Result->getSDVTList();
11298 void *IP =
nullptr;
11301 EVT *Array = Allocator.Allocate<
EVT>(3);
11305 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11306 VTListMap.InsertNode(Result, IP);
11308 return Result->getSDVTList();
11319 void *IP =
nullptr;
11322 EVT *Array = Allocator.Allocate<
EVT>(4);
11327 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11328 VTListMap.InsertNode(Result, IP);
11330 return Result->getSDVTList();
11334 unsigned NumVTs = VTs.
size();
11336 ID.AddInteger(NumVTs);
11337 for (
unsigned index = 0; index < NumVTs; index++) {
11338 ID.AddInteger(VTs[index].getRawBits());
11341 void *IP =
nullptr;
11344 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11346 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11347 VTListMap.InsertNode(Result, IP);
11349 return Result->getSDVTList();
11360 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11363 if (
Op ==
N->getOperand(0))
return N;
11366 void *InsertPos =
nullptr;
11367 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11372 if (!RemoveNodeFromCSEMaps(
N))
11373 InsertPos =
nullptr;
11376 N->OperandList[0].set(
Op);
11380 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11385 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11388 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11392 void *InsertPos =
nullptr;
11393 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11398 if (!RemoveNodeFromCSEMaps(
N))
11399 InsertPos =
nullptr;
11402 if (
N->OperandList[0] != Op1)
11403 N->OperandList[0].set(Op1);
11404 if (
N->OperandList[1] != Op2)
11405 N->OperandList[1].set(Op2);
11409 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11429 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11437 "Update with wrong number of operands");
11440 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11444 void *InsertPos =
nullptr;
11445 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11450 if (!RemoveNodeFromCSEMaps(
N))
11451 InsertPos =
nullptr;
11454 for (
unsigned i = 0; i !=
NumOps; ++i)
11455 if (
N->OperandList[i] !=
Ops[i])
11456 N->OperandList[i].set(
Ops[i]);
11460 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11477 if (NewMemRefs.
empty()) {
11483 if (NewMemRefs.
size() == 1) {
11484 N->MemRefs = NewMemRefs[0];
11490 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11492 N->MemRefs = MemRefsBuffer;
11493 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11565 New->setNodeId(-1);
11585 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11586 N->setIROrder(Order);
11609 void *IP =
nullptr;
11610 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11614 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11617 if (!RemoveNodeFromCSEMaps(
N))
11622 N->ValueList = VTs.
VTs;
11632 if (Used->use_empty())
11633 DeadNodeSet.
insert(Used);
11638 MN->clearMemRefs();
11642 createOperands(
N,
Ops);
11646 if (!DeadNodeSet.
empty()) {
11648 for (
SDNode *
N : DeadNodeSet)
11649 if (
N->use_empty())
11655 CSEMap.InsertNode(
N, IP);
11660 unsigned OrigOpc =
Node->getOpcode();
11665#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11666 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11667#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11668 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11669#include "llvm/IR/ConstrainedOps.def"
11672 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11680 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11681 Ops.push_back(
Node->getOperand(i));
11798 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11800 void *IP =
nullptr;
11806 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11812 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11813 createOperands(
N,
Ops);
11816 CSEMap.InsertNode(
N, IP);
11829 VT, Operand, SRIdxVal);
11839 VT, Operand, Subreg, SRIdxVal);
11849 Flags = Inserter->getFlags();
11856 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11859 void *IP =
nullptr;
11861 E->intersectFlagsWith(Flags);
11871 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11874 void *IP =
nullptr;
11875 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11885 SDNode *
N,
unsigned R,
bool IsIndirect,
11888 "Expected inlined-at fields to agree");
11889 return new (DbgInfo->getAlloc())
11891 {}, IsIndirect,
DL, O,
11901 "Expected inlined-at fields to agree");
11902 return new (DbgInfo->getAlloc())
11915 "Expected inlined-at fields to agree");
11927 "Expected inlined-at fields to agree");
11928 return new (DbgInfo->getAlloc())
11930 Dependencies, IsIndirect,
DL, O,
11939 "Expected inlined-at fields to agree");
11940 return new (DbgInfo->getAlloc())
11942 {}, IsIndirect,
DL, O,
11950 unsigned O,
bool IsVariadic) {
11952 "Expected inlined-at fields to agree");
11953 return new (DbgInfo->getAlloc())
11954 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11955 DL, O, IsVariadic);
11959 unsigned OffsetInBits,
unsigned SizeInBits,
11960 bool InvalidateDbg) {
11963 assert(FromNode && ToNode &&
"Can't modify dbg values");
11968 if (From == To || FromNode == ToNode)
11980 if (Dbg->isInvalidated())
11988 auto NewLocOps = Dbg->copyLocationOps();
11990 NewLocOps.begin(), NewLocOps.end(),
11992 bool Match = Op == FromLocOp;
12002 auto *Expr = Dbg->getExpression();
12008 if (
auto FI = Expr->getFragmentInfo())
12009 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12018 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12021 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12022 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12023 Dbg->isVariadic());
12026 if (InvalidateDbg) {
12028 Dbg->setIsInvalidated();
12029 Dbg->setIsEmitted();
12035 "Transferred DbgValues should depend on the new SDNode");
12041 if (!
N.getHasDebugValue())
12044 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12052 if (DV->isInvalidated())
12054 switch (
N.getOpcode()) {
12064 Offset =
N.getConstantOperandVal(1);
12067 if (!RHSConstant && DV->isIndirect())
12074 auto *DIExpr = DV->getExpression();
12075 auto NewLocOps = DV->copyLocationOps();
12077 size_t OrigLocOpsSize = NewLocOps.size();
12078 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12083 NewLocOps[i].getSDNode() != &
N)
12094 const auto *TmpDIExpr =
12102 NewLocOps.push_back(RHS);
12111 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12113 auto AdditionalDependencies = DV->getAdditionalDependencies();
12115 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12116 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12118 DV->setIsInvalidated();
12119 DV->setIsEmitted();
12121 N0.
getNode()->dumprFull(
this);
12122 dbgs() <<
" into " << *DIExpr <<
'\n');
12129 TypeSize ToSize =
N.getValueSizeInBits(0);
12133 auto NewLocOps = DV->copyLocationOps();
12135 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12137 NewLocOps[i].getSDNode() != &
N)
12149 DV->getAdditionalDependencies(), DV->isIndirect(),
12150 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12153 DV->setIsInvalidated();
12154 DV->setIsEmitted();
12156 dbgs() <<
" into " << *DbgExpression <<
'\n');
12163 assert((!Dbg->getSDNodes().empty() ||
12166 return Op.getKind() == SDDbgOperand::FRAMEIX;
12168 "Salvaged DbgValue should depend on a new SDNode");
12177 "Expected inlined-at fields to agree");
12178 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12193 while (UI != UE &&
N == UI->
getUser())
12201 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12214 "Cannot replace with this method!");
12215 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12230 RAUWUpdateListener Listener(*
this, UI, UE);
12235 RemoveNodeFromCSEMaps(
User);
12250 AddModifiedNodeToCSEMaps(
User);
12266 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12269 "Cannot use this version of ReplaceAllUsesWith!");
12277 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12279 assert((i < To->getNumValues()) &&
"Invalid To location");
12288 RAUWUpdateListener Listener(*
this, UI, UE);
12293 RemoveNodeFromCSEMaps(
User);
12309 AddModifiedNodeToCSEMaps(
User);
12326 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12336 RAUWUpdateListener Listener(*
this, UI, UE);
12341 RemoveNodeFromCSEMaps(
User);
12347 bool To_IsDivergent =
false;
12361 AddModifiedNodeToCSEMaps(
User);
12374 if (From == To)
return;
12390 RAUWUpdateListener Listener(*
this, UI, UE);
12393 bool UserRemovedFromCSEMaps =
false;
12410 if (!UserRemovedFromCSEMaps) {
12411 RemoveNodeFromCSEMaps(
User);
12412 UserRemovedFromCSEMaps =
true;
12422 if (!UserRemovedFromCSEMaps)
12427 AddModifiedNodeToCSEMaps(
User);
12446bool operator<(
const UseMemo &L,
const UseMemo &R) {
12447 return (intptr_t)L.User < (intptr_t)R.User;
12454 SmallVectorImpl<UseMemo> &
Uses;
12456 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12457 for (UseMemo &Memo :
Uses)
12458 if (Memo.User ==
N)
12459 Memo.User =
nullptr;
12463 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12464 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12471 switch (
Node->getOpcode()) {
12483 if (TLI->isSDNodeAlwaysUniform(
N)) {
12484 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12485 "Conflicting divergence information!");
12488 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12490 for (
const auto &
Op :
N->ops()) {
12491 EVT VT =
Op.getValueType();
12494 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12506 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12507 N->SDNodeBits.IsDivergent = IsDivergent;
12510 }
while (!Worklist.
empty());
12513void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12515 Order.reserve(AllNodes.size());
12517 unsigned NOps =
N.getNumOperands();
12520 Order.push_back(&
N);
12522 for (
size_t I = 0;
I != Order.size(); ++
I) {
12524 for (
auto *U :
N->users()) {
12525 unsigned &UnsortedOps = Degree[U];
12526 if (0 == --UnsortedOps)
12527 Order.push_back(U);
12532#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12533void SelectionDAG::VerifyDAGDivergence() {
12534 std::vector<SDNode *> TopoOrder;
12535 CreateTopologicalOrder(TopoOrder);
12536 for (
auto *
N : TopoOrder) {
12538 "Divergence bit inconsistency detected");
12561 for (
unsigned i = 0; i != Num; ++i) {
12562 unsigned FromResNo = From[i].
getResNo();
12565 if (
Use.getResNo() == FromResNo) {
12567 Uses.push_back(Memo);
12574 RAUOVWUpdateListener Listener(*
this,
Uses);
12576 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12577 UseIndex != UseIndexEnd; ) {
12583 if (
User ==
nullptr) {
12589 RemoveNodeFromCSEMaps(
User);
12596 unsigned i =
Uses[UseIndex].Index;
12601 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12605 AddModifiedNodeToCSEMaps(
User);
12613 unsigned DAGSize = 0;
12629 unsigned Degree =
N.getNumOperands();
12632 N.setNodeId(DAGSize++);
12634 if (Q != SortedPos)
12635 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12636 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12640 N.setNodeId(Degree);
12652 unsigned Degree =
P->getNodeId();
12653 assert(Degree != 0 &&
"Invalid node degree");
12657 P->setNodeId(DAGSize++);
12658 if (
P->getIterator() != SortedPos)
12659 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12660 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12664 P->setNodeId(Degree);
12667 if (
Node.getIterator() == SortedPos) {
12671 dbgs() <<
"Overran sorted position:\n";
12673 dbgs() <<
"Checking if this is due to cycles\n";
12680 assert(SortedPos == AllNodes.end() &&
12681 "Topological sort incomplete!");
12683 "First node in topological sort is not the entry token!");
12684 assert(AllNodes.front().getNodeId() == 0 &&
12685 "First node in topological sort has non-zero id!");
12686 assert(AllNodes.front().getNumOperands() == 0 &&
12687 "First node in topological sort has operands!");
12688 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12689 "Last node in topologic sort has unexpected id!");
12690 assert(AllNodes.back().use_empty() &&
12691 "Last node in topologic sort has users!");
12699 for (
SDNode *SD : DB->getSDNodes()) {
12702 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12703 SD->setHasDebugValue(
true);
12705 DbgInfo->add(DB, isParameter);
12718 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12719 return NewMemOpChain;
12722 OldChain, NewMemOpChain);
12725 return TokenFactor;
12744 if (OutFunction !=
nullptr)
12752 std::string ErrorStr;
12754 ErrorFormatter <<
"Undefined external symbol ";
12755 ErrorFormatter <<
'"' << Symbol <<
'"';
12765 return Const !=
nullptr && Const->isZero();
12774 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12779 return Const !=
nullptr && Const->isAllOnes();
12784 return Const !=
nullptr && Const->isOne();
12789 return Const !=
nullptr && Const->isMinSignedValue();
12793 unsigned OperandNo) {
12798 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12804 return Const.isZero();
12806 return Const.isOne();
12809 return Const.isAllOnes();
12811 return Const.isMinSignedValue();
12813 return Const.isMaxSignedValue();
12818 return OperandNo == 1 && Const.isZero();
12821 return OperandNo == 1 && Const.isOne();
12826 return ConstFP->isZero() &&
12827 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12829 return OperandNo == 1 && ConstFP->isZero() &&
12830 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12832 return ConstFP->isExactlyValue(1.0);
12834 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12836 case ISD::FMAXNUM: {
12838 EVT VT = V.getValueType();
12840 APFloat NeutralAF = !Flags.hasNoNaNs()
12842 : !Flags.hasNoInfs()
12845 if (Opcode == ISD::FMAXNUM)
12848 return ConstFP->isExactlyValue(NeutralAF);
12856 while (V.getOpcode() == ISD::BITCAST)
12862 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12881 !DemandedElts[IndexC->getZExtValue()]) {
12900 unsigned NumBits = V.getScalarValueSizeInBits();
12903 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12907 bool AllowTruncation) {
12908 EVT VT =
N.getValueType();
12917 bool AllowTruncation) {
12924 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12926 EVT CVT = CN->getValueType(0);
12927 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
12928 if (AllowTruncation || CVT == VecEltVT)
12935 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12940 if (CN && (UndefElements.
none() || AllowUndefs)) {
12942 EVT NSVT =
N.getValueType().getScalarType();
12943 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
12944 if (AllowTruncation || (CVT == NSVT))
12953 EVT VT =
N.getValueType();
12961 const APInt &DemandedElts,
12962 bool AllowUndefs) {
12969 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12971 if (CN && (UndefElements.
none() || AllowUndefs))
12986 return C &&
C->isZero();
12992 return C &&
C->isOne();
12997 unsigned BitWidth =
N.getScalarValueSizeInBits();
12999 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13005 APInt(
C->getAPIntValue().getBitWidth(), 1));
13011 return C &&
C->isZero();
13020 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13030 (!
MMO->getType().isValid() ||
13044 std::vector<EVT> VTs;
13057const EVT *SDNode::getValueTypeList(
MVT VT) {
13058 static EVTArray SimpleVTArray;
13061 return &SimpleVTArray.VTs[VT.
SimpleTy];
13070 if (U.getResNo() ==
Value)
13108 return any_of(
N->op_values(),
13109 [
this](
SDValue Op) { return this == Op.getNode(); });
13123 unsigned Depth)
const {
13124 if (*
this == Dest)
return true;
13128 if (
Depth == 0)
return false;
13148 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13154 if (Ld->isUnordered())
13155 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13168 this->Flags &= Flags;
13174 bool AllowPartials) {
13189 unsigned CandidateBinOp =
Op.getOpcode();
13190 if (
Op.getValueType().isFloatingPoint()) {
13192 switch (CandidateBinOp) {
13194 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13204 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13205 if (!AllowPartials || !
Op)
13207 EVT OpVT =
Op.getValueType();
13210 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13229 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13231 for (
unsigned i = 0; i < Stages; ++i) {
13232 unsigned MaskEnd = (1 << i);
13234 if (
Op.getOpcode() != CandidateBinOp)
13235 return PartialReduction(PrevOp, MaskEnd);
13251 return PartialReduction(PrevOp, MaskEnd);
13254 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13255 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13256 return PartialReduction(PrevOp, MaskEnd);
13263 while (
Op.getOpcode() == CandidateBinOp) {
13264 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13273 if (NumSrcElts != (2 * NumElts))
13288 EVT VT =
N->getValueType(0);
13297 else if (NE > ResNE)
13300 if (
N->getNumValues() == 2) {
13303 EVT VT1 =
N->getValueType(1);
13307 for (i = 0; i != NE; ++i) {
13308 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13309 SDValue Operand =
N->getOperand(j);
13322 for (; i < ResNE; ++i) {
13334 assert(
N->getNumValues() == 1 &&
13335 "Can't unroll a vector with multiple results!");
13341 for (i= 0; i != NE; ++i) {
13342 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13343 SDValue Operand =
N->getOperand(j);
13355 switch (
N->getOpcode()) {
13380 case ISD::ADDRSPACECAST: {
13383 ASC->getSrcAddressSpace(),
13384 ASC->getDestAddressSpace()));
13390 for (; i < ResNE; ++i)
13399 unsigned Opcode =
N->getOpcode();
13403 "Expected an overflow opcode");
13405 EVT ResVT =
N->getValueType(0);
13406 EVT OvVT =
N->getValueType(1);
13415 else if (NE > ResNE)
13427 for (
unsigned i = 0; i < NE; ++i) {
13428 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13451 if (LD->isVolatile() ||
Base->isVolatile())
13454 if (!LD->isSimple())
13456 if (LD->isIndexed() ||
Base->isIndexed())
13458 if (LD->getChain() !=
Base->getChain())
13460 EVT VT = LD->getMemoryVT();
13468 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13469 return (Dist * (int64_t)Bytes ==
Offset);
13478 int64_t GVOffset = 0;
13479 if (TLI->isGAPlusOffset(
Ptr.getNode(), GV, GVOffset)) {
13490 int FrameIdx = INT_MIN;
13491 int64_t FrameOffset = 0;
13493 FrameIdx = FI->getIndex();
13498 FrameOffset =
Ptr.getConstantOperandVal(1);
13501 if (FrameIdx != INT_MIN) {
13506 return std::nullopt;
13516 "Split node must be a scalar type");
13521 return std::make_pair(
Lo,
Hi);
13530 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13534 return std::make_pair(LoVT, HiVT);
13542 bool *HiIsEmpty)
const {
13552 "Mixing fixed width and scalable vectors when enveloping a type");
13557 *HiIsEmpty =
false;
13565 return std::make_pair(LoVT, HiVT);
13570std::pair<SDValue, SDValue>
13575 "Splitting vector with an invalid mixture of fixed and scalable "
13578 N.getValueType().getVectorMinNumElements() &&
13579 "More vector elements requested than available!");
13588 return std::make_pair(
Lo,
Hi);
13595 EVT VT =
N.getValueType();
13597 "Expecting the mask to be an evenly-sized vector");
13605 return std::make_pair(
Lo,
Hi);
13610 EVT VT =
N.getValueType();
13618 unsigned Start,
unsigned Count,
13620 EVT VT =
Op.getValueType();
13623 if (EltVT ==
EVT())
13626 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13638 return Val.MachineCPVal->getType();
13639 return Val.ConstVal->getType();
13643 unsigned &SplatBitSize,
13644 bool &HasAnyUndefs,
13645 unsigned MinSplatBits,
13646 bool IsBigEndian)
const {
13650 if (MinSplatBits > VecWidth)
13655 SplatValue =
APInt(VecWidth, 0);
13656 SplatUndef =
APInt(VecWidth, 0);
13663 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13666 for (
unsigned j = 0; j <
NumOps; ++j) {
13667 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13669 unsigned BitPos = j * EltWidth;
13672 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13674 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13676 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13683 HasAnyUndefs = (SplatUndef != 0);
13686 while (VecWidth > 8) {
13691 unsigned HalfSize = VecWidth / 2;
13698 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13699 MinSplatBits > HalfSize)
13702 SplatValue = HighValue | LowValue;
13703 SplatUndef = HighUndef & LowUndef;
13705 VecWidth = HalfSize;
13714 SplatBitSize = VecWidth;
13721 if (UndefElements) {
13722 UndefElements->
clear();
13729 for (
unsigned i = 0; i !=
NumOps; ++i) {
13730 if (!DemandedElts[i])
13733 if (
Op.isUndef()) {
13735 (*UndefElements)[i] =
true;
13736 }
else if (!Splatted) {
13738 }
else if (Splatted !=
Op) {
13744 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13746 "Can only have a splat without a constant for all undefs.");
13763 if (UndefElements) {
13764 UndefElements->
clear();
13775 (*UndefElements)[
I] =
true;
13778 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13779 Sequence.append(SeqLen,
SDValue());
13780 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13781 if (!DemandedElts[
I])
13783 SDValue &SeqOp = Sequence[
I % SeqLen];
13785 if (
Op.isUndef()) {
13790 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13796 if (!Sequence.empty())
13800 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13841 const APFloat &APF = CN->getValueAPF();
13847 return IntVal.exactLogBase2();
13853 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13861 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13862 "Invalid bitcast scale");
13867 BitVector SrcUndeElements(NumSrcOps,
false);
13869 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13871 if (
Op.isUndef()) {
13872 SrcUndeElements.
set(
I);
13877 assert((CInt || CFP) &&
"Unknown constant");
13878 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13879 : CFP->getValueAPF().bitcastToAPInt();
13883 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13884 SrcBitElements, UndefElements, SrcUndeElements);
13889 unsigned DstEltSizeInBits,
13894 unsigned NumSrcOps = SrcBitElements.
size();
13895 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13896 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13897 "Invalid bitcast scale");
13898 assert(NumSrcOps == SrcUndefElements.
size() &&
13899 "Vector size mismatch");
13901 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13902 DstUndefElements.
clear();
13903 DstUndefElements.
resize(NumDstOps,
false);
13907 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13908 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13909 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13910 DstUndefElements.
set(
I);
13911 APInt &DstBits = DstBitElements[
I];
13912 for (
unsigned J = 0; J != Scale; ++J) {
13913 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13914 if (SrcUndefElements[Idx])
13916 DstUndefElements.
reset(
I);
13917 const APInt &SrcBits = SrcBitElements[Idx];
13919 "Illegal constant bitwidths");
13920 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
13927 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13928 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13929 if (SrcUndefElements[
I]) {
13930 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
13933 const APInt &SrcBits = SrcBitElements[
I];
13934 for (
unsigned J = 0; J != Scale; ++J) {
13935 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13936 APInt &DstBits = DstBitElements[Idx];
13937 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13944 unsigned Opc =
Op.getOpcode();
13951std::optional<std::pair<APInt, APInt>>
13955 return std::nullopt;
13959 return std::nullopt;
13966 return std::nullopt;
13968 for (
unsigned i = 2; i <
NumOps; ++i) {
13970 return std::nullopt;
13973 if (Val != (Start + (Stride * i)))
13974 return std::nullopt;
13977 return std::make_pair(Start, Stride);
13983 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13993 for (
int Idx = Mask[i]; i != e; ++i)
13994 if (Mask[i] >= 0 && Mask[i] != Idx)
14002 SDValue N,
bool AllowOpaques)
const {
14006 return AllowOpaques || !
C->isOpaque();
14015 TLI->isOffsetFoldingLegal(GA))
14043 return std::nullopt;
14045 EVT VT =
N->getValueType(0);
14047 switch (TLI->getBooleanContents(
N.getValueType())) {
14053 return std::nullopt;
14059 return std::nullopt;
14067 assert(!
Node->OperandList &&
"Node already has operands");
14069 "too many operands to fit into SDNode");
14070 SDUse *
Ops = OperandRecycler.allocate(
14073 bool IsDivergent =
false;
14074 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14076 Ops[
I].setInitial(Vals[
I]);
14077 EVT VT =
Ops[
I].getValueType();
14080 if (VT != MVT::Other &&
14083 IsDivergent =
true;
14088 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14089 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14090 Node->SDNodeBits.IsDivergent = IsDivergent;
14098 while (Vals.
size() > Limit) {
14099 unsigned SliceIdx = Vals.
size() - Limit;
14134 case ISD::FMAXNUM: {
14140 if (Opcode == ISD::FMAXNUM)
14145 case ISD::FMINIMUM:
14146 case ISD::FMAXIMUM: {
14151 if (Opcode == ISD::FMAXIMUM)
14175 const SDLoc &DLoc) {
14179 RTLIB::Libcall LC =
static_cast<RTLIB::Libcall
>(
LibFunc);
14186 return TLI->LowerCallTo(CLI).second;
14190 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14191 auto I = SDEI.find(From);
14192 if (
I == SDEI.end())
14197 NodeExtraInfo NEI =
I->second;
14206 SDEI[To] = std::move(NEI);
14223 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14224 if (MaxDepth == 0) {
14230 if (!FromReach.
insert(
N).second)
14233 Self(Self,
Op.getNode(), MaxDepth - 1);
14238 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14241 if (!Visited.
insert(
N).second)
14246 if (
N == To &&
Op.getNode() == EntrySDN) {
14251 if (!Self(Self,
Op.getNode()))
14265 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14266 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14271 for (
const SDNode *
N : StartFrom)
14272 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14276 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14284 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14285 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14287 SDEI[To] = std::move(NEI);
14301 if (!Visited.
insert(
N).second) {
14302 errs() <<
"Detected cycle in SelectionDAG\n";
14303 dbgs() <<
"Offending node:\n";
14304 N->dumprFull(DAG);
dbgs() <<
"\n";
14320 bool check = force;
14321#ifdef EXPENSIVE_CHECKS
14325 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Provides info so a possible vectorization of a function can be computed.
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static constexpr roundingMode rmTowardPositive
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)