

# Learning Deep Models with Primitive-based Representations

Despoina Paschalidou

Autonomous Vision Group, Max Planck Institute for Intelligent Systems  
Tübingen  
Computer Vision Lab, ETH Zürich



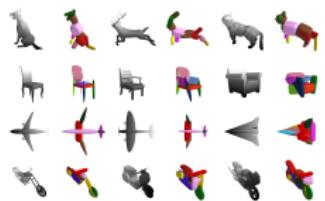
Max Planck Institute  
for Intelligent Systems  
Autonomous Vision Group



**Slides are available at**



<https://paschalidoud.github.io/talks/primitive-based-representations.pdf>

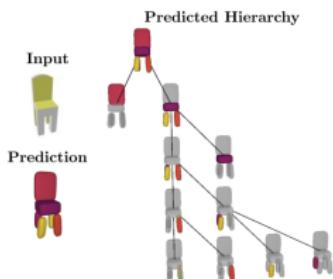


## Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids

Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger

CVPR 2019

<https://superquadrics.com/learnable-superquadrics.html>



## Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger

CVPR 2020

<https://superquadrics.com/hierarchical-primitives.html>











# Neural networks for 2D computer vision tasks

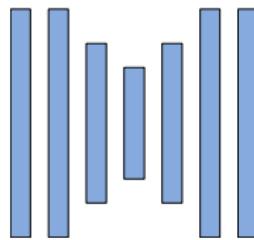


Image Source: KITTI Vision Benchmark and COCO Dataset

# Can we learn to infer 3D from a 2D image?



Input Image

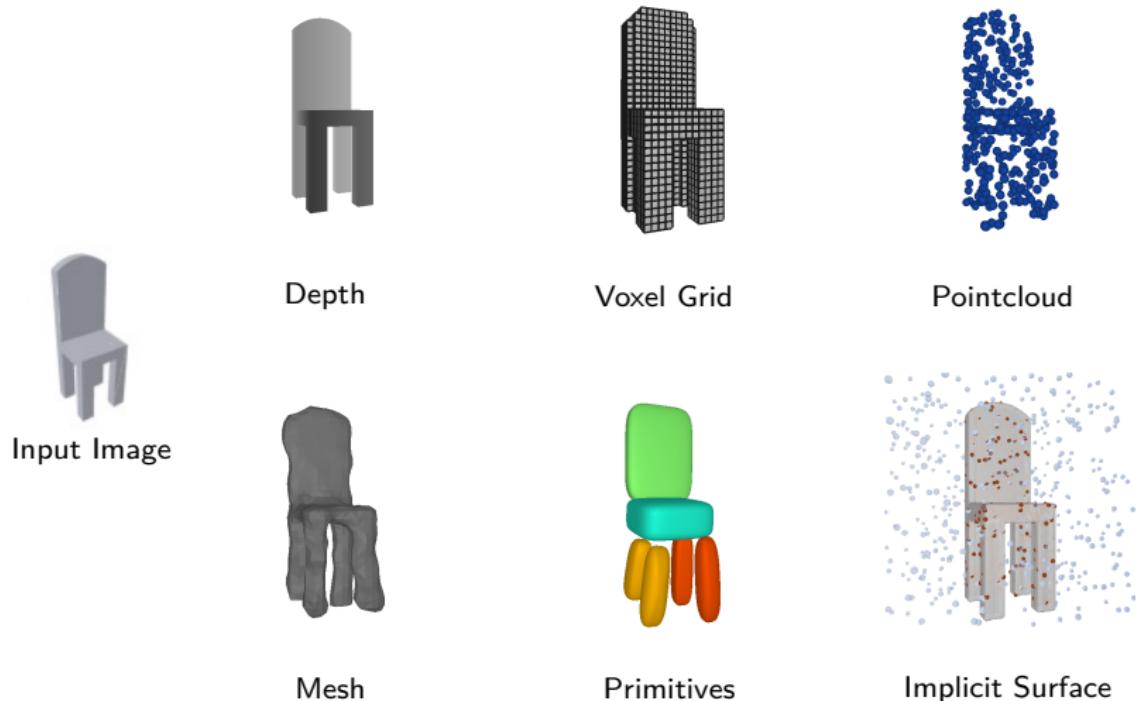


Neural Network

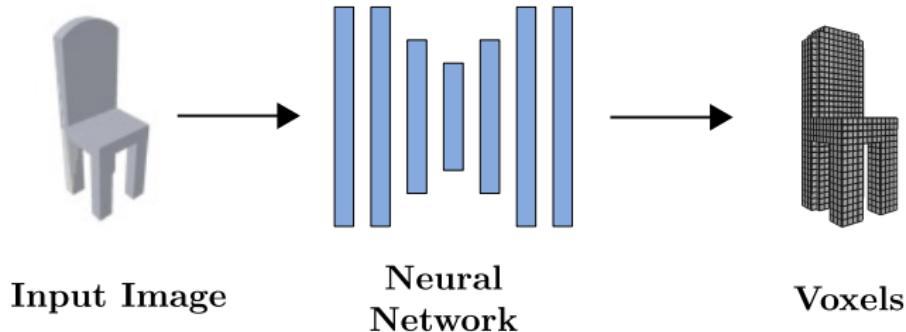


3D Reconstruction

# What is the optimal 3D Representation?



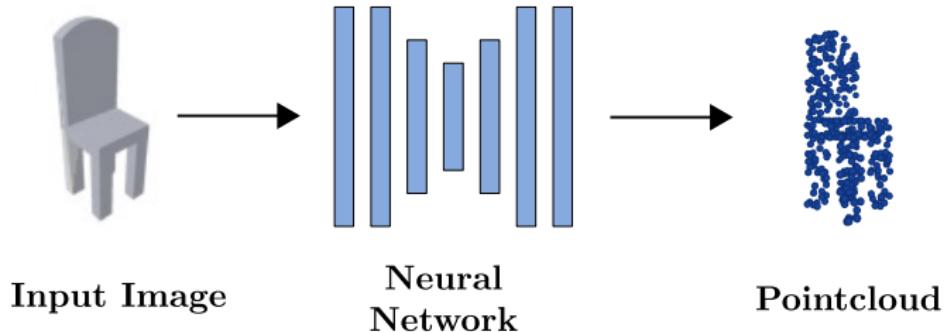
# 3D Representations



**Discretization** of 3D shape into grid:

- ✓ Accurately captures the **shape details**
- ✗ **Parametrization size** proportional to **reconstruction quality**
- ✗ Unable to yield **smooth reconstructions**
- ✗ Do not convey **semantic information**

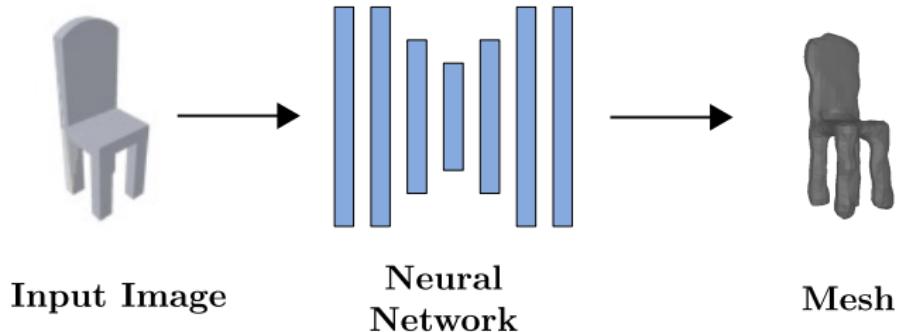
# 3D Representations



**Discretization of surface with 3D points:**

- ✓ Accurately captures the **shape details**
- ✗ Lacks surface connectivity
- ✗ Fixed number of points
- ✗ Parametrization size proportional to **reconstruction quality**
- ✗ Unable to yield **smooth reconstructions**
- ✗ Do not convey **semantic information**

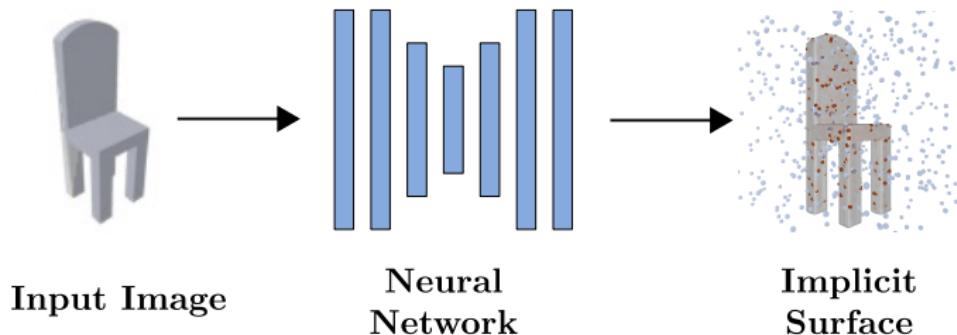
# 3D Representations



**Discretization** of surface into **vertices and faces**:

- ✓ Accurately captures the **shape details**
- ✓ Yields **smooth reconstructions**
- ✗ Requires class-specific template topology
- ✗ **Parametrization size**
- ✗ Do not convey **semantic information**

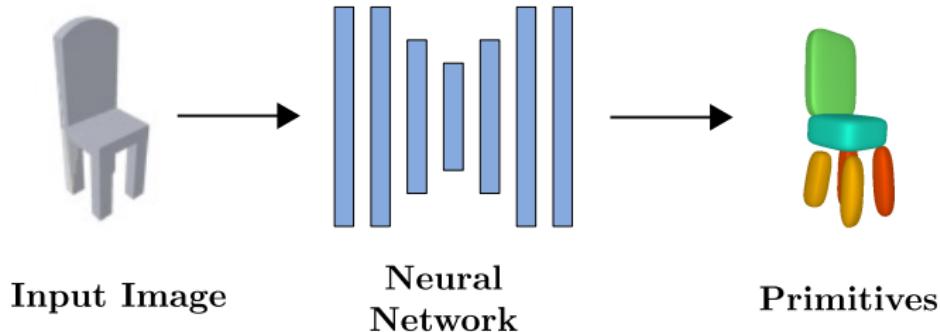
# 3D Representations



## No discretization

- ✓ Accurately captures the **shape details**
- ✓ Low **parametrization size**
- ✓ Yields **smooth reconstructions**
- ✗ Requires post-processing
- ✗ Do not convey **semantic information**

# 3D Representations



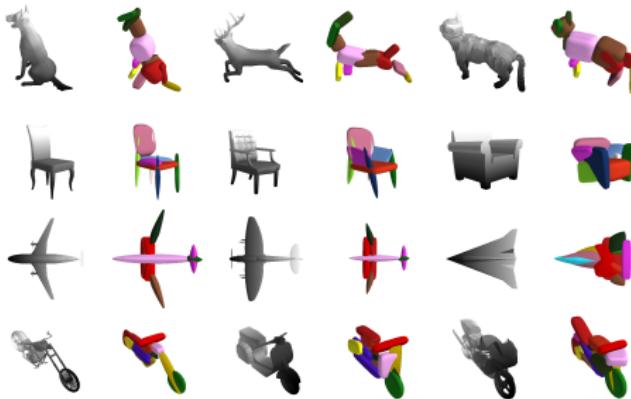
**Discretization of 3D shape into parts:**

- ✓ Low parametrization size
- ✓ Yields smooth reconstructions
- ✓ Yields semantic reconstructions
- ✓ Inter-object coherence
- ~ Accurately captures the **shape details**

# Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids

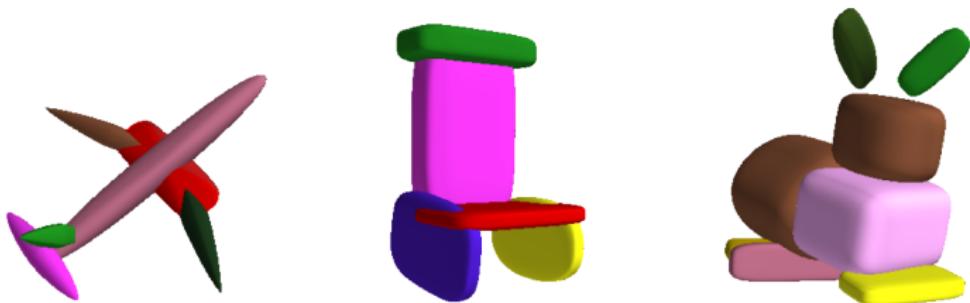
Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger

CVPR 2019



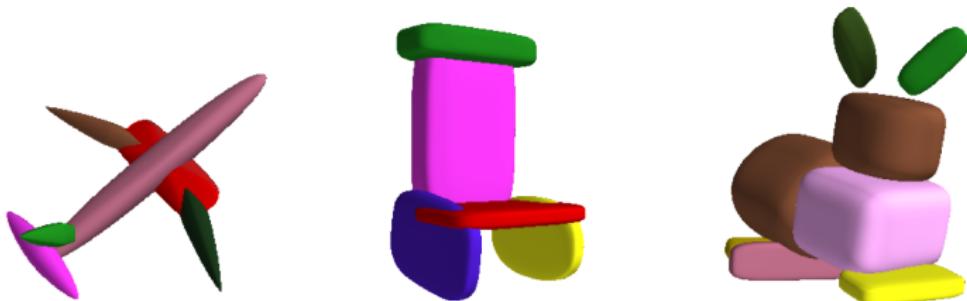
<https://superquadrics.com/learnable-superquadrics.html>

# 3D Geometric Primitives



**Primitive-based 3D Representations:**

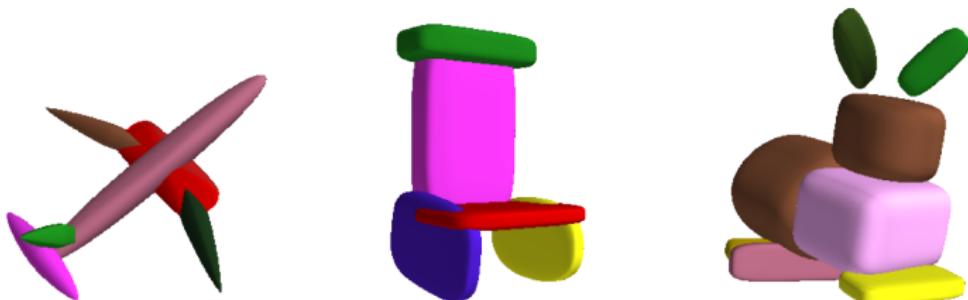
# 3D Geometric Primitives



## Primitive-based 3D Representations:

- **Parsimonious Description:** Few primitives required to represent a 3D object

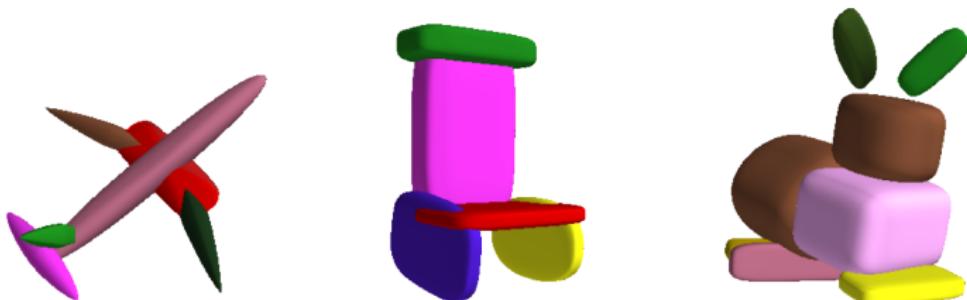
# 3D Geometric Primitives



## Primitive-based 3D Representations:

- **Parsimonious Description:** Few primitives required to represent a 3D object
- Convey semantic information (parts, functionality, etc.)

# 3D Geometric Primitives



## Primitive-based 3D Representations:

- **Parsimonious Description:** Few primitives required to represent a 3D object
- Convey semantic information (parts, functionality, etc.)
- **Main Challenge:** Variable number of primitives, few annotated datasets

# 3D Shape Abstraction

Goal of this work:



# 3D Shape Abstraction

## Goal of this work:

- Learn 3D shape abstraction from raw 3D point clouds or images



# 3D Shape Abstraction

## Goal of this work:

- Learn 3D shape abstraction from raw 3D point clouds or images
- Infer variable number of primitives



# 3D Shape Abstraction

## Goal of this work:

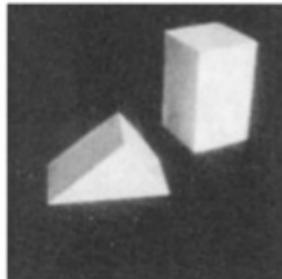
- Learn 3D shape abstraction from raw 3D point clouds or images
- Infer variable number of primitives
- No supervision at primitive level



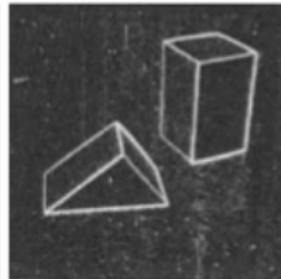
# 1963: 3D Solids



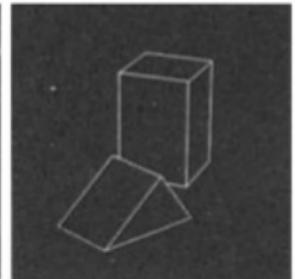
Larry Roberts  
"Father of Computer Vision"



Input image

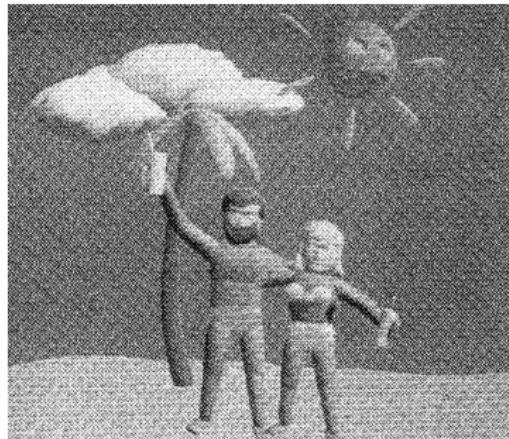
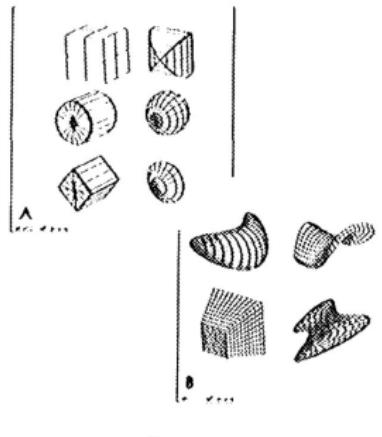
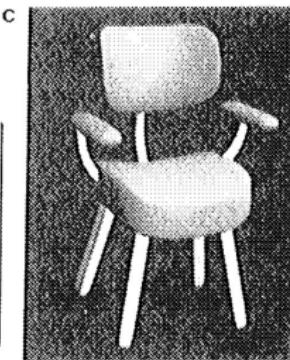


2x2 gradient operator



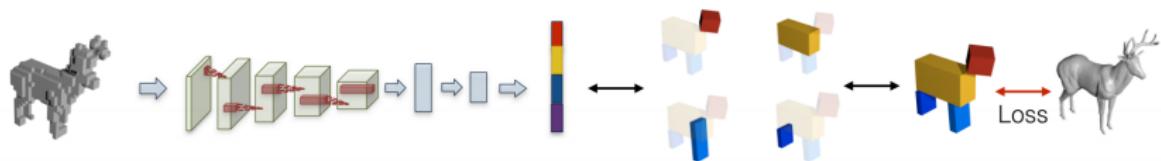
computed 3D model  
rendered from new viewpoint

## 1986: Pentland's Superquadrics



- 1 superquadric can be represented with 11 parameters
- Scene on the left **constructed with 100 primitives** required less than 1000 bytes!
- Early fitting-based approaches did not work robustly

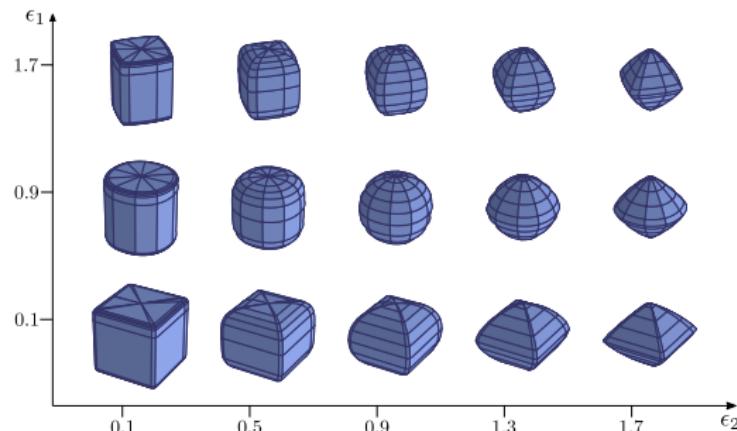
# 2017: 3D Reconstructions with Volumetric Primitives



- **Unsupervised** method for learning **cuboidal primitives**
- **Variable number of primitives**
- While **cuboids are sufficient for capturing the structure** of an object they **do not lead to expressive abstractions**.
- Computational expensive reinforcement learning for learning the existence probabilities

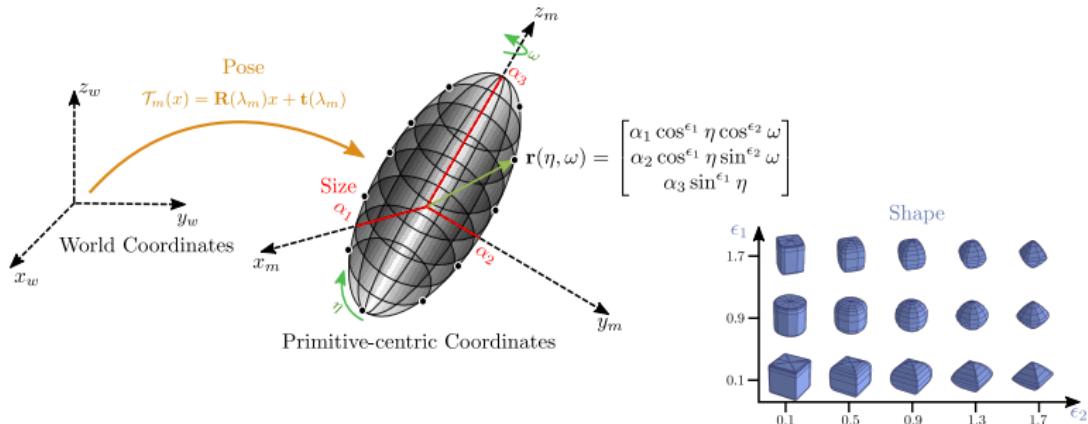
# Can we train a network to output superquadrics?

*Everything in nature takes its form from the **sphere**, the **cone** and the **cylinder**.* - Paul Cezanne.



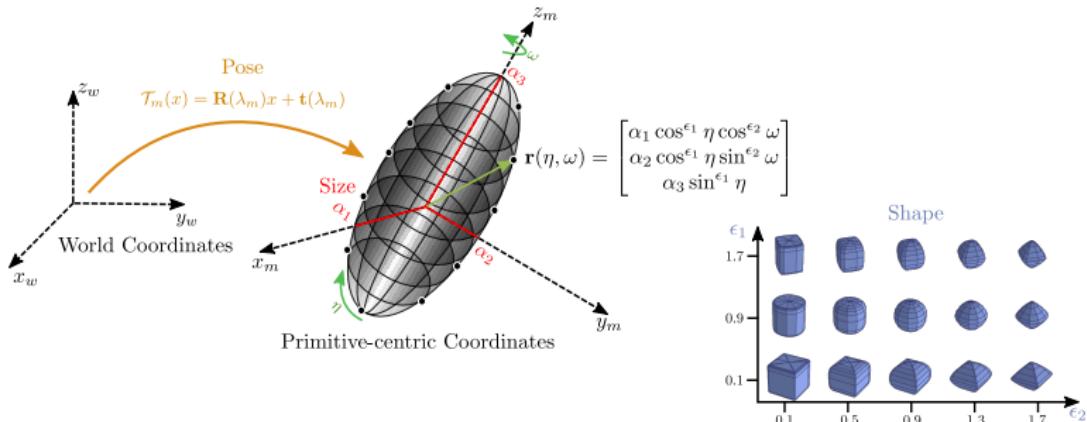
Superquadrics Space Shape

# Superquadrics as geometric primitives



*Their chief advantage is that they **allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters.** [Barr 1981]*

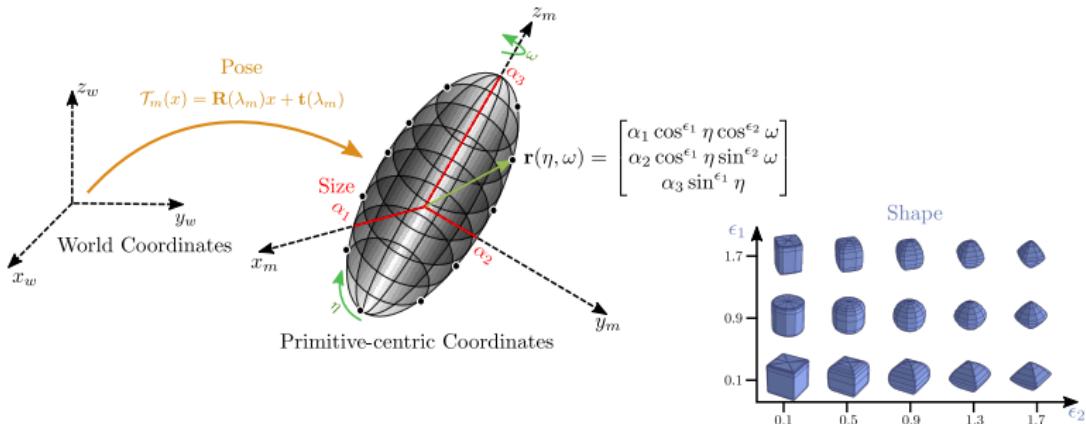
# Superquadrics as geometric primitives



*Their chief advantage is that they **allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters.** [Barr 1981]*

- o Fully described with just 11 parameters

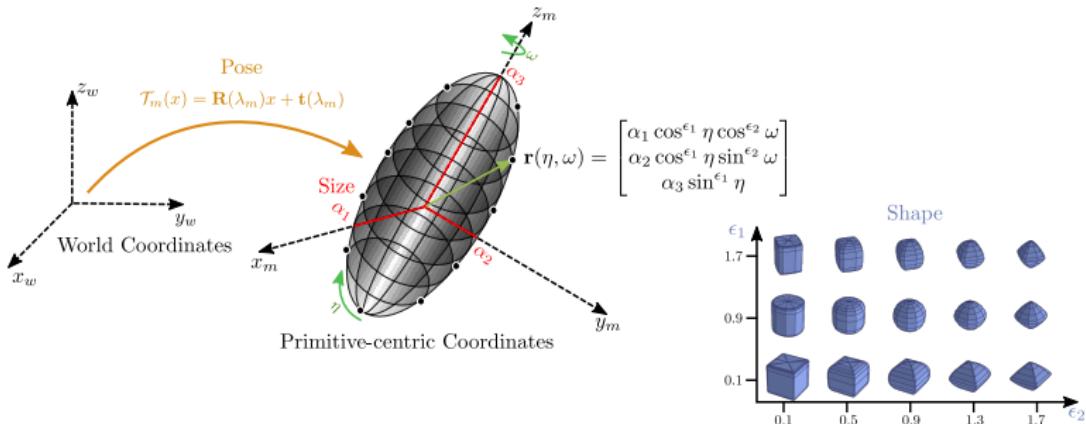
# Superquadrics as geometric primitives



*Their chief advantage is that they **allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters.** [Barr 1981]*

- o Fully described with just 11 parameters
- o Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a **single continuous parameter space**

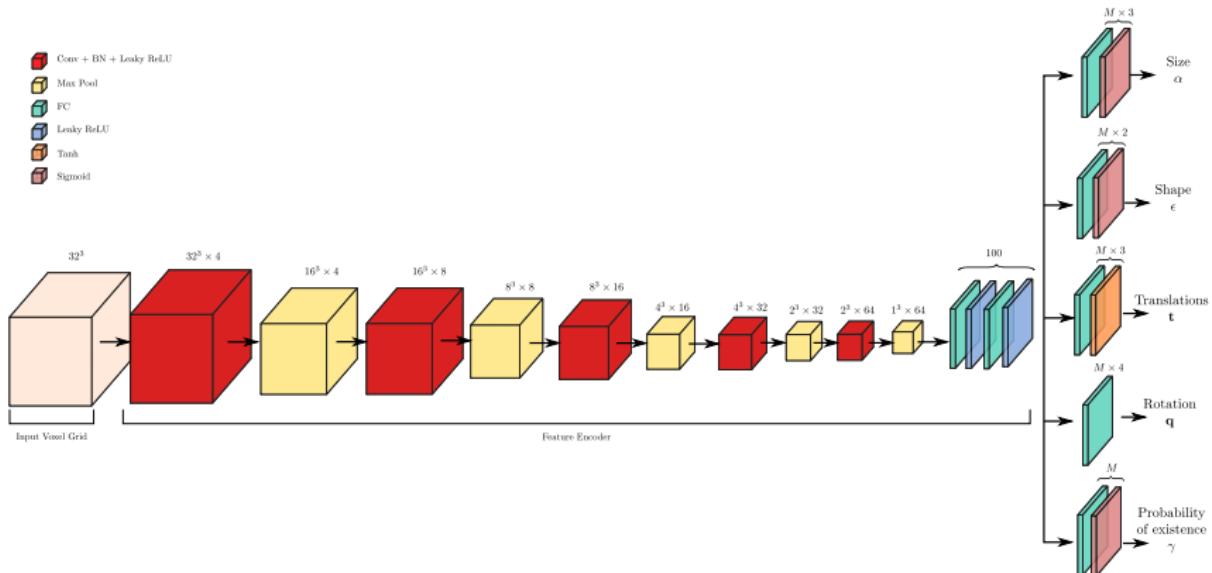
# Superquadrics as geometric primitives



*Their chief advantage is that they **allow complex solids and surfaces to be constructed and altered easily from a few interactive parameters.** [Barr 1981]*

- o Fully described with just 11 parameters
- o Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a **single continuous parameter space**
- o Their large shape vocabulary allows for **faster** and **smoother fitting** than cuboids

# Learning 3D Shape Parsing



**Neural network encodes input image/shape and for each primitive predicts:**

- o 11 parameters: 6 pose ( $\mathbf{R}, \mathbf{t}$ ) + 3 scale ( $\alpha$ ) + 2 shape ( $\epsilon$ )
- o Probability of existence:  $\gamma \in [0, 1]$

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_\gamma(\mathbf{P})$$

## Composed of:

- $\mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X})$ : Primitive-to-Pointcloud Loss
- $\mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P})$ : Pointcloud-to-Primitive Loss
- $\mathcal{L}_\gamma(\mathbf{P})$ : Existence and Parsimony Loss

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_\gamma(\mathbf{P})$$

## Composed of:

- $\mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X})$ : Primitive-to-Pointcloud Loss
- $\mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P})$ : Pointcloud-to-Primitive Loss
- $\mathcal{L}_\gamma(\mathbf{P})$ : Existence and Parsimony Loss

## Target and Predicted Shape:

- **Target:**  $\mathbf{X} = \{x_i\}_{i=1}^N$

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_\gamma(\mathbf{P})$$

## Composed of:

- $\mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X})$ : Primitive-to-Pointcloud Loss
- $\mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P})$ : Pointcloud-to-Primitive Loss
- $\mathcal{L}_\gamma(\mathbf{P})$ : Existence and Parsimony Loss

## Target and Predicted Shape:

- **Target:**  $\mathbf{X} = \{x_i\}_{i=1}^N$
- **Predicted:**  $\mathbf{P} = \{(\lambda_m, \gamma_m)\}_{m=1}^M$

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathbf{P}, \mathbf{X}) = \mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X}) + \mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P}) + \mathcal{L}_\gamma(\mathbf{P})$$

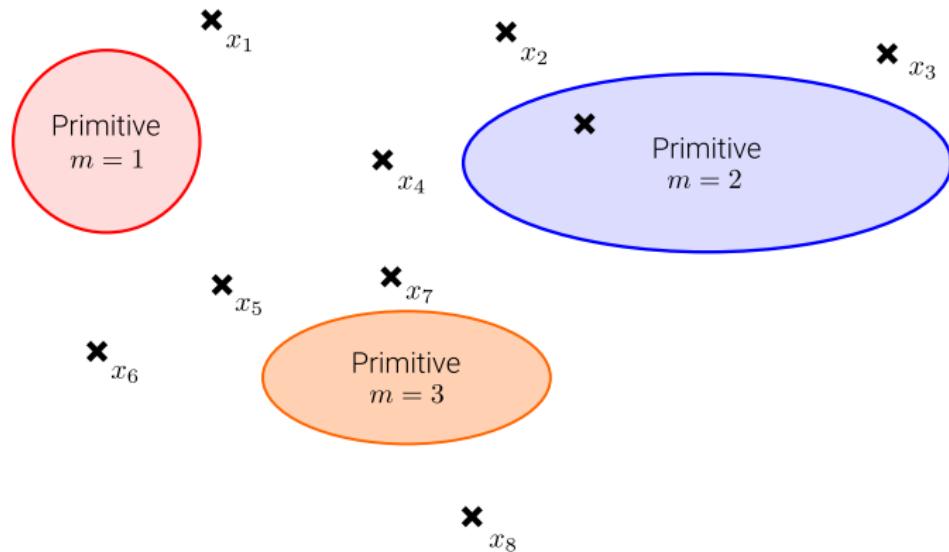
## Composed of:

- $\mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X})$ : Primitive-to-Pointcloud Loss
- $\mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P})$ : Pointcloud-to-Primitive Loss
- $\mathcal{L}_\gamma(\mathbf{P})$ : Existence and Parsimony Loss

## Target and Predicted Shape:

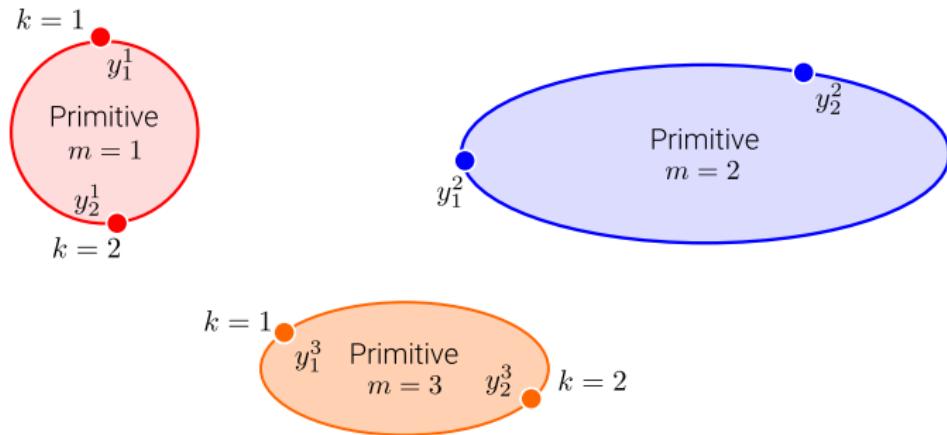
- **Target:**  $\mathbf{X} = \{x_i\}_{i=1}^N$
- **Predicted:**  $\mathbf{P} = \{(\lambda_m, \gamma_m)\}_{m=1}^M$
- **m-th primitive:**  $\mathbf{Y}_m = \{y_k^m\}_{k=1}^K$

# Loss Function



**Target shape:**  $\mathbf{X} = \{x_i\}_{i=1}^N$

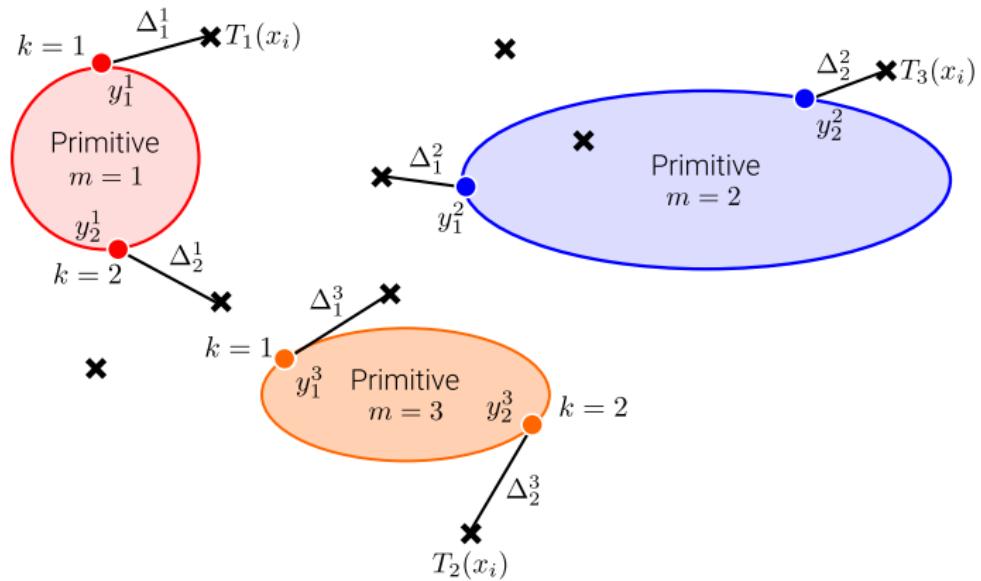
# Loss Function



**Target shape:**  $\mathbf{X} = \{x_i\}_{i=1}^N$

**$m$ -th primitive:**  $\mathbf{Y}_m = \{y_k^m\}_{k=1}^K$

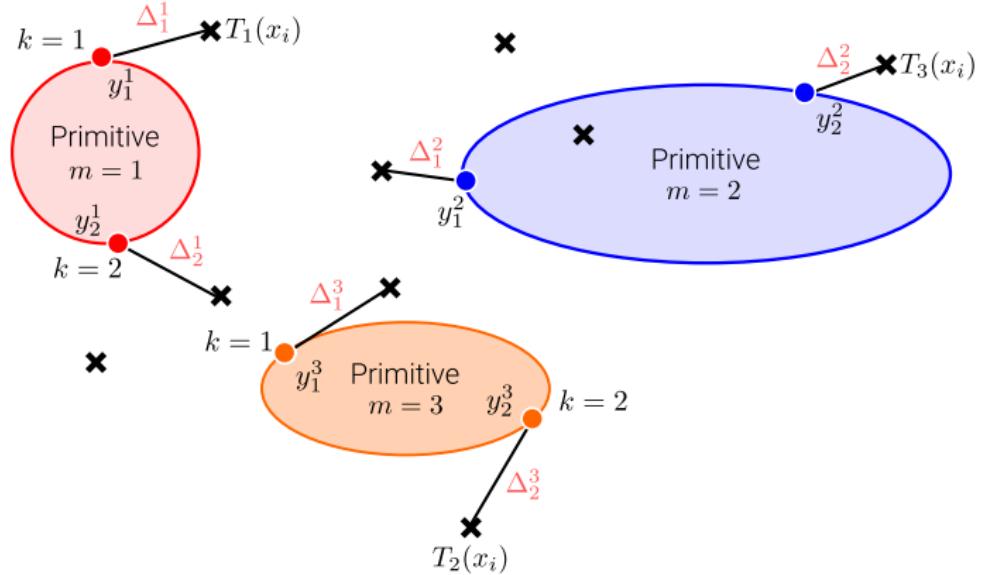
# Primitive-to-Pointcloud Loss



$$\mathcal{L}_{P \rightarrow X}^m(\mathbf{P}, \mathbf{X}) = \frac{1}{K} \sum_{k=1}^K \Delta_k^m$$

$$\Delta_k^m = \min_{i=1,..,N} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2$$

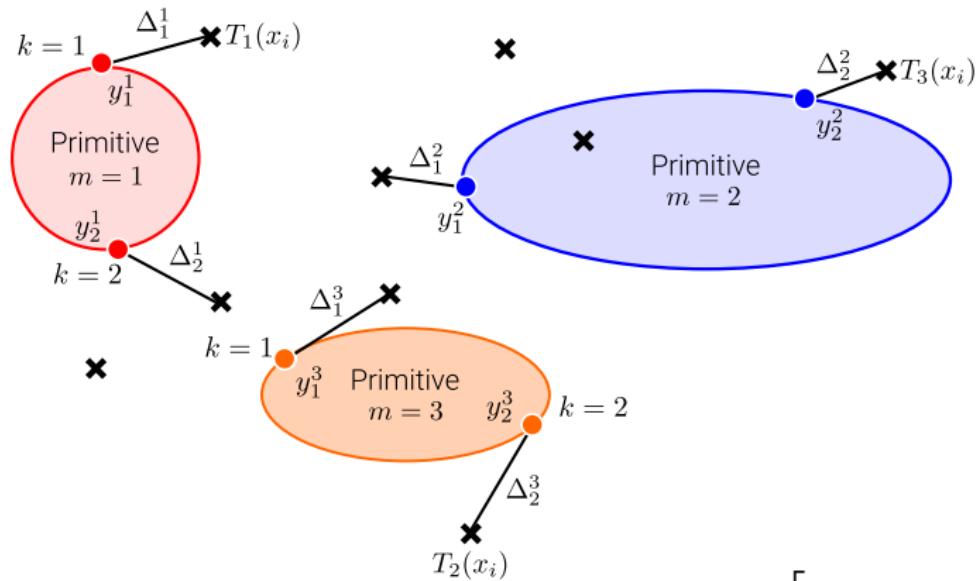
# Primitive-to-Pointcloud Loss



$$\mathcal{L}_{P \rightarrow X}^m(\mathbf{P}, \mathbf{X}) = \frac{1}{K} \sum_{k=1}^K \Delta_k^m$$

$$\Delta_k^m = \min_{i=1,..,N} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2$$

# Primitive-to-Pointcloud Loss



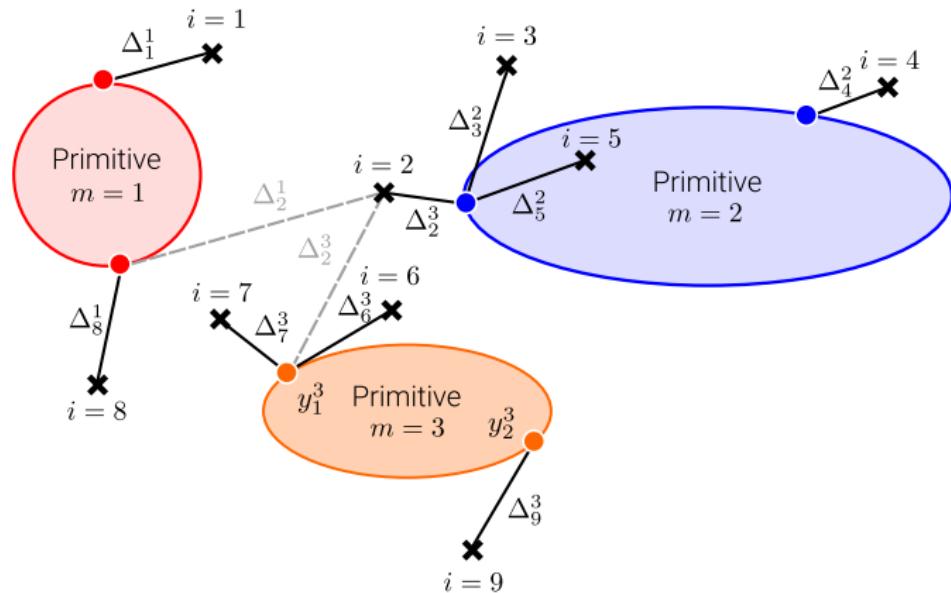
$$\mathcal{L}_{P \rightarrow X}^m(\mathbf{P}, \mathbf{X}) = \frac{1}{K} \sum_{k=1}^K \Delta_k^m$$

$$\Delta_k^m = \min_{i=1,..,N} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2$$

$$\mathcal{L}_{P \rightarrow X}(\mathbf{P}, \mathbf{X}) = \mathbb{E}_{p(\mathbf{z})} \left[ \sum_{m|z_m=1} \mathcal{L}_{P \rightarrow X}^m(\mathbf{P}, \mathbf{X}) \right]$$

$$= \sum_{m=1}^M \gamma_m \mathcal{L}_{P \rightarrow X}^m(\mathbf{P}, \mathbf{X})$$

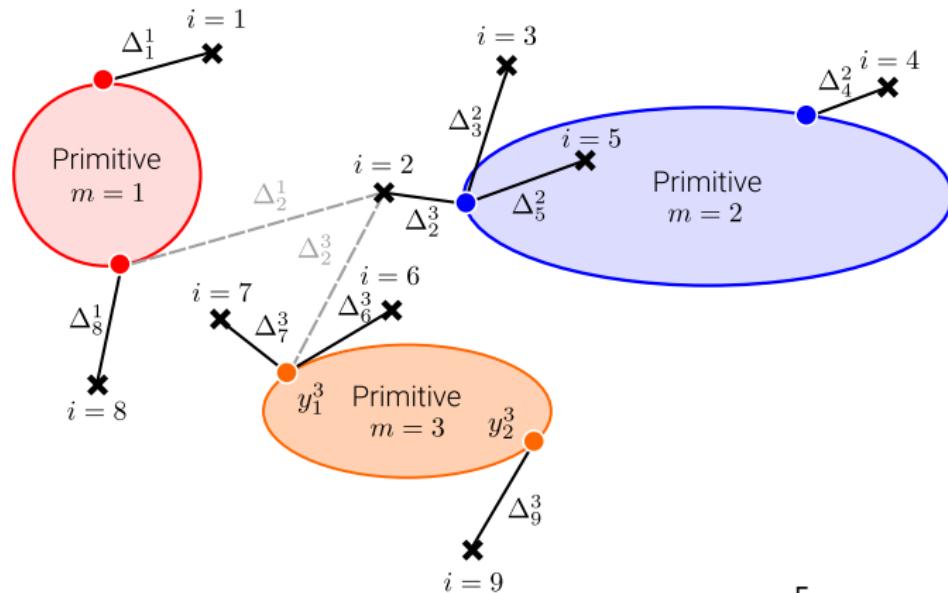
# Pointcloud-to-Primitive Loss



$$\mathcal{L}_{X \rightarrow P}^i(\mathbf{X}, \mathbf{P}) = \min_{m | z_m=1} \Delta_i^m$$

$$\Delta_i^m = \min_{k=1, \dots, \kappa} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2$$

# Pointcloud-to-Primitive Loss

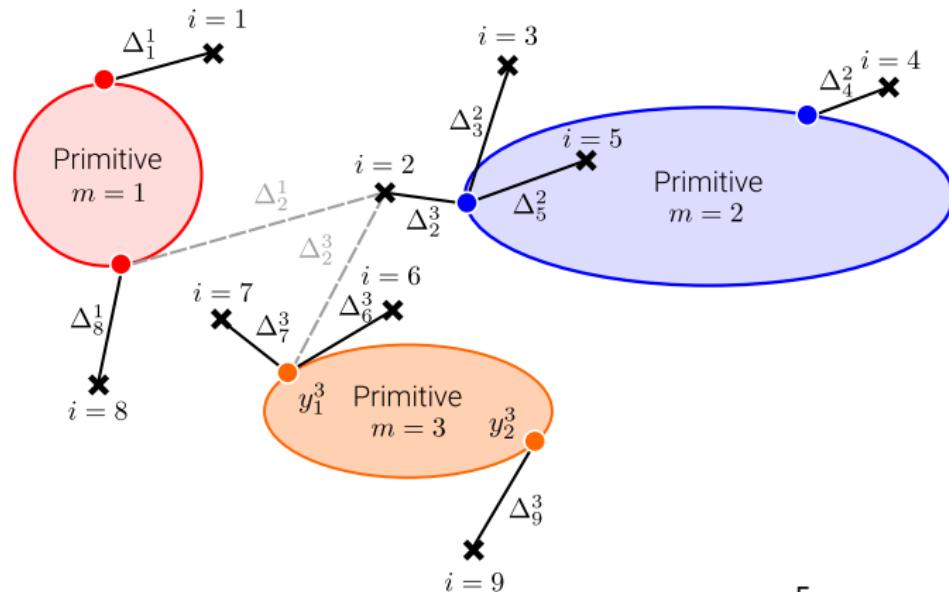


$$\mathcal{L}_{X \rightarrow P}^i(\mathbf{X}, \mathbf{P}) = \min_{m | z_m=1} \Delta_i^m$$

$$\Delta_i^m = \min_{k=1, \dots, \kappa} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2$$

$$\mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P}) = \mathbb{E}_{p(\mathbf{z})} \left[ \sum_{\mathbf{x}_i \in \mathbf{X}} \mathcal{L}_{X \rightarrow P}^i(\mathbf{X}, \mathbf{P}) \right]$$

# Pointcloud-to-Primitive Loss



$$\mathcal{L}_{X \rightarrow P}^i(\mathbf{X}, \mathbf{P}) = \min_{m | z_m=1} \Delta_i^m$$

$$\Delta_i^m = \min_{k=1, \dots, \kappa} \|\mathcal{T}_m(\mathbf{x}_i) - \mathbf{y}_k^m\|_2$$

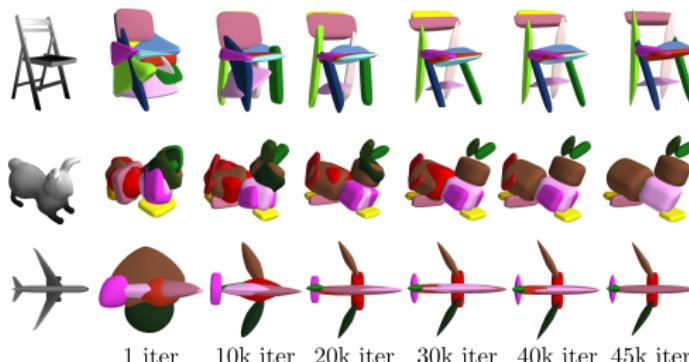
$$\mathcal{L}_{X \rightarrow P}(\mathbf{X}, \mathbf{P}) = \mathbb{E}_{p(\mathbf{z})} \left[ \sum_{\mathbf{x}_i \in \mathbf{X}} \mathcal{L}_{X \rightarrow P}^i(\mathbf{X}, \mathbf{P}) \right]$$

$$= \sum_{\mathbf{x}_i \in \mathbf{X}} \sum_{m=1}^M \Delta_i^m \gamma_m \prod_{\bar{m}=1}^{m-1} (1 - \gamma_{\bar{m}})$$

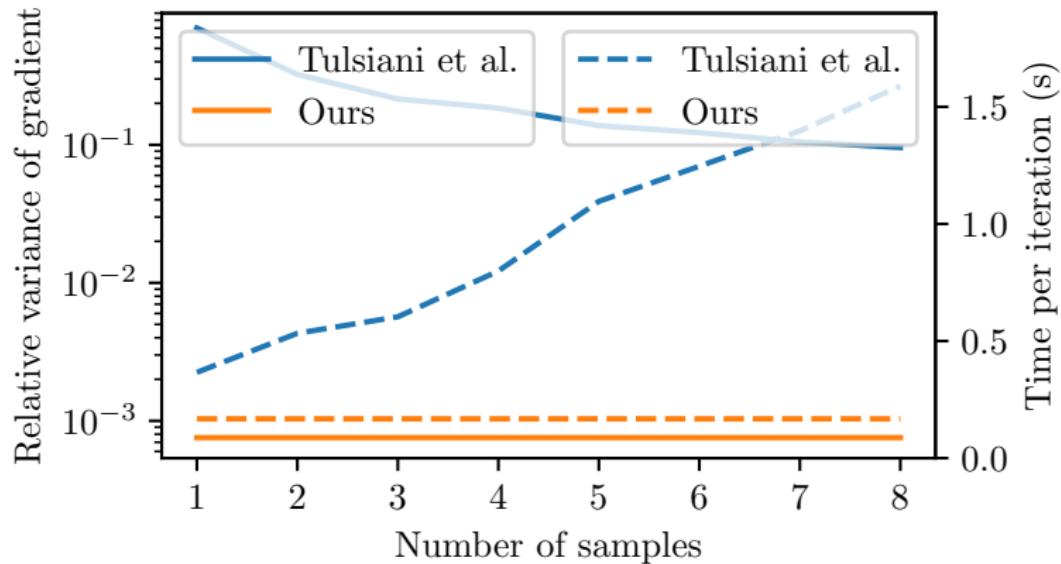
# Existence and Parsimony Loss

$$\mathcal{L}_\gamma(\mathbf{P}) = \max \left( 1 - \sum_{m=1}^M \gamma_m, 0 \right) + \beta \sqrt{\sum_{m=1}^M \gamma_m}$$

- **First term:** Enforces at least one primitive to exist
- **Second term:** Encourages parsimony
- Two-stage training



## Comparison to Tulsiani et. al. / REINFORCE

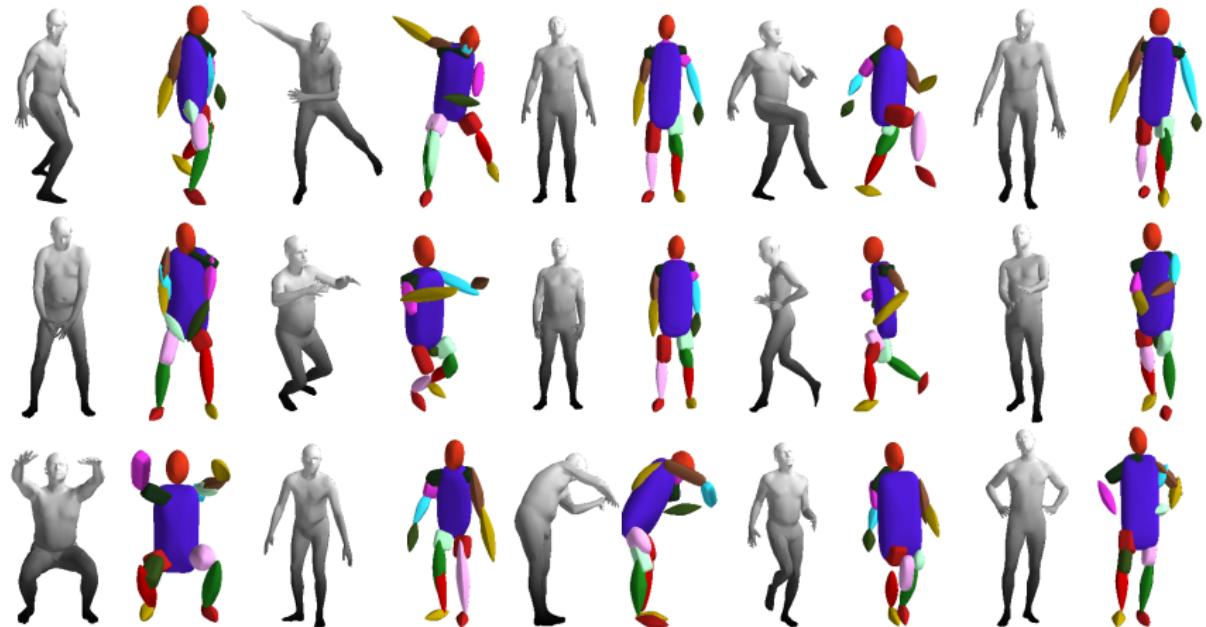


# Single view 3D Reconstruction on ShapeNet



|               | Chamfer Distance |               |               | Volumetric IoU |               |               |
|---------------|------------------|---------------|---------------|----------------|---------------|---------------|
|               | Chairs           | Aeroplanes    | Animals       | Chairs         | Aeroplanes    | Animals       |
| Cuboids       | 0.0121           | 0.0153        | 0.0110        | 0.1288         | 0.0650        | 0.3339        |
| Superquadrics | <b>0.0006</b>    | <b>0.0003</b> | <b>0.0003</b> | <b>0.1408</b>  | <b>0.1808</b> | <b>0.7506</b> |

# Single view 3D Reconstruction on SURREAL



# 3D Shape Abstractions with Superquadrics

## Limitations:

# 3D Shape Abstractions with Superquadrics

## Limitations:

- Trade-off between number of primitives and representation accuracy

# 3D Shape Abstractions with Superquadrics

## Limitations:

- Trade-off between number of primitives and representation accuracy
- Bidirectional reconstruction loss suffers from various local minima

# 3D Shape Abstractions with Superquadrics

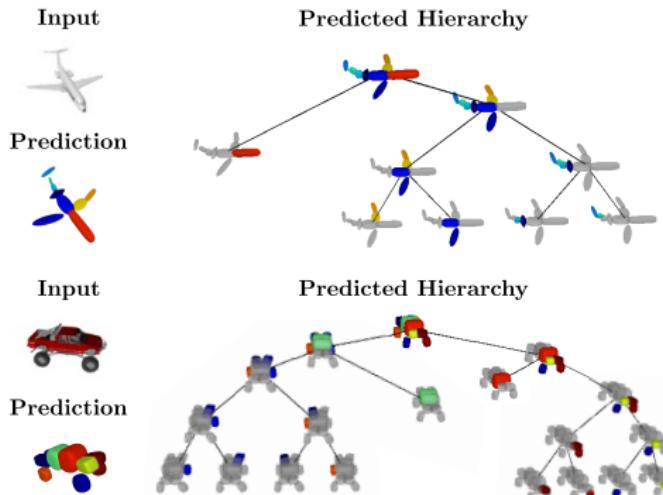
## Limitations:

- Trade-off between number of primitives and representation accuracy
- Bidirectional reconstruction loss suffers from various local minima
- Superquadrics :-)

# Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger

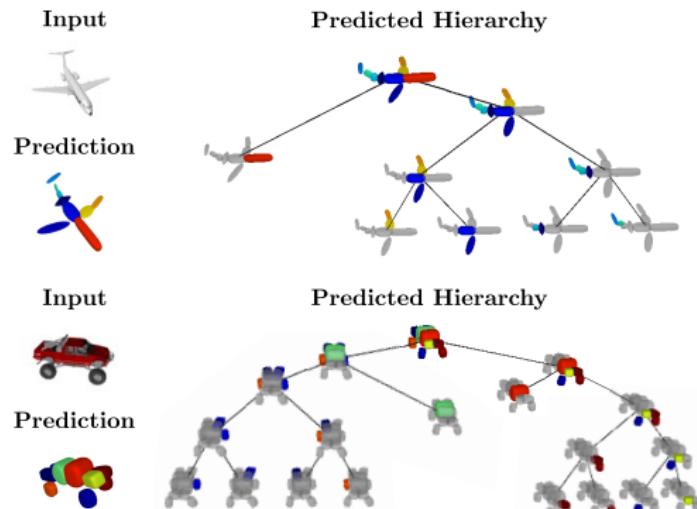
CVPR 2020



<https://superquadrics.com/hierarchical-primitives.html>

# Hierarchical Part Decomposition

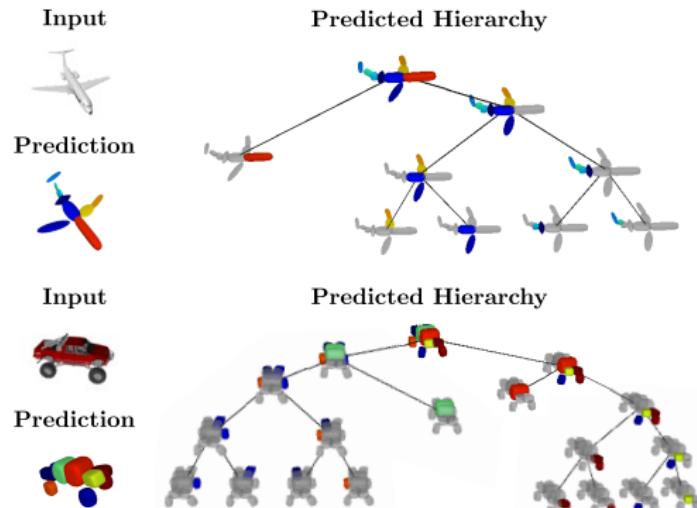
Goal of this work:



# Hierarchical Part Decomposition

## Goal of this work:

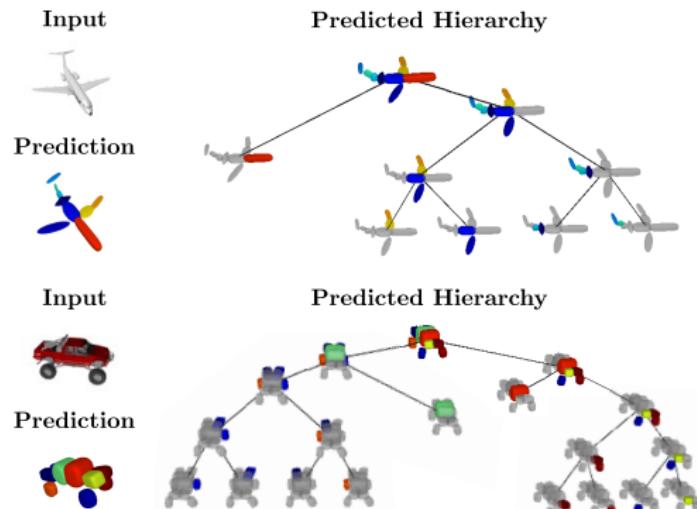
- Model relationships between parts



# Hierarchical Part Decomposition

## Goal of this work:

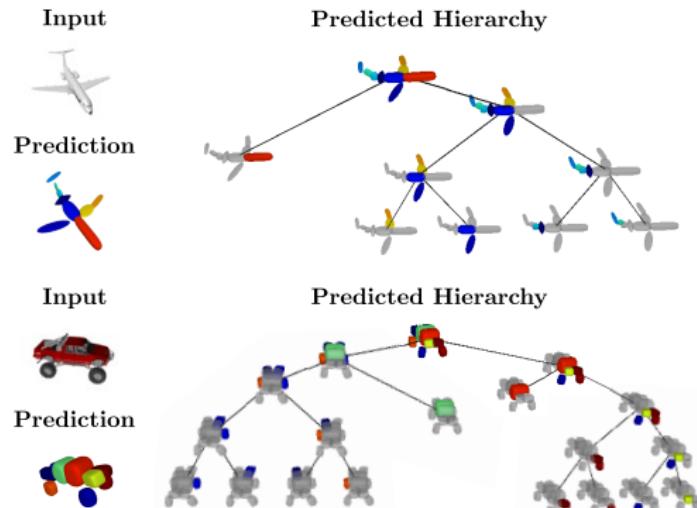
- Model relationships between parts
- Model objects with multiple levels of abstraction



# Hierarchical Part Decomposition

## Goal of this work:

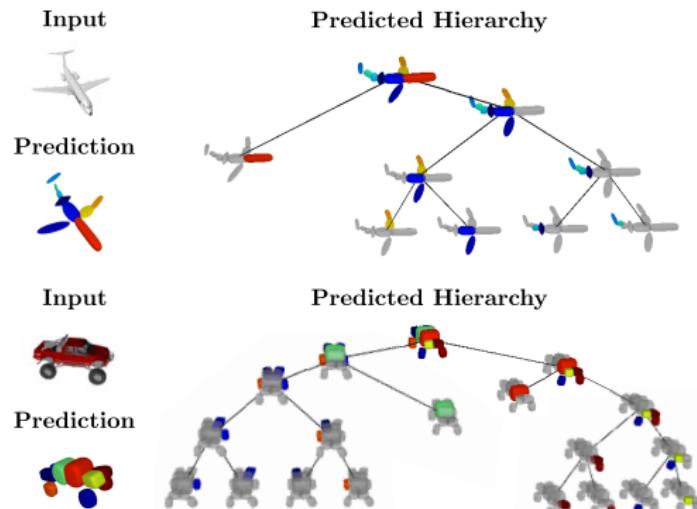
- Model relationships between parts
- Model objects with multiple levels of abstraction
- Infer variable number of primitives



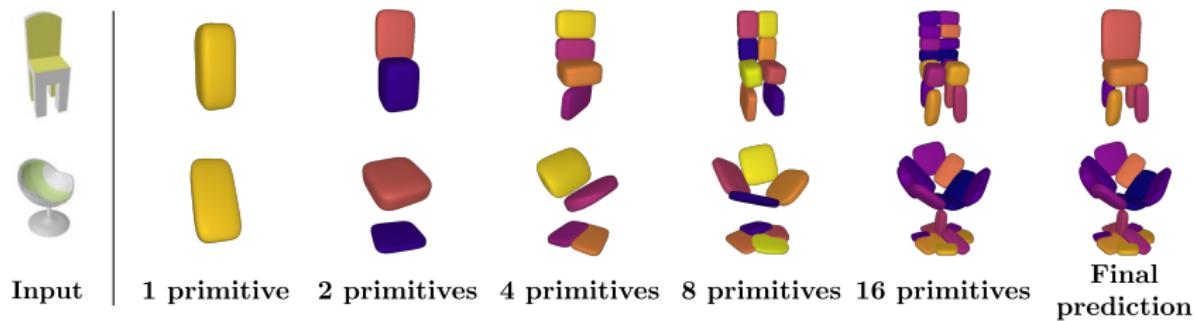
# Hierarchical Part Decomposition

## Goal of this work:

- Model relationships between parts
- Model objects with multiple levels of abstraction
- Infer variable number of primitives
- No supervision at primitive level and part relations

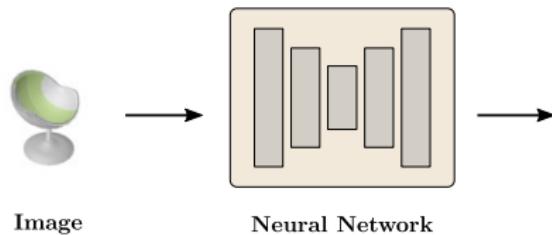


# Representation with multiple levels of abstraction



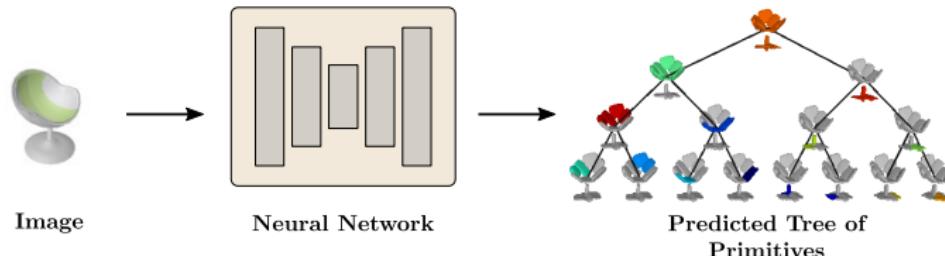
- Represent a 3D shape as a **binary tree of primitives**
- At each depth level, each node is **recursively** split into two until reaching the maximum depth
- Reconstructions from deeper depth levels are more detailed

# Learning Hierarchical Part Decomposition of 3D Objects



**Target and Predicted Shape:**

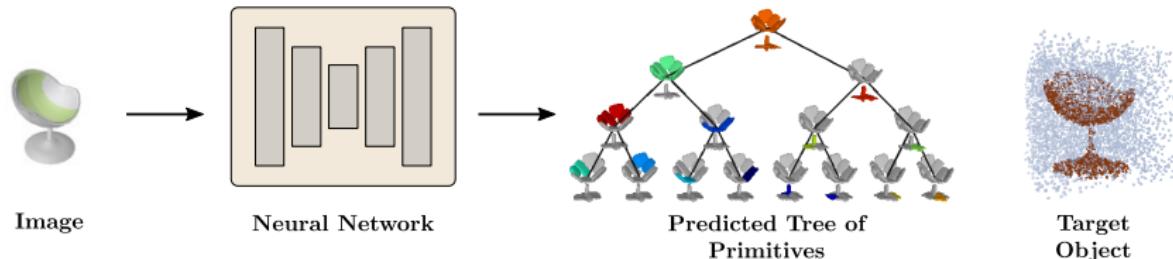
# Learning Hierarchical Part Decomposition of 3D Objects



## Target and Predicted Shape:

- **Binary Tree of Primitives:**  $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$

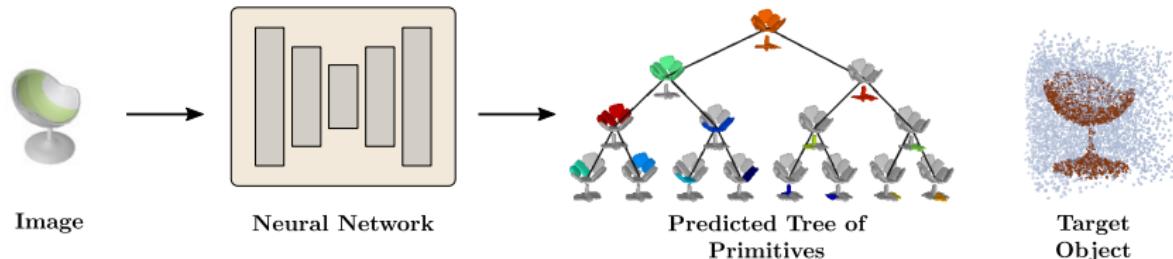
# Learning Hierarchical Part Decomposition of 3D Objects



## Target and Predicted Shape:

- **Binary Tree of Primitives:**  $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$
- **Target:** Set of occupancy pairs  $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$

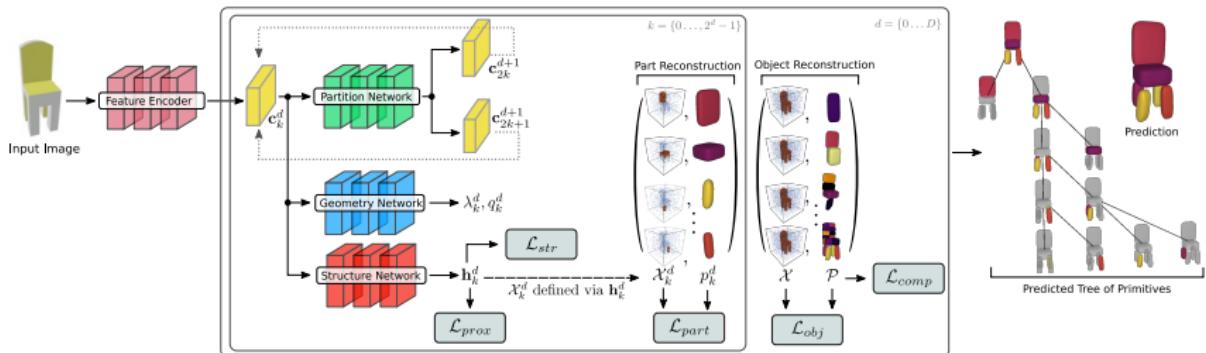
# Learning Hierarchical Part Decomposition of 3D Objects



## Target and Predicted Shape:

- **Binary Tree of Primitives:**  $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$
- **Target:** Set of occupancy pairs  $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$
- **Occupancy function of predicted shape at depth d:**  
$$G^d(\mathbf{x}) = \max_{k \in 0 \dots 2^d-1} g_k^d(\mathbf{x}; \lambda_k^d)$$

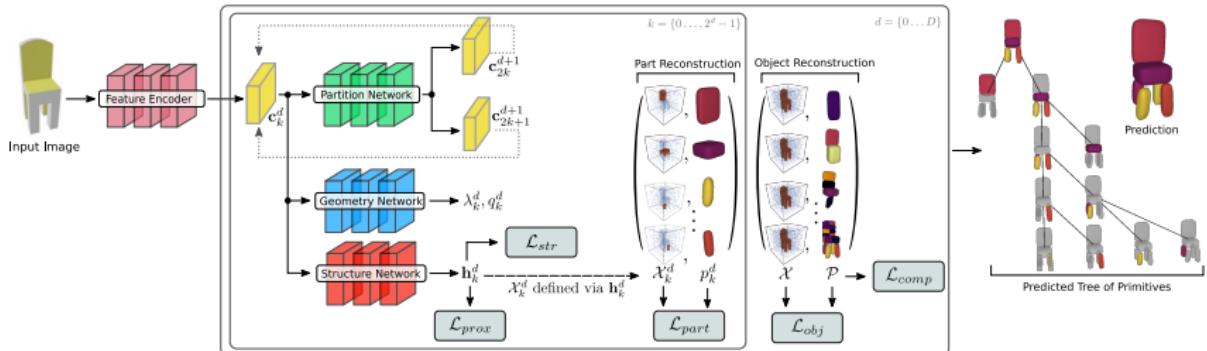
# Learning Hierarchical Part Decomposition of 3D Objects



**Neural network encodes input image/shape and for each primitive predicts:**

- 11 parameters: 6 pose ( $\mathbf{R}, \mathbf{t}$ ) + 3 scale ( $\alpha$ ) + 2 shape ( $\epsilon$ )
- Reconstruction quality:  $q_k^d \in [0, 1]$

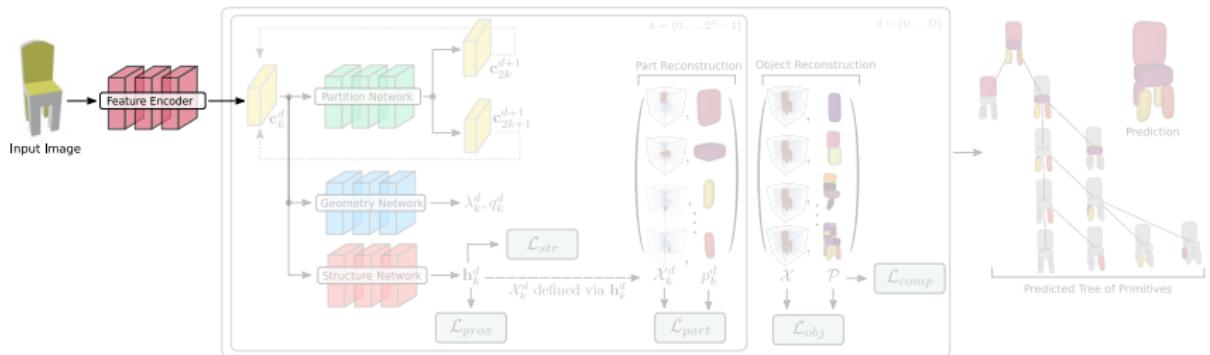
# Learning Hierarchical Part Decomposition of 3D Objects



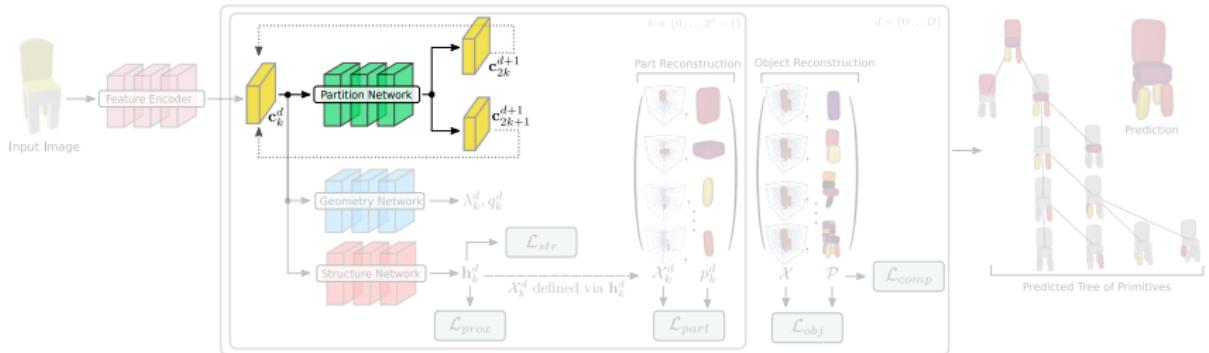
## Components:

- Feature Encoder
- Partition Network
- Geometry Network
- Structure Network

# Learning Hierarchical Part Decomposition of 3D Objects



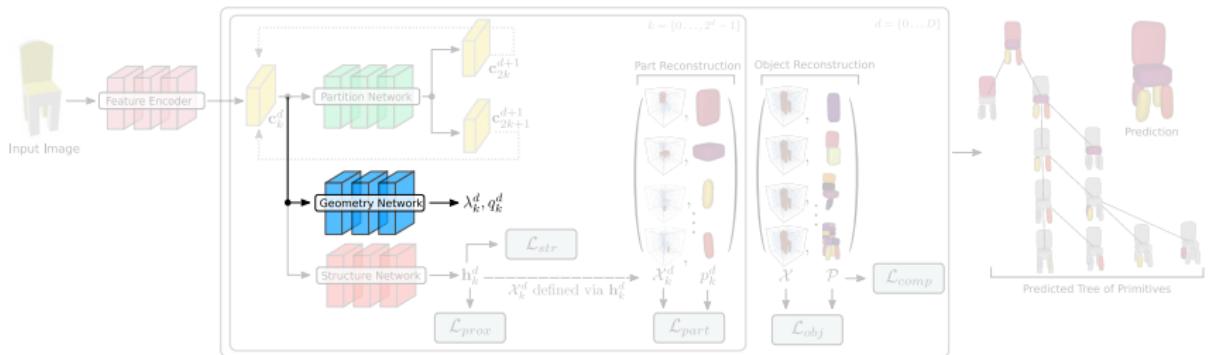
# Learning Hierarchical Part Decomposition of 3D Objects



**Partition Network:** Recursively partition the **feature representation**

$$p_\theta(c_k^d) = \{c_{2k}^{d+1}, c_{2k+1}^{d+1}\}$$

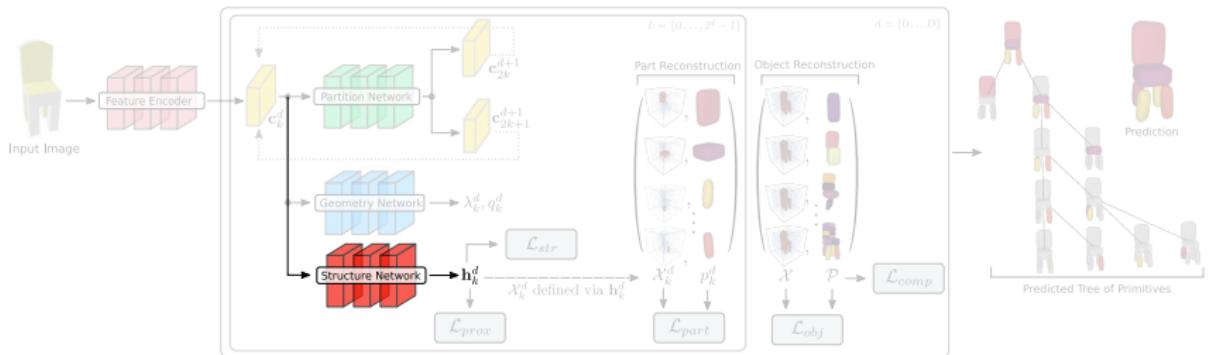
# Learning Hierarchical Part Decomposition of 3D Objects



**Geometry Network:** Regress the primitive parameters

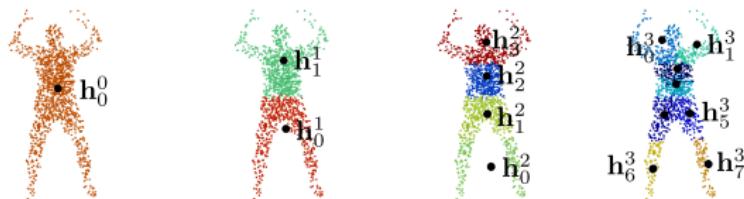
$$r_{\theta}(\mathbf{c}_k^d) = \{\lambda_k^d, q_k^d\}.$$

# Learning Hierarchical Part Decomposition of 3D Objects



**Structure Network:** Assign object parts to primitives

$$\mathcal{H} = \{\{\mathbf{h}_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$$



# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Structure Loss
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Reconstruction Loss
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$ : Combatibility Loss
- $\mathcal{L}_{prox}(\mathcal{P})$ : Proximity Loss

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Structure Loss
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Reconstruction Loss
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$ : Combatibility Loss
- $\mathcal{L}_{prox}(\mathcal{P})$ : Proximity Loss

## Target and Predicted Shape:

- **Target:**  $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Structure Loss
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Reconstruction Loss
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$ : Combatibility Loss
- $\mathcal{L}_{prox}(\mathcal{P})$ : Proximity Loss

## Target and Predicted Shape:

- **Target:**  $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$
- **Binary Tree of Primitives:**  $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

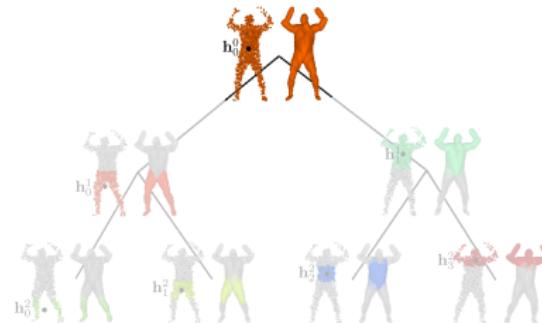
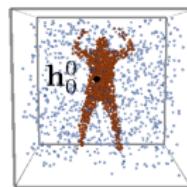
## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Structure Loss
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Reconstruction Loss
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$ : Combatibility Loss
- $\mathcal{L}_{prox}(\mathcal{P})$ : Proximity Loss

## Target and Predicted Shape:

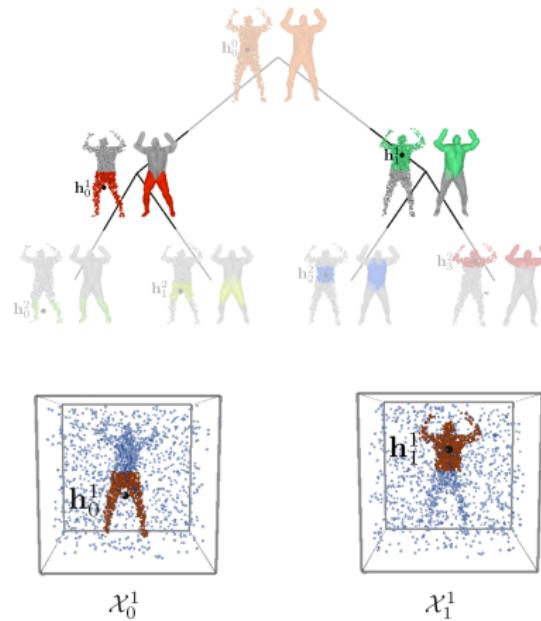
- **Target:**  $\mathcal{X} = \{(\mathbf{x}_i, \mathbf{o}_i)\}_{i=1}^N$
- **Binary Tree of Primitives:**  $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$
- **Geometric Centroids:**  $\mathcal{H} = \{\{\mathbf{h}_k^d\}_{k=0}^{2^d-1} \mid d = \{0 \dots D\}\}$

# Structure Loss

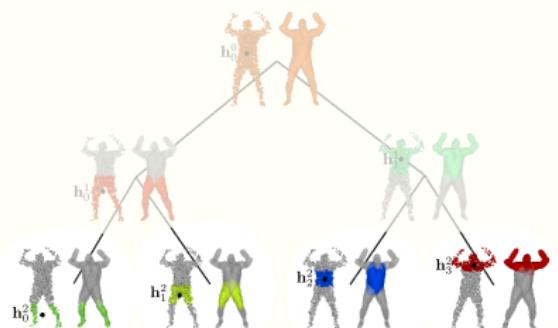
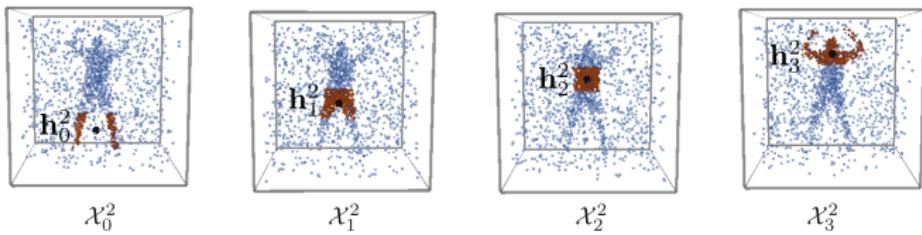


$$\mathcal{X}_0^0$$

# Structure Loss



# Structure Loss



# Structure Loss



$$\mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) = \sum_{h_k^d \in \mathcal{H}} \frac{1}{2^d - 1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} o \|\mathbf{x} - \mathbf{h}_k^d\|_2$$

# Reconstruction Loss

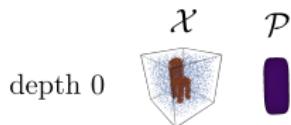
$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$

# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D \textcolor{red}{L} \left( G^d(\mathbf{x}), o \right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} \textcolor{red}{L} \left( g_k^d \left( \mathbf{x}; \lambda_k^d \right), o \right)}_{\text{Part Reconstruction}}$$

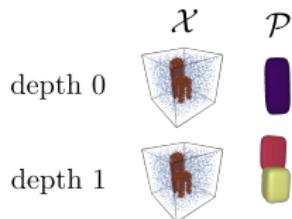
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



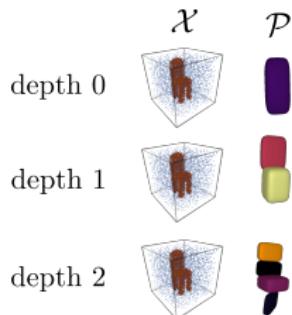
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



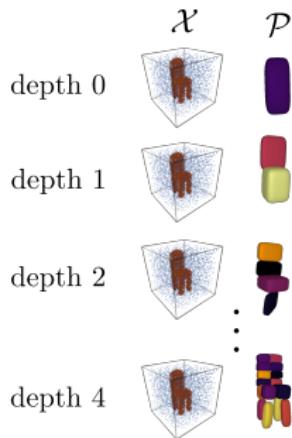
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



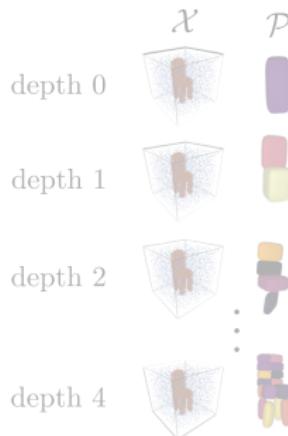
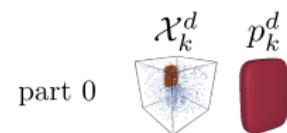
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



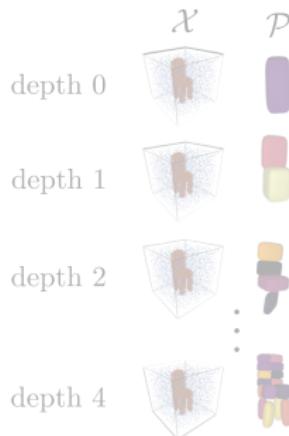
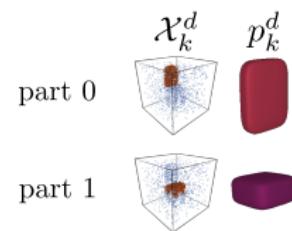
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



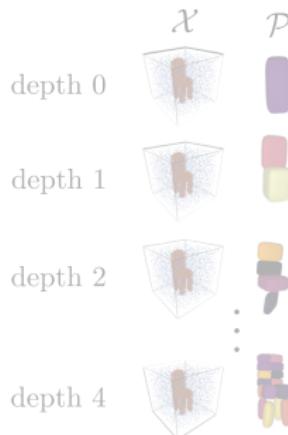
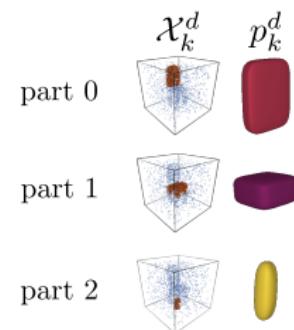
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



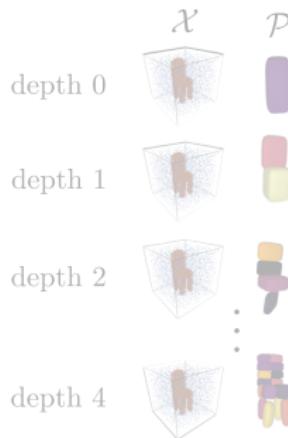
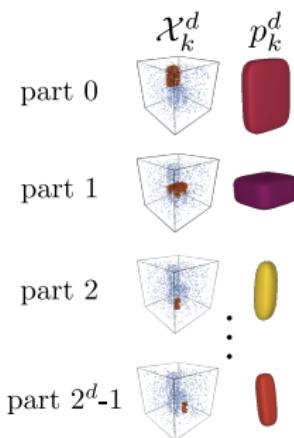
# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$

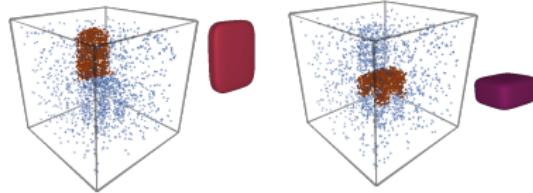


# Reconstruction Loss

$$\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \underbrace{\sum_{(\mathbf{x}, o) \in \mathcal{X}} \sum_{d=0}^D L\left(G^d(\mathbf{x}), o\right)}_{\text{Object Reconstruction}} + \underbrace{\sum_{d=0}^D \sum_{k=0}^{2^d-1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)}_{\text{Part Reconstruction}}$$



# Compatibility Loss



$$\mathcal{L}_{comp}(\mathcal{P}) = \sum_{d=0}^{\mathcal{D}} \sum_{k=0}^{2^d-1} \left( q_k^d - \text{IoU}(p_k^d, \mathcal{X}_k^d) \right)^2$$

# Proximity Loss



(a) **Input**



(b) **without**



(c) **Ours**

$$\mathcal{L}_{prox}(\mathcal{P}) = \sum_{d=0}^D \sum_{k=0}^{2^d-1} \|\mathbf{t}(\lambda_k^d) - \mathbf{h}_k^d\|_2$$

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Decomposes shape into parts

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Decomposes shape into parts
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Predicted primitives match the shape

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Decomposes shape into parts
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Predicted primitives match the shape
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$ : Allows for variable number of primitives

# Loss Function

## Overall Loss:

$$\mathcal{L}(\mathcal{P}, \mathcal{H}; \mathcal{X}) = \mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) + \mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) + \mathcal{L}_{prox}(\mathcal{P})$$

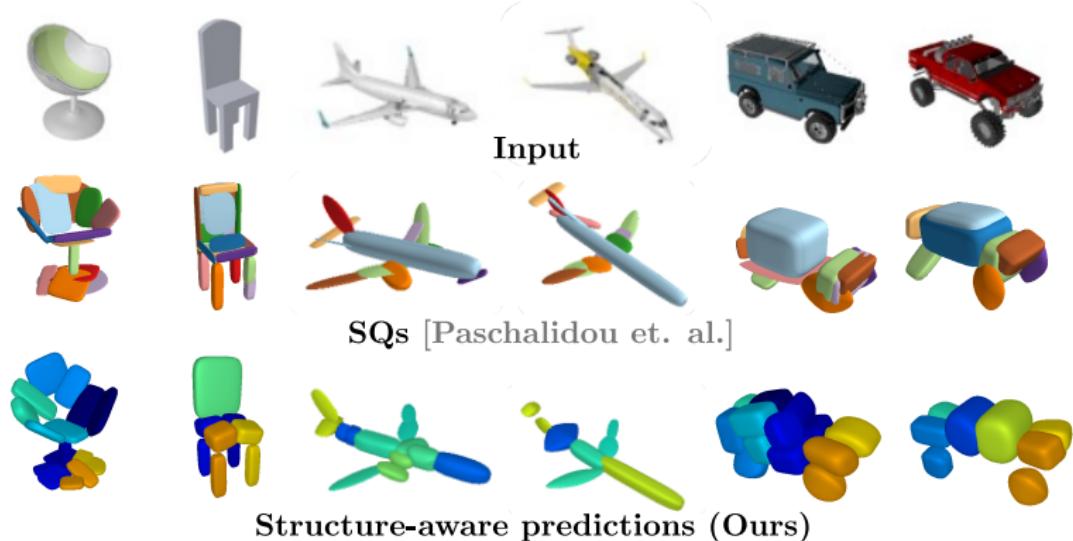
## Composed of:

- $\mathcal{L}_{str}(\mathcal{H}, \mathcal{X})$ : Decomposes shape into parts
- $\mathcal{L}_{rec}(\mathcal{P}, \mathcal{X})$ : Predicted primitives match the shape
- $\mathcal{L}_{comp}(\mathcal{P}, \mathcal{X})$ : Allows for variable number of primitives
- $\mathcal{L}_{prox}(\mathcal{P})$ : Prevents vanishing gradients

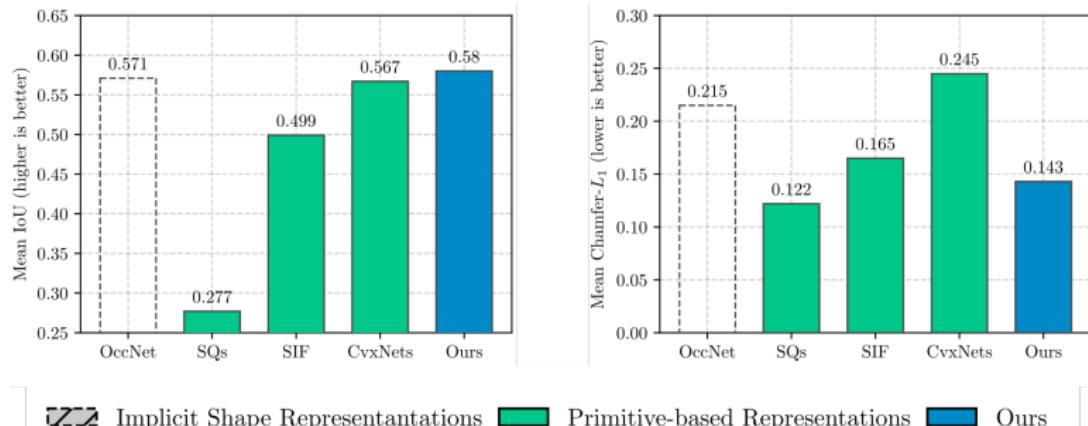
# Expressive Shape Abstractions



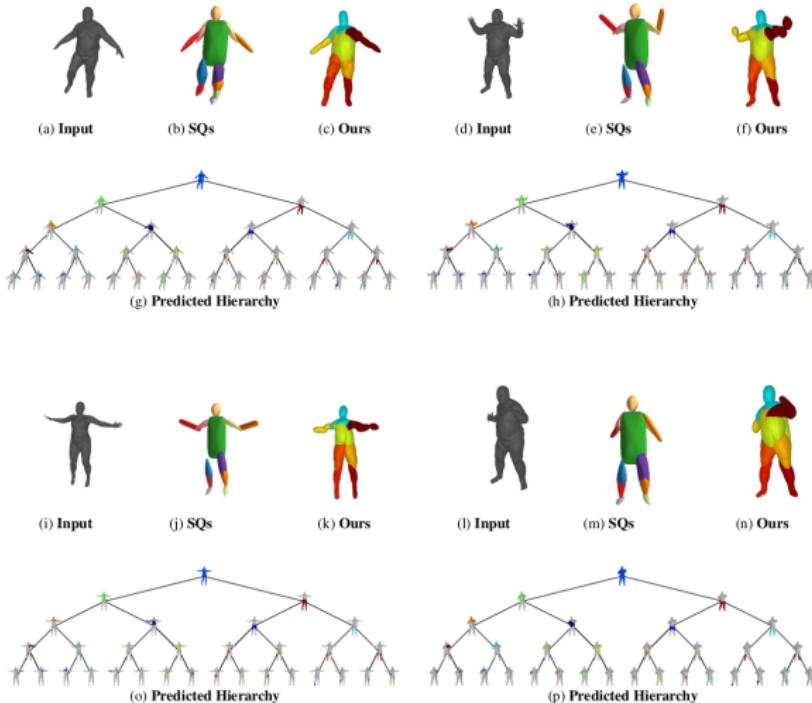
# Single-view 3D Reconstruction on ShapeNet



# Single-view 3D Reconstruction on ShapeNet



# Single-view 3D Reconstruction on Dynamic FAUST



# Semantic Interpretation of Learned Hierarchy



# Learning Hierarchical Part Decomposition of 3D Objects

## Limitations:

# Learning Hierarchical Part Decomposition of 3D Objects

## Limitations:

- Part decomposition does not guarantee semantic parts

# Learning Hierarchical Part Decomposition of 3D Objects

## Limitations:

- Part decomposition does not guarantee semantic parts
- Fixed maximum tree depth

# Learning Hierarchical Part Decomposition of 3D Objects

## Limitations:

- Part decomposition does not guarantee semantic parts
- Fixed maximum tree depth
- Occupancy loss (IoU) focuses less on fine details

# Learning Hierarchical Part Decomposition of 3D Objects

## Limitations:

- Part decomposition does not guarantee semantic parts
- Fixed maximum tree depth
- Occupancy loss (IoU) focuses less on fine details
- Superquadrics :-)

**What comes next?**

# What comes next?

- o Learning semantic parts
  - ▶ semanticness should not be enforced through geometry
  - ▶ consistency across pose and instances



Image Source: Shapira 2008

# What comes next?

- Learning semantic parts
  - ▶ semanticness should not be enforced through geometry
  - ▶ consistency across pose and instances
- Recovering higher level semantics
  - ▶ predict object dynamics, skeletons, joints, etc.
  - ▶ single RGB image is not sufficient

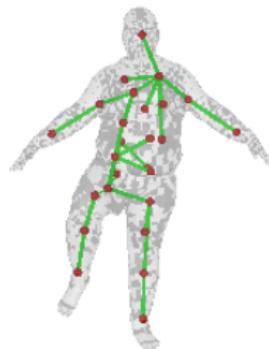


Image Source: Shapira 2008

# What comes next?

- Learning semantic parts
  - ▶ semanticness should not be enforced through geometry
  - ▶ consistency across pose and instances
- Recovering higher level semantics
  - ▶ predict object dynamics, skeletons, joints, etc.
  - ▶ single RGB image is not sufficient
- More expressive primitives
  - ▶ trade-off between parsimony and geometrically accurate reconstruction

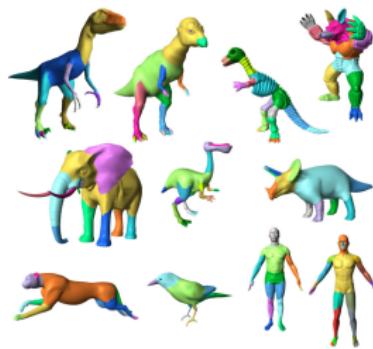


Image Source: Shapira 2008

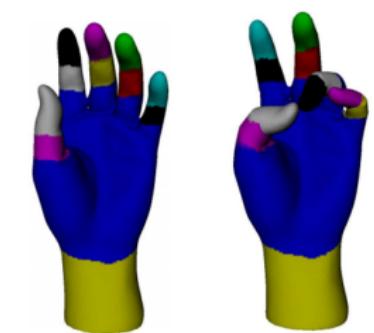


Image Source: Tierny 2007

Thank you for your attention!

<https://superquadrics.com/>