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Neural networks for 2D computer vison tasks
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Image Source: KITTI Vision Benchmark and COCO Dataset



Can we learn to infer 3D from a 2D image?

Input Image Neural Network 3D Reconstruction
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What is the optimal 3D Representation?
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3D Representations

bl

Neural
Network

Input Image Voxels

Discretization of 3D shape into grid:

v Accurately captures the shape details

X Parametrization size proportional to reconstruction quality
X Unable to yield smooth reconstructions

X Do not convey semantic information
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3D Representations

Neural
I t1I i
nput Image Network Pointcloud

Discretization of surface with 3D points:

v Accurately captures the shape details

X Lacks surface connectivity

X Fixed number of points

X Parametrization size proportional to reconstruction quality
X Unable to yield smooth reconstructions

X Do not convey semantic information
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3D Representations

Neural Mesh

I t1I
fiput tmage Network

Discretization of surface into vertices and faces:
v Accurately captures the shape details

v Yields smooth reconstructions

X Requires class-specific template topology

X Parametrization size

X Do not convey semantic information
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3D Representations

Neural

I t1I
fiput tmage Network

No discretization

v Accurately captures the shape details
v/ Low parametrization size

v Yields smooth reconstructions

X Requires post-processing

X Do not convey semantic information

Implicit
Surface
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3D Representations

— |l —
’

Neural

Network Primitives

Input Image

Discretization of 3D shape into parts:
v Low parametrization size

v Yields smooth reconstructions

v Yields semantic reconstructions

v Inter-object coherence

~ Accurately captures the shape details
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Superquadrics Revisited:
Learning 3D Shape Parsing beyond Cuboids

Despoina Paschalidou, Ali Osman Ulusoy, Andreas Geiger
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3D Geometric Primitives

Primitive-based 3D Representations:
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3D Geometric Primitives

Primitive-based 3D Representations:

o Parsimonious Description: Few primitives required to represent a 3D object
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3D Geometric Primitives

Primitive-based 3D Representations:
o Parsimonious Description: Few primitives required to represent a 3D object
o Convey semantic information (parts, functionality, etc.)

o Main Challenge: Variable number of primitives, few annotated datasets
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3D Shape Abstraction

Goal of this work:
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3D Shape Abstraction

Goal of this work:

o Learn 3D shape abstraction
from raw 3D point clouds or
images
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3D Shape Abstraction

Goal of this work:

o Learn 3D shape abstraction
from raw 3D point clouds or
images

o Infer variable number of
primitives

o No supervision at primitive
level
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1963: 3D Solids

R

Larry Roberts Input image 2x2 gradient operator
“Father of Computer Vision"

Lary Roberts: Machine Perception of Three-Dimensional Solids, PhD Thesis, MIT, 1963.

computed 3D model
rendered from new viewpoint
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1986: Pentland’s Superquadrics

o 1 superquadric can be represented with 11 parameters

o Scene on the left contructed with 100 primitives required less than 1000 bytes!
o Early fitting-based approaches did not work robustly

Pentland: Parts: Structured descriptions of shape. AAAI, 1986. 21



2017: 3D Reconstructions with Volumetric Primitives

PRRSNILE RPN

o Unsupervised method for learning cuboidal primitives
o Variable number of primitives

o While cuboids are sufficient for capturing the structure of an object they do not
lead to expressive abstractions.

o Computational expensive reinforcement learning for learning the existence
probabilities

Tulsiani: Learning Shape Abstractions by Assembling Volumetric Primitives. CVPR, 2017. 22



Can we train a network to output superquadrics?

Everything in nature takes its form from the sphere, the cone and the cylinder. - Paul
Cezanne.
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 23



Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 24



Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

o Fully described with just 11 parameters
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Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

o Fully described with just 11 parameters

o Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a
single continuous parameter space
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Superquadrics as geometric primitives
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Primitive-centric Coordinates

Their chief advantage is that they allow complex solids and surfaces to be constructed
and altered easily from a few interactive parameters. [Barr 1981]

o Fully described with just 11 parameters

o Represent a diverse class of shapes such as cylinders, spheres, cuboids, ellipsoids in a
single continuous parameter space

o Their large shape vocabulary allows for faster and smoother fitting than cuboids

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 24



Learning 3D Shape Parsing

@ o N Lo e Size
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Neural network encodes input image/shape and for each primitive predicts:
o 11 parameters: 6 pose (R,t) 4+ 3 scale () 4+ 2 shape (€)
o Probability of existence: v € [0, 1]

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 25



Loss Function

Overall Loss:
L(P,X) = Lpx(P,X) + Lx-p(X,P) + Ly (P)

Composed of:
o Lp_x(P,X): Primitive-to-Pointcloud Loss
o Lx_p(X,P): Pointcloud-to-Primitive Loss

o L~(P): Existence and Parsimony Loss

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Loss Function

Overall Loss:
L(P,X) = Lpx(P,X) + Lx-p(X,P) + Ly (P)

Composed of:
o Lp_x(P,X): Primitive-to-Pointcloud Loss
o Lx_p(X,P): Pointcloud-to-Primitive Loss

o L~(P): Existence and Parsimony Loss

Target and Predicted Shape:
o Target: X = {x}¥,
o Predicted: P = {(Am,vm)}M_,
o m-th primitive: Y, = {y;("}szl

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Loss Function
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Target shape: X = {x},

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Loss Function

( ]
Y
Primitive

Primitive
=1
ml 2. m=2
. Yi
Ze
k=2
k= lg -
yi Primitive
m=3 Y g/k=2

Target shape: X = {x},
m-th primitive: Y, = {y"}£_|

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Primitive-to-Pointcloud Loss
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Primitive-to-Pointcloud Loss

x

m=2

A3

Ty (z:)
L
CEAPX) = 23 AT
k=1

AP = min [ Tm(x) = ¥7l,

[IE)

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.

28



Primitive-to-Pointcloud Loss
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Pointcloud-to-Primitive Loss
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Pointcloud-to-Primitive Loss
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Pointcloud-to-Primitive Loss
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Existence and Parsimony Loss

M M
Ly(P) = max (1 — Z Ym 0) + B Z Ym
m=1 m=1

o First term: Enforces at least one primitive to exist
o Second term: Encourages parsimony

o Two-stage training
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Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019
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Comparison to Tulsiani et. al. / REINFORCE
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Single view 3D Reconstruction on ShapeNet
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Chamfer Distance Volumetric loU

Chairs  Aeroplanes  Animals  Chairs  Aeroplanes  Animals

Cuboids 0.0121 0.0153 0.0110 0.1288 0.0650 0.3339
Superquadrics  0.0006 0.0003 0.0003  0.1408 0.1808 0.7506

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019. 32



Single view 3D Reconstruction on SURREAL
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3D Shape Abstractions with Superquadrics

Limitations:

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:

o Trade-off between number of primitives and representation accuracy

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:
o Trade-off between number of primitives and representation accuracy

o Bidirectional reconstruction loss suffers from various local minima

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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3D Shape Abstractions with Superquadrics

Limitations:
o Trade-off between number of primitives and representation accuracy
o Bidirectional reconstruction loss suffers from various local minima

o Superquadrics :-)

Paschalidou: Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. CVPR, 2019.
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Learning Unsupervised Hierarchical Part Decomposition
of 3D Objects from a Single RGB Image

Despoina Paschalidou, Luc van Gool, Andreas Geiger

CVPR 2020
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Hierarchical Part Decomposition

Goal of this work: Ny

Prediction
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Hierarchical Part Decomposition

Input

Goal of this work: Ny

o Model relationships between  Prediction
parts 1
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Hierarchical Part Decomposition

Input

Goal of this work: Ny
o Model relationships between  Prediction
parts 1
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o Model objects with multiple l\
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Hierarchical Part Decomposition

Input

Goal of this work: Ny
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Hierarchical Part Decomposition

Input

Goal of this work: \

o Model relationships between  Prediction
parts 1

/7
o Model objects with multiple l\
levels of abstraction

o Infer variable number of
primitives ”
o No supervision at primitive
level and part relations Prediction

Predicted Hierarchy

R
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Representation with multiple levels of abstraction

0 8 58 kK R R

=28
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Input 1 primitive 2 primitives 4 primitives 8 primitives 16 primitives Final
P p p p p p prediction

o Represent a 3D shape as a binary tree of primitives

o At each depth level, each node is recursively split into two until reaching the
maximum depth

o Reconstructions from deeper depth levels are more detailed

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 37



Learning Hierarchical Part Decomposition of 3D Objects

f . D .

Image Neural Network

Target and Predicted Shape:

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 38



Learning Hierarchical Part Decomposition of 3D Objects

- e
Image Neural Network Predicted Tree of
Primitives

Target and Predicted Shape:

o Binary Tree of Primitives: P = {{p{ ii?)l | d={0...D}}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

- e
Predicted Tree of

Image Neural Network
Primitives

Target and Predicted Shape:
o Binary Tree of Primitives: P = {{p{ ii?)l | d={0...D}}

o Target: Set of occupancy pairs X = {(x;, 07)} ¥,

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

- e
Image Neural Network Predicted Tree of
Primitives

Target and Predicted Shape:

o Binary Tree of Primitives: P = {{p{ ii?)l | d={0...D}}

o Target: Set of occupancy pairs X = {(x;, 07)} ¥,
o Occupancy function of predicted shape at depth d:

G(x) = maX,co...29-1 &7 (x;29)

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Input Image

Neural network encodes input image/shape and for each primitive predicts:

o 11 parameters: 6 pose (R,t) 4+ 3 scale (o) 4+ 2 shape (¢€)
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o Reconstruction quality: qZ € [0,1]
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Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects
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Learning Hierarchical Part Decomposition of 3D Objects

Input Image

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 40



Learning Hierarchical Part Decomposition of 3D Objects

v
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Partition Network: Recursively partition the feature representation

d d+1 .d+1
po(cy) = ‘{"2;r vc2?<r+1}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Geometry Network: Regress the primitive parameters

ro(cf) = {X{, af}-

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Learning Hierarchical Part Decomposition of 3D Objects

Sructure Networl)—» b

Structure Network: Assign object parts to primitives

H={{h}2 |d={0... D}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Loss Function

Overall Loss:
E(P, H; X) = Estr(/H; X) + »Crec(P; X) + Ecomp(P§ X) + ‘Cprox(lp)

Composed of:

o Lstr(H,X): Structure Loss

o Lrec(P,X): Reconstruction Loss
o Lecomp(P,X): Combatibility Loss
o Lprox(P): Proximity Loss

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 41



Loss Function

Overall Loss:

E(P, H; 'X) = Estr(/H; X) + »Crec(P; X) + »Ccomp(P§ X) + ‘Cprox(lp)

Composed of:

o

Target and Predicted Shape:

Lstr(H, X): Structure Loss
Lrec(P, X): Reconstruction Loss
Lcomp(P, X): Combatibility Loss
Lprox(P): Proximity Loss

o Target: X = {(x;,0)}",

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Loss Function

Overall Loss:
E(P, H; X) = Estr(/H; X) + »Crec(/P; X) + »Ccomp(P§ X) + ‘Cprox(P)

Composed of:

o

Lstr(H, X): Structure Loss
Lrec(P, X): Reconstruction Loss
Lcomp(P, X): Combatibility Loss
Lprox(P): Proximity Loss

Target and Predicted Shape:
o Target: X = {(x;,0)}Y,

o Binary Tree of Primitives: P = {{pi’}figl | d={0...D}}
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Loss Function

Overall Loss:
E(P, H; X) = Estr(H; X) + Lrec(P; X) + »Ccomp(P§ X) + ‘Cprox(lp)

Composed of:

o

Lstr(H, X): Structure Loss
Lrec(P, X): Reconstruction Loss
Lcomp(P, X): Combatibility Loss
Lprox(P): Proximity Loss

Target and Predicted Shape:
o Target: X = {(x;,0)}Y,

o Binary Tree of Primitives: P = {{pk}2 1l d={0...D}}

o Geometric Centroids: 7 = {{hd}2 tld={0...D}}

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Structure Loss

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 42



Structure Loss
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Structure Loss
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Structure Loss

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.
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Reconstruction Loss

D D 29-1

Lrc(P;X)= Y L(Gd(x),o)+ DD L(gz (x;xg),o)

(x,0)€X d= d=0 k=0 (x,o)GXf

Object Reconstruction Part Reconstruction

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 43



Reconstruction Loss

D D 29-1

Lrc(P;X)= Y L(Gd(x),o)+ DD L(gg (x;xg),o)

(x,0)€X d= d=0 k=0 (x,o)GXf

Object Reconstruction Part Reconstruction
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Reconstruction Loss

D D 29-1
LuPiX)= 3 S 1(60.0)+ S5 S r(al(x).0)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
depth 0 K .

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 43



Reconstruction Loss

D D 29-1
P = X S L(C00) ¢ > Y 1( (1) o)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
depth 0 ﬁ .
depth 1 ‘ E
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Reconstruction Loss

D D 29-1
LuPiX)= 3 S 1(60.0)+ S5 S r(al(x).0)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction
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Reconstruction Loss

D D 29-1
LuPiX)= 3 S 1(60.0)+ S5 S r(al(x).0)
(x,0)€X d=0 d=0 k=0 (x o)cx?
Object Reconstruction Part Reconstruction

x P
deptno ]
depth 1 K E
apth2 ,
depthd4 " &

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020. 43



Reconstruction Loss
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Reconstruction Loss
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Reconstruction Loss
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Reconstruction Loss
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Compatibility Loss

D 29-1
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Proximity Loss
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Loss Function

Overall Loss:
E(P, H; X) = Estr(H; X) + »Crec(P§ X) + Ecomp(P§ X) + ‘Cprox(lp)

Composed of:
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Loss Function

Overall Loss:
E(P, H; X) == EStF(H; X) + Erec(’]); X) + Ecomp(P; X) + £prox(73)

Composed of:
o Lstr(H,X): Decomposes shape into parts
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Loss Function

Overall Loss:
LP,H; X) = Lstr(H; X) + Lrec(P; X) + Leomp(P; X) + Lprox(P)

Composed of:

o Lstr(H,X): Decomposes shape into parts
o Lrec(P,X): Predicted primitives match the shape
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Loss Function

Overall Loss:
LP,H; X) = Lstr(H; X) + Lrec(P; X) + Lcomp(P: X) + Lprox(P)

Composed of:
o Lstr(H,X): Decomposes shape into parts
o Lrec(P,X): Predicted primitives match the shape

o Lecomp(P,X): Allows for variable number of primitives

Paschalidou: Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image. CVPR 2020.

46



Loss Function

Overall Loss:
E(P, H; X) = Estr(/H; X) + »Crec(P; X) + Ecomp(P§ X) + ﬁprox(P)

Composed of:

o
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Lstr(H,X): Decomposes shape into parts
Lrec(P, X): Predicted primitives match the shape
Lcomp(P, X): Allows for variable number of primitives

Lprox(P): Prevents vanishing gradients
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Expressive Shape Abstractions
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on ShapeNet
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Single-view 3D Reconstruction on Dynamic FAUST
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Semantic Interpretation of Learned Hierarchy
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:

o Part decomposition does not guarantee semantic parts
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
o Part decomposition does not guarantee semantic parts

o Fixed maximum tree depth
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
o Part decomposition does not guarantee semantic parts
o Fixed maximum tree depth

o Occupancy loss (loU) focuses less on fine details
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Learning Hierarchical Part Decomposition of 3D Objects

Limitations:
o Part decomposition does not guarantee semantic parts
o Fixed maximum tree depth
o Occupancy loss (loU) focuses less on fine details

o Superquadrics :-)
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What comes next?
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What comes next?

o Learning semantic parts

P> semanticness should not be enforced through geometry
P consistency across pose and instances

Image Source: Shapira 2008
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What comes next?

o Learning semantic parts

P> semanticness should not be enforced through geometry
P consistency across pose and instances

o Recovering higher level semantics

» predict object dynamics, skeletons, joints, etc.
» single RGB image is not sufficient
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What comes next?

o Learning semantic parts

» semanticness should not be enforced through geometry
P consistency across pose and instances

o Recovering higher level semantics

» predict object dynamics, skeletons, joints, etc.
» single RGB image is not sufficient

o More expressive primitives
» trade-off between parsimony and geometrically accurate reconstruction

4 30

rﬂi‘f I
T */,{\

Image Source: Shapira 2008 Image Source: Tierny 2007
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Thank you for your attention!

https://superquadrics.com/
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