Position-aware Automatic Circuit Discovery

Tal Haklay! Hadas Orgad!

David Bau®
'Technion — Israel Institute of Technology

Aaron Mueller'? Yonatan Belinkov'
2Northeastern University

{tal.ha, orgad.hadas}@campus.ac.il, {d.bau, aa.mueller}@northeastern.edu
belinkov@technion.ac.il

Abstract

A widely used strategy to discover and under-
stand language model mechanisms is circuit
analysis. A circuit is a minimal subgraph of a
model’s computation graph that executes a spe-
cific task. We identify a gap in existing circuit
discovery methods: they assume circuits are
position-invariant, treating model components
as equally relevant across input positions. This
limits their ability to capture cross-positional
interactions or mechanisms that vary across
positions. To address this gap, we propose
two improvements to incorporate positionality
into circuits, even on tasks containing variable-
length examples. First, we extend edge attri-
bution patching, a gradient-based method for
circuit discovery, to differentiate between to-
ken positions. Second, we introduce the con-
cept of a dataset schema, which defines token
spans with similar semantics across examples,
enabling position-aware circuit discovery in
datasets with variable length examples. We
additionally develop an automated pipeline for
schema generation and application using large
language models. Our approach enables fully
automated discovery of position-sensitive cir-
cuits, yielding better trade-offs between circuit
size and faithfulness compared to prior work.'

1 Introduction

A primary goal of interpretability research is
to characterize the internal mechanisms in lan-
guage models (LMs) and other NLP models.
A core approach in this area is circuit discov-
ery—identifying the minimal subgraph within the
model’s computation graph that performs a spe-
cific task (Olah et al., 2021; Elhage et al., 2021).
Typically, the nodes of a circuit represent model
components (e.g., attention heads, neurons, or lay-
ers). While manual circuit discovery methods can
yield position-specific insights (Wang et al., 2023;

'Our code is available
technion-cs-nlp/PEAP.

in https://github.com/

1.0 e
a
v 0.5
£
2
< 0.0
=
© Soft Faithfulnes
-0.5 Hard Faithfulness
25 28 211 214 217
#Edges
Positional Non-positional
Circuit Circuit
o 00
00O
\M]
~

Sia]=

Position

Figure 1: Positional vs. non-positional circuits. In a non-
positional circuit, the same edges must be included at all
positions. A positional circuit can distinguish between
the same edge at different positions. This specificity
yields better trade-offs between circuit size and faithful-
ness. It can also increase both precision and recall.

Goldowsky-Dill et al., 2023), automatic methods
often overlook positional information, treating com-
ponents as uniformly relevant across all input token
positions (Conmy et al., 2023; Syed et al., 2023).
For instance, if an attention head is included in a cir-
cuit, it is assumed to contribute equally to the com-
putation for every position in the input sequence.
The assumption that circuits are position-invariant
ignores the fact that different positions often re-
quire distinct computations. By ignoring positions,
current methods limit their ability to capture mech-
anisms that operate across positions, such as inter-
actions between attention heads across positions.

In this study, we start by demonstrating that po-
sitional agnosticism is a significant limitation (§2).
Then, to address these limitations, we introduce
a new approach: position-aware edge attribution
patching (PEAP; §3; Figure 1). Current approaches
assume that if an edge is in a circuit, then the same
edge will be in the circuit at all positions, thus

mailto:tal.ha@campus.ac.il
mailto:orgad.hadas@campus.technion.ac.il
mailto:d.bau@northeastern.edu
mailto:aa.mueller@northeastern.edu
mailto:belinkov@technion.ac.il
https://github.com/technion-cs-nlp/PEAP
https://github.com/technion-cs-nlp/PEAP

leading to low precision. It is also assumed that
an edge’s importance should be aggregated across
positions before deciding whether it should be in-
cluded in the circuit; this can lead to cancellation
effects, and thus low recall. PEAP instead allows
us to compute the importance of cross-positional
edges, and separately evaluates edge importance at
each position. We show that this leads to smaller
and more accurate circuits; see Figure 1.

Incorporating positional information into circuit
discovery is straightforward when inputs have the
same length and structure across examples.

However, realistic datasets are not nearly this
templatic. How, then, can we incorporate positional
information into automatic circuit discovery? To
address this challenge, we propose schemas (§4).
Schemas assign semantic labels to spans of tokens,
enabling information aggregation across examples
even when the spans differ in length.

For example, in the input “The war lasted from
1453 to 14__,” the span “war” could be labeled as
“Subject”. This enables handling spans with vary-
ing lengths: the phrase “Black Plague” in another
example can be treated as a single positional span
with the same role as “war”. In experiments with
two LMs and three tasks, we find that circuits dis-
covered using schemas achieve a better trade-off
between circuit size and faithfulness to the model’s
behavior than position-agnostic circuits. Impor-
tantly, position-aware circuits offer a more precise
representation of the underlying mechanisms, pro-
viding a more concise foundation for mechanistic
explanations.

We also present a fully automated pipeline for
schema generation and application (§4.2) using
large language models (LLMs). We evaluate the
quality of the generated schemas and their utility in
discovering position-aware circuits (§4.2). Notably,
circuits derived using automatically generated and
applied schemas achieve comparable faithfulness
scores to circuits discovered with human-designed
and manually applied schemas.

We summarize our contributions as follows:

* Introduce a position-aware circuit discovery
method, which obtains better faithfulness than
position-agnostic discovery.

* Introduce dataset schemas, facilitating positional
circuit discovery in more naturalistic settings.

* Develop an automated schema generation and ap-
plication pipeline with LLMs, yielding schemas
that are comparable to manually-annotated ones.

2 Background and Motivation

A circuit is a subgraph of the model’s computation
graph; it can be conceptualized as a binary mask
B(V, E,T) over all components V' and edges F
in the graph, selecting the components and edges
that have the strongest effect on the model’s behav-
ior on a target task 7. There are many methods
for computing the influence of a component on the
model’s behavior on 7, including activation patch-
ing (Vig et al., 2020; Finlayson et al., 2021; Geiger
et al., 2021), path patching (Wang et al., 2023;
Goldowsky-Dill et al., 2023), and edge patching
(Hanna et al., 2024b; Marks et al., 2024), with at-
tribution patching to approximate direct patching
(Nanda, 2023; Syed et al., 2023). We focus on edge
patching, which aims to identify edges in F that
are causally important for 7. For each such edge
(u, v), the nodes u and v are included in the circuit.

Manual circuit discovery methods can distin-
guish between components at different token po-
sitions; examples include the IOI circuit (Wang
et al., 2023), the Greater-Than circuit (Hanna et al.,
2024a), and the Attribute-Binding circuit (Prakash
et al., 2024). The authors determined connections
between attention heads by examining attention
patterns and establishing connections if a head at
one position strongly attended to a head at another.
However, this approach has three key limitations:
(1) it is not scalable, (2) it is prone to human bias,
and (3) it is unclear whether strong attention scores
reliably indicate the a causal connection to the
downstream metric (Jain and Wallace, 2019).

In contrast, automatic approaches (Syed et al.,
2023; Hanna et al., 2024b) systematically examine
every connection and evaluate them quantitatively
via their causal effect on the downstream metric.
However, when using automatic methods it is com-
mon to aggregate across token positions,> which
causes specific problems that we now define.

Cancellations across positions (low recall). Ifa
component has scores with opposite signs across
different positions, summing these scores can par-
tially cancel out the component’s overall effect,
potentially resulting in a near-zero score (Figure 2,
left). Kramar et al. (2024) note that cancellation
can occur when aggregating across examples in
the dataset. We observe that the extent of this phe-
nomenon is larger than previously assumed: it can

2Cf. Kramdr et al. (2024), propose a variant of attribution
patching and perform position-sensitive node attribution. They
do not use it to discover positional circuits.

node 4.1 node 4.2 node 4

Ranking:
100 -100 0
node 3.1

node 3.2 node 3

il

sum
1 3 4
node 2.1

node 2.2 node 2

-10 12 2

node 1.1 node 1.2 node 1

position1 position 2

node 4.1 node 4.2 node 4

Ranking:
2 0 2

node 3.1 node 3.2

sum
15 15 3

node 3

il

node 2.1 node 2.2 node 2

1 15 25

node 1.1 node 1.2 node 1

position1 position 2

Figure 2: Left: The yellow edge at position 1 has the highest score of 100, indicating it is the most important edge.
However, aggregating across positions causes scores of opposite signs to cancel. This causes the yellow edge to be
incorrectly ranked as the least important. Right: The yellow edge at position 1 has the highest score; the scores of
other edges are consistently high (but lower) at many positions. After summing across positions, the non-yellow
edges have higher scores. Thus, the yellow edge is incorrectly ranked as the least important.

occur within a single sample across positions. To
measure cancellation effects across positions, we
compare importance rankings from edge attribu-
tion patching (EAP; Syed et al., 2023) under two
positional aggregation methods: (i) summing the
absolute scores across both positions and examples
(unaffected by cancellation effects); and (ii) sum-
ming scores across positions and then summing the
absolute scores across different examples (affected
by cancellation effects). We observe (Table 1, Top)
that the two rankings differ significantly at the most
important components.

Importance overestimation (low precision).
Circuits that do not consider positional informa-
tion may favor edges that have small impacts at
many positions over edges that have large impact
in one or few positions (Figure 2, Right). To mea-
sure overestimation effects we compare importance
rankings derived from two aggregation methods:
(i) summing the absolute scores across both po-
sitions and examples; and (ii) taking the max of
the absolute across positions and then summing
scores across different examples. Table 1 (Bottom)
provides evidence for this phenomenon.

These problems motivate a circuit discovery
method that takes position into account. We in-
troduce this method in §3.

3 Position-aware Edge Attribution
Patching (PEAP)

The importance of an edge e is typically measured
with the indirect effect (IE) of the edge on some
target metric M. In direct activation patching,
also known as causal mediation analysis (Pearl,
2001; Vig et al., 2020; Mueller et al., 2024), the
IE is the change in the metric M when the edge

Cancellation
K% Diff Diffcontrol P PControl
1 17.1% 3.9% 0.760 0.985
5 13.4% 2.4% 0.831 0.991
10 12.1% 2.3% 0.877 0.992
Overestimation
K% Diff DiffControl P PControl
1 17.5% 3.6% 0.772 0984
5 14.6% 2.1% 0.811 0.993
10 12.4% 2.2% 0.864 0.993

Table 1: Cancellation and overestimation effects when
ignoring positions. We rank edges by their importance
scores (IOI task, GPT2-small), and take the top K%.
We compute the set difference (Diff) and rank correla-
tions (p) between rankings produced by the two aggrega-
tion methods described in §2. We define the difference

of two ranking lists R1,R» atlength L as 1 — W.

As a control, we also compute the mean pairwise set
difference (Diffcontrol) and rank similarities (ocontrol) pro-
duced by the same aggregation method across 3 data
subsets. Differences with respect to control are all sig-
nificant (p < .01).

is ‘patched’ to some counterfactual value, e.g.,
the edge value in a run on a different input x’:
M (x|e = e,) — M(x). Performing this interven-
tion at every edge is costly, prompting approximate
algorithms. Edge attribution patching (EAP; Syed
et al., 2023) linearly approximates the IE, g(e), of
edge e = (u,v) as follows:

gle) = M(zle = ey) — M(x) = (2 — z) ' VoM ()
ey

The target metric M can vary depending on the
task. Typically, M is the logit difference between
a correct completion and a minimally different in-

correct completion. z, and z; are the clean and
counterfactual activations at the output of u, and
VM (z) is the gradient of M (x) w.r.t the input of
v. Syed et al. (2023) showed EAP to outperform
direct activation patching with a greedy approach
(Conmy et al., 2023). However, Syed et al. only
discovered circuits that do not consider positions.

3.1 Method

Equation 1 holds only when u and v are at the
same position. To include token positions in the
circuit, attention edges that cross positions must
be included in the discovey process. In autoregres-
sive Transformer-based models, these edges exist
between nodes representing a given attention head
that operates at different positions. Let hi’ ; denote
the node corresponding to the i-th attention head
at token position ¢ in layer /. Following Olah et al.
(2021), we view the contribution of head hﬁ to the
residual stream as:

K]

Vi

Zpi = W (softmax ()W) € Rimoset—(2)

Here, Wé represents the columns of the projection
matrix Wy that specifically project the output of
head h'. K] € R™deud is the key matrix, and
V; € Rt*dhe g the value matrix.

hj is connected to every node hj, ; at position
t' < t, via 3 edges: the value vector vi,l, the key
vector kj, ;, and the query vector g; ;. As direct
communication between heads occurs only within
the same layer, we omit henceforth the layer no-
tation and assume that all attention edges connect

attention heads within the same layer.

To approximate the attribution scores of attention

edges, we first calculate z;,, the corrupted output
of the head h; caused by patching vj,, kj,, or g;.

We then approximate the attribution as follows:

M(zle =ey) — M(z) ~ (z;;i — Zhg)TvzhiM(x)
3)

Based on Eq. 2, we define the corrupted vector
Z;;' for patching v;, (Eq. 4), patching £}, (Eq. 5),

and patching ¢! (Eq. 6):

Residual Stream
l I o
kias k2 as ks as

U ki q1 vy ko Q@ U3 g3 k3 a3

position 1 position 2 position 3

Figure 3: Illustration of the attention mechanism from
the perspective of position 3. We approximate how

patching v, /| or ¢, impacts the downstream metric
via the output of the attention head at position 3.

. igei . .
ZZ;’ = W} (softmax (qtj% > [vi,...,vt/ , ,v,’ﬁ])
“)
e ST

v i ikl k™ K i
Zhi = W¢, (softmax (N Vi)
)

" . qikiT,.‘.,qi*k /T,...,qik:iT .
i = W, (softmax <[= t\/dik =]> V)
(0)

Figure 3 provides an illustration of each type of
patching. By using PEAP to approximate atten-
tion edges, we can now approximate both within-
position edges and cross-position edges.

Once the attribution scores for all edges have
been computed, we construct the circuit using an
adapted version of the greedy algorithm proposed
by Hanna et al. (2024b). See App. C for details.

3.2 Preliminary Demonstration

We now compare PEAP to the position-agnostic ap-
proach of Syed et al. (2023) using the Greater-Than
task (Hanna et al., 2024a) on GPT2-small (Radford
et al., 2019). The dataset includes prompts like:
“The war lasted from the year 1741 to the year 17__”
and counterfactual variants with “01” as the start-
ing year (e.g., “The war lasted from the year 1701
to the year 17__"). The downstream metric M
measures the probability difference between valid
and invalid year answers. We use 500 examples
each for circuit discovery and evaluation, consid-
ering only prompts with valid model predictions.
Circuit evaluation is based on two metrics: (1) Soft
Faithfulness (Fs(C) = 1\1:1/[((f/t))), comparing the
circuit’s performance to the full model’s, and (2)
Hard Faithfulness (F;(C) = 1{Cr = Mr}),
assessing token agreement at the final position 7.
While Fs is more commonly used, we see Fi as a
more behaviorally grounded metric.

Subject
=
The war lasted
Article

Time Preposition
from' the year
Start Year Phrase

Greater-Than

Duration Verb

First Person Second Person

Start Year Century

Time Connector End Year
to' theyear "4
7
End Year Phrase

—
14 53

Start Year Decade

Active Person

Action Target Secondary Object

While ‘Anthony and Christina were commuting 'to the hospital, 'Anthony gave ‘acomputer to

101 were comr
Initial Context Conjunction Primary Action Transition Secondary Action Last Token
First Subject Connecting Words Conjunction Subordinate Clause Referent Phrase
T .« 1 T N N 1 I 1 y. 10 1
Winobias The designer was good friends with the analyst because she did everyone favors, The pronoun she refers to the

Determiner Main VP

Second Subject

Pronoun End Punctuation Last Token

Figure 4: Example schema for each task. We show examples from the LLM+Mask method. See §A for examples of

human-designed schemas.

Figure 1 presents the faithfulness scores of the
Greater-Than task for both methods as a function of
circuit size. PEAP enables the discovery of circuits
that improve the trade-off between circuit size and
faithfulness: position-aware circuits are smaller,
and yet achieve similar faithfulness with orders-
of-magnitude fewer edges.

3.3 Aggregating Scores Across Examples

In the Greater-Than dataset, we can simply aggre-
gate position-specific scores across examples. This
naive approach works because all examples in the
Greater-Than dataset consist of exactly the same
number of tokens, and each position has the same
meaning across all examples. In other words, this
approach requires all examples in the dataset to be
fully position-aligned. This raises a key challenge
for non-templatic datasets: the same token position
may not have the same meaning across examples,
and examples may vary in length.

Prior methods addressing positionality typically
follow one of two strategies: (1) full alignment,
where the dataset is generated from a single
template—as in the Greater-Than dataset—and (2)
partial alignment, where specific token position
roles are consistent across examples. For instance,
in the IOl dataset (Wang et al., 2023), the authors
manually identified five key single-token roles (10,
S1, S1+1, S2, End) shared across all prompt tem-
plates, which are sufficient for constructing a faith-
ful circuit. In the next section, we describe an
automatic approach inspired by partial alignment
that enables us to include positional information in
tasks with variable-length inputs.

4 Schemas for Variable-length Inputs

Discovering circuits requires aggregating edge
scores across examples. However, because edges
correspond to specific positions in the computa-
tion graph, naive aggregation assumes perfect po-
sitional alignment across examples—an imprac-
tical assumption for most datasets. To address

this challenge, we relax this assumption and only
assume that examples share a similar high-level
structure, which is represented by a schema. A
dataset schema identifies spans within input exam-
ples, where each span covers consecutive tokens
grouped under a meaningful category. For instance,
in the input “The war lasted from 1453 to 14__”,
the span “war” could be labeled Subject. This al-
lows us to handle spans of varying lengths, such
as treating “Black Plague” in another example as a
single position with the same role as “war”. Exam-
ples of schemas for specific datasets are shown in
Figure 4. Schemas are defined based on semantic,
syntactic, or other patterns in the data, and may be
guided by knowledge of how the model processes
examples. Spans are ordered sequentially within
the input, covering all parts of a prompt.’

4.1 Discovering Circuits at the Schema Level

When all examples share the same schema-defined
structure, we can leverage this consistency to create
an abstract computation graph for all examples.
For now, we assume spans in the schema can be
automatically mapped to corresponding tokens in
any dataset sample. We discuss automating this
process later.

Let G, = (E,;, V,) represent the computation
graph derived from example = € D. Given schema
S with k spans, we define the abstract computation
graph Gs = (Eg, Vs), which is structurally equiv-
alent to a computation graph of M on an input of
length k. Intuitively, each span is represented by a
single position.

At a high level, given an example, we (i) com-
pute edge scores on the true computation graph G;
(i1) map from edges in G, to edges in G g, and sum
edge scores in G to compute edge scores in Gs;
(iii) construct a circuit in Gs.

To this end, we define a mapping f, : Es —

3Future work may relax the sequential order assumption
to support even greater variation across examples.

Abstract Computation
Graph

0O

Full Computation
Graph

000000
0000
00

S1 S2 S3 1 52 S3
Position

Figure 5: Circuits defined over schemas. Every
node/edge at position s in the abstract computation
graph is mapped to a set of nodes/edges in the full com-
putation graph within the span s.

2F% from an edge e = (us,,vs,) to a set of edges
in B,:

f5(e) ={€ € Gy | e = (uj,u;),i € s1,j € s2}

(7N
where ug, , vs, represent components in the compu-
tation graph at spans s1, s2.

Given an attribution function g, (defined at the
token position level), the attribution score gs (de-
fined at the segment level) of the edge ¢ € G is
the sum of all the edge effects mapped to this edge,
averaged over all examples in the task dataset:

5@ =52 2 ald) ®

After computing the attribution score for each
edge in G, we construct the abstract circuit Cs C
Gs with the same greedy algorithm used in the
previous section (see App. C).

Faithfulness evaluation. The process of faith-
fulness evaluation involves ablating edges that are
not included in the circuit. To evaluate an abstract
circuit on a sample z € D, we convert back to the
computational graph GG, and construct C,, C G:

C.={el|ee fé(),Ve e Cs})

In other words, for every edge ¢’ in the abstract
circuit Cs, the corresponding edges in f,(e’) form
the circuit C,.. Figure 5 depicts this process.

4.2 Automating Schema Generation and
Application

Given a schema S and a function fs to apply it
to every sample x € D, we can automatically dis-
cover position-aware circuits, even for tasks involv-
ing variable-length examples. However, as shown
in Figure 4, schema definitions are dataset-specific,

requiring tedious manual work and intricate knowl-
edge of the task at hand as well as knowledge of
the analyzed model’s computations. Applying the
schemas may also require deep knowledge on the
target dataset. To generate interpretable circuits,
schemas must be both faithful to the model and
meaningful to humans.

In this section, we propose an automated process
for schema generation and application to stream-
line circuit discovery. Inspired by recent work on
LLM agents (Wang et al., 2024) for automated in-
terpretability (Schwettmann et al., 2023; Shaham
et al., 2024), we investigate the use of LLMs for
generating and applying schemas.

Schema Application. Applying a schema entails
mapping each token to a specific span. After defin-
ing the schema, we utilize an LLM to perform the
application process. We provide the prompt for
applying the schema in App. E.2.

Schema Generation. Creating a schema requires
specifying span types while two conditions: (1)
spans must follow the same order across all exam-
ples, and (2) each prompt must be fully covered
by the spans. These criteria are incorporated into
the LLM’s prompt (details in App. D). Given a
dataset, we use an LLM to create three schema ver-
sions based on distinct subsamples, then have the
LLM unify these versions into a final schema. The
schema is validated by confirming it applies to at
least 80% of the subsampled data; otherwise, the
process is repeated. Examples of LLM-generated
schemas are shown in Figure 4.

Saliency scores: A model-based approach for
schema generation. The schema generation de-
scribed above does not account for the computa-
tions performed by the target model M on the
given dataset D, potentially producing unfaithful
schemas (as we will show in §6). To address this,
we incorporate the importance of each token posi-
tion to the model’s computation into the schema
generation.

Our key idea is to inform the LLM which posi-
tions significantly influence the model’s decisions.
While many feature attribution methods can be
explored (Danilevsky et al., 2020; Wiegreffe and
Marasovic, 2021; Wallace et al., 2020), we employ
a simple saliency score, inputXgradient (Shrikumar
et al., 2017). The score of a token in position ¢ is
defined as s(t) = ||et - Ve, M ()|, where et is
the token embedding at position t. We compute a

softmax over these scores and define a mask for
each example as follows:

: es(t) 1
m(t) = Lo Y e® Z
0 otherwise,

Where n is the prompt length. This mask is then at-
tached to each example, and the LLM is instructed
to use it when designing the schema. Token po-
sition which is important across many examples
should be placed in its own span. Further informa-
tion on mask construction and alternative attribu-
tion methods can be found in Appendix D.1.

(10)

Schema Evaluation. We propose two intrinsic
metrics and one extrinsic metric to evaluate the en-
tire schema pipeline. Intrinsic metrics assess the
LLM schema application. An application is valid
if span labels are ordered correctly and every to-
ken is assigned to a single span, and correct if it
matches a human application for the same schema.
Extrinsic metrics evaluate schema design and ap-
plication through circuit discovery. A good schema
definition and application should achieve better
trade-offs between circuit size and faithfulness.
Invalid schema applications are filtered out for
both the discovery and evaluation datasets, while
incorrect applications are retained since automat-
ing their filtering is infeasible in general datasets.
If an application is valid but incorrect, we expect it
to affect the faithfulness of the discovered circuit.
To ensure minimal distribution shift in the dataset,
we consider a generation and an application of a
schema on an entire dataset as successful if at least
90% of the examples are valid. This means that
each circuit is discovered using a slightly differ-
ent set of examples (up to 10%), but we ensure
that all circuits are compared using the exact same
evaluation set, which is the intersection of the ex-
amples for all runs. In practice this intersection
includes 90% of the total dataset examples. In our
experiments, three full pipeline runs were usually
sufficient to achieve at least one successful run.
We found Claude 3.5 Sonnet (Anthropic, 2024)
to perform well in both schema generation and ap-
plication, achieving high validity and correctness
scores (Table 6, Appendix D.2). We also experi-
mented with Llama-3-70B (Grattafiori et al., 2024)
and GPT-40 (OpenAl et al., 2024), but they failed
to meet our thresholds for valid applications. In
§6, we show that LLM-generated schemas score
well on extrinsic quality measures, with saliency-

enhanced schemas proving comparable to human-
designed ones.

S Experiments

In all experiments, we use Llama-3-8B* and GPT2-
small. The experiments are implemented using the
Transformerlens library (Nanda and Bloom, 2022).

5.1 Tasks

For all tasks, we uniformly sample 500 examples
for circuit discovery and another 500 examples for
evaluating faithfulness.

Indirect Object Identification (IOI; Wang et al.,
2023): This task consists of prompts like “When
Mary and John went to the store, John gave a drink
to”, and the model should predict the indirect object
token ‘Mary’. The counterfactual prompts for this
task are prompt of the same structure but with 3
other unrelated names, for example: “When Dan
and David went to the store, Sarah gave a drink
to”. The metric that is being measured here is the
logit difference between the token ‘Mary’ and the
token ‘John’. We evaluate with both GPT2-small
and Llama-3-8B. For each model, we construct a
dataset based on only examples where the model
can predict the correct answer.

Greater-Than (Hanna et al., 2024a): We use
the same setting as described in §2. We evaluate
this task only on GPT2-small, as Llama-3-8B’s
tokenizer is not compatible with the task setup; see
App. A.2 for details.

Winobias (Zhao et al., 2018): A benchmark de-
signed to evaluate gender bias in coreference resolu-
tion. We collect 33 template from the dataset where
professions are irrelevant to the coreference deci-
sion (e.g., “The doctor offered apples to the nurse
because she had too many of them”). For each sam-
ple, we append the suffix: “The pronoun {} refers
to the”, where {} is a placeholder for the pronoun.
Each template can be used to construct four types
of prompts: Anti-Female, Anti-Male, Pro-Female,
Pro-Male. For example of each prompt see Table 3.
We focus on the Anti-Female prompts, using only
examples where the model predicts the incorrect
answer due to bias. This approach aims to identify
components responsible for biased predictions. For
Winobias, counterfactual prompts can be designed
in multiple ways, each affecting the kinds of com-
ponents one would recover; see Appendix A for
further discussion. To avoid counterfactual-specific
biases, we use mean ablation with examples from

*We use Llama-3 with BF16 precision.

,_‘
=)
-
o
\

|

o
o
o
3

o

o
=4
o

<)
IS

IS)
=
Hard Faithfulness

Hard Faithfulness
o
[N)

o
N

25 28 211 214 217 25 28 2]1 214 217
#Edges #Edges

LLM+mask

o
=]

human

-
o
Y
Iy
o

o
o
o
3

o
o
o
o

o
IS

o
=
Hard Faithfulness

Hard Faithfulness

°
N
o
N

/ 0 ——
211 215 219 223 211 215 219 223
#Edges #Edges

Non-positional

Figure 6: Hard faithfulness curves for GPT-2-small on Greater-Than (left) and IOI (mid-left), and for Llama-3-8b

on IOI (mid-right) and Winobias (right).

all four types during circuit discovery and faithful-
ness evaluation. The downstream metric M is the
logit difference between the correct profession and
incorrect profession. For further details on all tasks,
see App. A.

5.2 Circuit Evaluation

We measure faithfulness as a function of circuit
size. Since different examples may produce cir-
cuits of varying sizes (due to differences in span
lengths across examples), at each point we report
the average circuit size across all examples. We
extend the approach of Hanna et al. (2024b) for
ablating edges to also include attention edges.

6 Results

Figure 6 shows hard faithfulness for multiple tasks
and models. The positional circuits reach high
faithfulness at much smaller circuit sizes com-
pared to the non-positional circuits.

Using LLM-generated schema works well, and
adding mask information yields an additional sig-
nificant boost. Thus, providing the LLM with infor-
mation about the target models’ computation aids
in generating effective schemas. Discovering cir-
cuits with automatic LLM+mask schemas leads to
faithulness results that are as good as—and some-
times better than—human-designed schemas. Thus,
our automated LL.M-based schema pipeline dis-
covers circuits with faithfulness comparable to
those identified by human experts, even for tasks
containing variable-length inputs.

We now discuss task-specific patterns. In the
Greater-Than task, the circuit discovered with the
schema via LLM-+mask achieves a faithfulness not
significantly different from the human-designed
schema. The circuit generated solely by the LLM
demonstrates lower faithfulness for smaller circuit
sizes but achieves higher faithfulness as the circuit
size increases. Comparing the schemas reveals that

the schema derived using saliency scores aligns
more closely with the human-designed schema.
Specifically, both the human-crafted schema and
the LLM+mask schema partition the start year to
two spans: the first two digits and the last two dig-
its. However, in the LLM-only schema, all four
digits are grouped in a single span.

In the IOI task using GPT2-small, we ob-
serve that the circuits identified by our automated
pipeline closely match the human-designed circuits
in faithfulness. However, in the case of Llama-3-
8B, the LLM-generated circuits show slightly supe-
rior faithfulness compared to human-designed cir-
cuits. One plausible explanation is that the IOI task
has not been extensively investigated in this larger
model, meaning the schema defined for GPT2-
small may not optimally capture the nuances of this
task in Llama-3-8B. This highlights the importance
of tailoring schemas to the specific combination
of task and model, rather than extrapolating from
results obtained with a different model.

For the Winobias task dataset, similar trends
emerge: using the importance mask consistently
improves faithfulness scores, making it comparable
to the human-defined schema-based circuit.

7 Discussion and Conclusions

In mechanistic investigations, position matters.
Our results suggest it does not make sense in prac-
tice to create circuits without considering how dis-
tinct the circuit at each position might be. Theo-
retical results suggest that it also does not make
sense in principle to ignore positionality: Merrill
and Sabharwal (2024) show that transformers’ ex-
pressive power increases with multiple generation
steps. Similarly, accounting for positionality in in-
terpretability methods can enhance their expressive
power by capturing the distinct mechanisms pro-
cessing each token, rather than assuming a single
pathway for the entire sequence.

Other interpretability methods such as dis-
tributed alignment search (DAS; Geiger et al.,
2024) already support testing hypotheses about the
position of particular causal variables. It would
be interesting to directly compare the efficacy of
DAS methods when separating results by position
versus when aggregating information across posi-
tions. Stronger results when separating positional
information could help generalize our conclusions
to a wider array of causal interpretability methods.

Limitations

A key limitation we have discussed is that it is
not trivial to handle positional information in tasks
where the length of inputs vary. We have proposed
an automatic pipeline for generating and applying
schemas, but future work should explore this fur-
ther. In particular, because there is no single gold
standard for schemas, it is not clear a priori what
kinds of schemas are generally likely to obtain bet-
ter trade-offs between faithfulness and circuit size.
Devising general principles for effective schema
design therefore represents a fruitful avenue for
future work. It would also be interesting to ob-
serve whether human-generated schemas tend to
satisfy these principles, or whether the most effec-
tive schemas are not necessarily those that humans
are likely to design.

Another key limitation is that a schema requires
the same spans to appear in the same order across
all examples, such that the edges’ direction re-
mains correct across examples. Consequently, two
schemas with the same span types but in differ-
ent orders cannot be evaluated together, as these
produce different abstract computation graphs.

Acknowledgments

This research was supported by the Israel Science
Foundation (grant No. 448/20), an Azrieli Founda-
tion Early Career Faculty Fellowship, an Al Align-
ment grant from Open Philanthropy, and a Google
gift. HO is supported by the Apple AIML PhD
fellowship. DB is supported by a grant from Open
Philanthropy. AM is supported by a postdoctoral
fellowship under the Zuckerman STEM Leader-
ship Program. This research was funded by the
European Union (ERC, Control-LM, 101165402).
Views and opinions expressed are however those
of the author(s) only and do not necessarily re-
flect those of the European Union or the European
Research Council Executive Agency. Neither the
European Union nor the granting authority can be

held responsible for them.

References

Anthropic. 2024. The Claude 3 model family: Opus,
Sonnet, Haiku.

Arthur Conmy, Augustine N Mavor-Parker, Aengus
Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. 2023. Towards automated circuit discovery
for mechanistic interpretability. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis
Katsis, Ban Kawas, and Prithviraj Sen. 2020. A sur-
vey of the state of explainable Al for natural language
processing. In Proc. of AACL-IJCNLP.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones,
Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
plan, Sam McCandlish, and Chris Olah. 2021. A
mathematical framework for transformer circuits.
Transformer Circuits Thread.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 1lIth International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 1828-1843, Online. Association for
Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. The
pile: An 800gb dataset of diverse text for language
modeling.

Atticus Geiger, Hanson Lu, Thomas F Icard, and
Christopher Potts. 2021. Causal abstractions of neu-
ral networks. In Advances in Neural Information
Processing Systems.

Atticus Geiger, Zhengxuan Wu, Christopher Potts,
Thomas Icard, and Noah Goodman. 2024. Finding
alignments between interpretable causal variables
and distributed neural representations. In Proceed-
ings of the Third Conference on Causal Learning and
Reasoning, volume 236 of Proceedings of Machine
Learning Research, pages 160-187. PMLR.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,
and Aryaman Arora. 2023. Localizing model behav-
ior with path patching. CoRR, 2304.05969.

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://openreview.net/forum?id=RmuXDtjDhG
https://openreview.net/forum?id=RmuXDtjDhG
https://proceedings.mlr.press/v236/geiger24a.html
https://proceedings.mlr.press/v236/geiger24a.html
https://proceedings.mlr.press/v236/geiger24a.html
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2304.05969

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,

Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmén, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal

Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vitor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,

Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shugiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2024a. How does GPT-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Advances in Neural Information Pro-
cessing Systems, 36.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024b. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. In
First Conference on Language Modeling.

Sarthak Jain and Byron C Wallace. 2019. Attention is
not explanation. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543-3556.

Janos Kramar, Tom Lieberum, Rohin Shah, and Neel
Nanda. 2024. Atp*: An efficient and scalable method
for localizing 1lm behaviour to components. arXiv
preprint arXiv:2403.00745.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Be-
linkov, David Bau, and Aaron Mueller. 2024. Sparse
feature circuits: Discovering and editing interpretable
causal graphs in language models.

William Merrill and Ashish Sabharwal. 2024. The ex-
pressive power of transformers with chain of thought.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel
Marks, Koyena Pal, Nikhil Prakash, Can Rager,
Aruna Sankaranarayanan, Arnab Sen Sharma, Jiud-
ing Sun, et al. 2024. The quest for the right mediator:
A history, survey, and theoretical grounding of causal
interpretability. arXiv preprint arXiv:2408.01416.

Neel Nanda. 2023. Attribution Patching: Activation
Patching At Industrial Scale.

Neel Nanda and Joseph Bloom. 2022. Transformerlens.
https://github.com/TransformerLensOrg/
TransformerLens.

Chris Olah, Nick Cammarata, Ludwig Schubert, Shan
Carter, and Michael Petrov. 2021. The transformer
circuits thread: A framework for understanding trans-
formers. https://transformer-circuits.pub/
2021/framework/index.html. Accessed: 2024-11-
25.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov,
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
Amin Tootoochian, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, An-
drew Galu, Andrew Kondrich, Andrew Tulloch, An-
drey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin
Zweig, Beth Hoover, Blake Samic, Bob McGrew,
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad
Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-
man, Camillo Lugaresi, Carroll Wainwright, Cary
Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Char-
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris
Koch, Christian Gibson, Christina Kim, Christine
Choi, Christine McLeavey, Christopher Hesse, Clau-
dia Fischer, Clemens Winter, Coley Czarnecki, Colin
Jarvis, Colin Wei, Constantin Koumouzelis, Dane

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=TZ0CCGDcuT
https://openreview.net/forum?id=TZ0CCGDcuT
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2310.07923
https://arxiv.org/abs/2310.07923
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html

Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robin-
son, David Sasaki, Denny Jin, Dev Valladares, Dim-
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg
Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,
Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub
Pachocki, James Aung, James Betker, James Crooks,
James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-
ders, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-
ian Weng, Lindsay McCallum, Lindsey Held, Long
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,
Max Johnson, Maya Shetty, Mayank Gupta, Meghan
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao
Zhong, Mia Glaese, Mianna Chen, Michael Jan-
ner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass,
Miguel Castro, Miguel Oom Temudo de Castro,
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-
talie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-

ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,
Reza Zamani, Ricky Wang, Rob Donnelly, Rob
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers,
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agar-
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,
Tejal Patwardhan, Thomas Cunninghman, Thomas
Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury
Malkov. 2024. GPT-40 system card.

Judea Pearl. 2001. Direct and indirect effects. In Proc.
of the Conference on Uncertainty in Artificial Intelli-
gence.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay,
Yonatan Belinkov, and David Bau. 2024. Fine-tuning
enhances existing mechanisms: A case study on en-
tity tracking. In The Twelfth International Confer-
ence on Learning Representations.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Sarah Schwettmann, Tamar Rott Shaham, Joanna
Materzynska, Neil Chowdhury, Shuang Li, Jacob An-
dreas, David Bau, and Antonio Torralba. 2023. Find:
A function description benchmark for evaluating in-
terpretability methods. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets
and Benchmarks Track.

Tamar Rott Shaham, Sarah Schwettmann, Franklin
Wang, Achyuta Rajaram, Evan Hernandez, Jacob
Andreas, and Antonio Torralba. 2024. A multimodal
automated interpretability agent. In Forty-first Inter-
national Conference on Machine Learning.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
conference on machine learning, pages 3145-3153.
PMIR.

https://arxiv.org/abs/2410.21276

Aaquib Syed, Can Rager, and Arthur Conmy. 2023.
Attribution patching outperforms automated circuit
discovery. arXiv preprint arXiv:2310.10348.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388-12401. Curran Associates,
Inc.

Eric Wallace, Matt Gardner, and Sameer Singh. 2020.
Interpreting predictions of NLP models. In Proc. of
EMNLP: Tutorial Abstracts.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in gpt-2 small.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Sarah Wiegreffe and Ana Marasovic. 2021. Teach me to
explain: A review of datasets for explainable natural
language processing. In Proc. of NeurIPS Datasets
and Benchmarks Track.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15-20.

A Tasks Details
A.l1 101

We use the dataset of Wang et al. (2023). The data
is generated using 15 templates. For the human-
defined schema (provided below), we extend the
partial schema provided by the authors to fully
cover all spans in the prompt. The original dataset
includes two types of prompts: ABBA prompts,
where the indirect object (IO) token is the first
name in the prompt, and BABA prompts, where
the 10 token appears as the second name. Because
the ABBA and BABA prompts swap the order of
important spans, we cannot aggregate across these
two prompt types. Thus, we designed two distinct
schema, resulting in the definition of two separate
datasets:

IOI ABBA: The human-defined schema and its
application:

¢ Prefix: [When]|

* 10: [Mary]

e and: [and]

e S1: [John]

e S1+1: [went]
 actionl: [to the store,]
S2: [John]

* action2: [gave a drink]

* to: [to]
I0I BABA: The human-defined schema and its
application:

 Prefix: [When]

e S1: [John]

e S1+1: [and]

* 10: [Mary]

e S1+1: [went]
 actionl: [to the store,]
e S2: [John]

* action2: [gave a drink]

* to: [to]

Table 2 summarizes the performance of GPT2-
small and Llama-3-8B for this task. For the results
in §6, we use the ABBA datasets. Results for both
datasets can be found in §F. Note that there exist
schemas that can handle both datasets simultane-
ously, eliminating the need for separation. How-
ever, these schemas require grouping the IO token
and the S1 token into the same span, which mixes
signals from both token positions and introduces
new drawbacks.

A.2 Greater-Than

We use the dataset of Hanna et al. (2024a). All
examples in this task are generated using a single
template: “The {} lasted from the year {} to the
year {}”. Because the event span (the first non-
terminal) and the years have the same token length
for all of our models, all examples in the dataset
are fully token-aligned.

For the human-designed schema, we adopted the
word-level schema used by Hanna et al. (2024a):

e The: [The]

e Noun: [war]
e lasted: [lasted]

e from: [from]
¢ the: [the]

* year: [year]

https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf

* XX1: [16]
* YY: [45]

* to: [to]

¢ the: [the]

* year: [year]

o XX2: [16]
Table 2 summarizes the performance of GPT2-
small for this task.

Dataset GPT2-small Llama-3-8B
IOI-ABBA 92.5% 71.7%
IOI-BABA 87.1% 73.4%
Greater-Than 100% 0.0%

Table 2: Accuracy on different datasets. Note that
Llama-3 performs poorly on Greater-Than due to to-
kenization: it tokenizes four-digit years as a token of
three digits, followed by a token of one digit. The
Greater-Than prompts end with a two-digit token, which
the model has presumably not seen followed by an-
other two-digit number token; thus, it instead generates
whitespaces, and assigns a low probability to the true
answer.

A.3 Winobias

We use the dataset templates of Zhao et al. (2018).
We constructed the dataset based on 33 pairs of
prompt templates and 32 single-token professions.
Each profession is associated with gender stereo-
types.

Stereotypical female professions: teacher, ed-
itor, cashier, writer, counselor, counselors, nurse,
sewer, baker, auditor, designer, clerk, cleaner, li-
brarian, secretary, assistant, attendant, accountant.

Stereotypical male professions: lawyer, farmer,
physician, developer, manager, guard, mechanic,
chief, driver, mover, supervisor, analyst, construc-
tor, cook, sheriff.

The original dataset consists of pairs of tem-
plates, each sharing the same prefix but having
different suffixes. This variation causes the posi-
tion of the correct answer to change between tem-
plates (e.g., “The doctor offered apples to the nurse
because she had too many of them” and “The nurse
offered apples to the doctor because she might like
them”). We separate templates where the first sub-
ject is the correct answer from those where the
second subject is the correct answer. This sepa-
ration ensures we do not mix biased signals with

non-biased signals during the circuit discovery pro-
cess.

Moreover, for each template, we construct four
types of prompts: Anti-Female, Anti-Male, Pro-
Female, and Pro-Male. In total, starting from
33 pairs of templates, we construct eight distinct
datasets. Table 3 provides examples for each type
of dataset. Intuitively, “Anti-” means that the
profession-pronoun relationship goes against con-
ventional gender biases; “Pro-” means that the the
profession-pronoun relationship conforms to con-
ventional gender biases. For example, if the correct
answer is “nurse” and the pronoun is “she”, we
would say that this is a Pro-Female example; com-
pare to the case where the pronoun is “he”; this
changes it to an Anti-Male example.

For the main results we used the Anti-Female-I
dataset. Results for the Anti-Female-II dataset can
be found in §F.1.2.

Table 4 presents the performance of Llama-3-8B
on each type of dataset. We evaluated how often
the model responded with the plausible answer and
how often it chose the biased answer. Note that the
model is not forced to select either of these options,
and therefore, the sum of the percentages in each
row does not necessarily equal 100%.

For the human-defined schema, we used a
schema defined by Zhao et al. (2018) with minor
adjustments:

 correct answer: [The doctor]

* interacts with: [offered apples to]
* wrong answer: [the nurse]

* conjunction: [because]

* pronounl: [she]

* circumstances: [had too many of them]
e dot: [.]

e The: [The]

* pronoun: [pronoun]

e pronoun2: [she]

o refers: [refers]

e to: [to]

¢ the: [the]

For datasets where the wrong answer appears as
the first subject, we swap the order of the answers
in the schema.

Note that counterfactuals can be defined in many
ways for this task; this complicates locating and
interpreting circuits. For example, one could define

Dataset Example

Anti-Female-1
Anti-Female-II
Pro-Female-I
Pro-Female-II
Anti-Male-1
Anti-Male-1I
Pro-Male-I
Pro-Male-II

The doctor offered apples to the nurse because she had too many of them. The pronoun she refers to the
The nurse offered apples to the doctor because she might like them. The pronoun she refers to the"

The nurse offered apples to the doctor because she had too many of them. The pronoun she refers to the
The doctor offered apples to the nurse because she might like them. The pronoun she refers to the"

The nurse offered apples to the doctor because he had too many of them. The pronoun he refers to the"
The doctor offered apples to the nurse because he might like them. The pronoun he refers to the"

The doctor offered apples to the nurse because he had too many of them. The pronoun he refers to the"
The nurse offered apples to the doctor because he might like them. The pronoun he refers to the"

"

n

Table 3: An example for each dataset. Each entry demonstrates a pronoun resolution scenario, with variations
designed to reflect anti-female, pro-female, anti-male, and pro-male biases.

Dataset Correct Answer Biased Answer Sum
Anti-Female-1 34.5% 64.8% 99.3%
Anti-Female-II 29.2% 69.5% 98.7%
Pro-Female-I 81.6% 17% 98.6%
Pro-Female-II 75.9% 23.2% 99.1%
Anti-Male-1 51.9% 47.4% 99.3%
Anti-Male-II 35.8% 63% 98.8%
Pro-Male-1 79.2% 19.3% 98.5%
Pro-Male-II 61.7 % 37.8% 99.5%

Table 4: Bias measurement across the different datasets.
The sum indicates the proportion of examples for which
neither the correct nor the biased answer was the top
token according to the model.

counterfactuals from Anti-Male to Anti-Female,
Anti-Male to Pro-Female, among others; each of
these would isolate only some bias-specific sub-
circuit of the full coreference resolution circuit.
To overcome biases that would result from using
counterfactual prompts, we instead use mean abla-
tions constructed from 16 examples spanning all
examples (Anti-Female, Anti-Male, Pro-Female,
Pro-Male); this is more likely to recover the full
coreference resolution circuit.’

B The Computation Graph

The computation graph consists of the following
node types: MLPs, attention heads, embeddings,
and logits. To account for token positions, each
node type has a separate instance at every posi-
tion. Following Wang et al. (2023), the input edge
to an attention head is divided into three compo-
nents: v_input, k_input, and q_input. Conse-
quently, three distinct edges connect every node
v to a downstream attention head u. Additionally,
each attention head is connected to all attention
heads at subsequent token positions via three types
of connections: v, k, and q.

5 As compared to, for example, the subcircuit that encodes
gender bias.

The size of the computation graph varies depend-
ing on the model size and prompt length. Table 5
summarizes the average computation graph size for
each dataset and model.

Dataset GPT2-small Llama-3-8B
IOI-ABBA 593,473.55 25,746,710.46
IOI-BABA 584,783.47 25,654,744.33
Greater-Than 423,59.0 -
Winobias-1 - 33,769,270.68

Winobias-II - 32,951,977.84

Table 5: Average number of edges in the computation
graph per task.

C Circuit Construction

Once the attribution scores for all edges in the
graph are approximated, there are several ways
to construct a circuit. A straightforward approach
might involve selecting components with the high-
est scores to construct the circuit. However, this
naive method often results in a circuit that lacks
proper connectivity between embeddings and logits.
To ensure connectivity, we adopt a slightly modi-
fied version of the algorithm proposed by Hanna
et al. (2024b).

As Hanna et al. (2024b) states, this algorithm is
a greedy method, similar to a maximizing version
of Dijkstra’s algorithm. The process begins with a
circuit containing only the logits node at the final
token position. At each step, the edge with the
highest absolute attribution score that connects to a
child node already in the circuit is added. If the cor-
responding parent node is not yet part of the circuit,
it is also included. This iterative process continues
for N steps, where NV represents the desired circuit
size.

Due to the presence of attention edges, parent
and child nodes are not always located at the same

token position.

At the end of the process, it is guaranteed that
there is a path from the logits node at the final
position to every node in the graph. To ensure
full connectivity, we iterate over each node in the
circuit and remove any nodes, along with their cor-
responding edges, that are not connected to any
embedding node through a path in the graph.

D Schema: Further Details

To generate a schema, we sample 3 groups of 5
examples each from the dataset. For each group,
we ask the LLM to generate a separate schema.®
This process produces 3 candidate schema. Next,
we present the LLM with all 15 examples and the 3
candidate schemas, asking it to create a single uni-
fied schema. We test the unified schema using the
LLM by iterating over all examples, and checking
whether it can apply the schema in a valid manner
to each. If the output is invalid for a given example,
we point out why to the LLM and ask it to try again.
After three failed attempts, we move to the next ex-
ample. While this process can identify most errors,
it is not infallible and may provide false positives.
If the LLM fails to apply the schema correctly to
> 20% of the examples, we consider the schema in-
valid, inform the model of the issues, and restart the
schema generation process. The process ends once
the schema can be successfully applied to at least
80% of the examples. See Appendices E.2 and D.2
for more details on the process of applying and
validating schemas, as well as an error analysis.

D.1 Saliency scores

We have also explored the following methods to
determine the importance of each token position:

1. Input Attribution: This method involves
patching the embedding of each input token
individually and measuring the importance of
each position based on its impact on a down-
stream metric.

2. Aggregated Node Attribution Scores: The
importance of a position is derived from the
significance of its components. While edge at-
tribution patching could theoretically be used
for each example to identify important compo-
nents, this approach is computationally expen-
sive. Instead, we propose using Node Attri-
bution Patching, which uses a linear approx-

®We do not provide the LLM with any few-shot examples
to avoid influencing its decisions on defining the spans.

imation to estimate node importance rather
than edge importance, significantly reducing
computation time. This method efficiently cal-
culates the importance of each node at every
layer and position. By aggregating attribution
scores for all nodes at each position, we esti-
mate the overall importance of every position.

For both methods we used mean ablation val-
ues derived from "The Pile" dataset (Gao et al.).
We evaluated both methods for schema generation
and observed that the resulting schemas closely
resembled those produced by the gradient-based
method. However, a significant drawback of these
approaches is their reliance on a counterfactual
dataset, which adds complexity. For this reason,
we ultimately chose the gradient-based method as
our preferred approach.

Example. Figure 7 presents examples of the
masks provided to the model. While not all masks
highlight exactly the same token positions or token
roles, we observe a consistent overall pattern across
masks within the same dataset and model.

=)
=)
=)
=)
=)
=)

The

program

lasted
from

the {

year {
the

When
Brian
and
Jessica
got{ =
ad o
o
at{ o
the | =
school { o
o
Jessica .
decided { =
tod o
=
=
=

basketball {

-]
<
<

-

.

.

i o

-

t
e
give
e

a
al
the

When
Brian
and
Jessica
got
basketball
school
Jessica
decided
o

it

o

Figure 7: The first example in Figure 7 is taken from
the Greater-Than task and is generated using GPT2-
small. Both the second and third examples are from
the IOl dataset. The second mask is generated with
GPT2-small, while the third is generated with LLaMA-
3-8b. The highlighted positions are intended to capture
the most influential positions that affect the model’s
predictions.

D.2 Schema Evaluation
We define the application of a schema to an exam-

ple as valid if:

* All spans specified by the schema are in-
cluded, no extra spans are included, and the

Task Method Valid Correct
LLM 924% 883%
= IOTABBA — 'Vlask 98.7% 86.8%
£ LLM 98.0% 91.7%
g IOIBABA Mask 937% 88.5%
5 LLM 100% 100%
Greater-Than o ok 100% 100%
LLM 999% 96.0%
IOTABBA | Mask 96.1% 96.3%
" LLM 951% 81.5%
£ TOIBABA \ask 9829 92.3%
<
g LLM 985% 89.0%
5 Winobias-I vk 96.5% 98.6%
. LLM 999% 97.9%
Winobias-IT "\ ik 982% 95.4%

Table 6: Validity is an automatic evaluation metric that
tells us how many examples are usable for circuit dis-
covery. Correctness is a human evalation metric that
tells us whether the schema were applied in a way that
a human agrees with. By definition, the human schema
have 100% correctness.

spans appear in the exact order defined in the
schema.

» Each token in the prompt is assigned to only
a single span, and the tokens within each span
are a continuous sequence from the original
prompt.

Note that empty spans are valid. To ensure that
empty spans are justifiable, we initially treat them
as invalid during the first iterations. If, after several
attempts, a valid result cannot be obtained, we relax
this requirement and allow for empty spans.

We automatically test all the above requirements.
If an application is found to be invalid, the next
attempt includes details in the prompt about the
specific failures in the previous attempt.

We observe (Table 6) that the generated schemas
are largely valid, indicating that most examples can
be used for circuit discovery.

Recall that we additionally define a correctness
metric, which measures to what extent a human an-
notator agrees with the application of the schema.
To measure this, we have a human manually ap-
ply the LLM-generated schema to each template;
we then compare to what extent the LLM appli-
cation matches that of the human. Correctness is
measured partially: that is, for each example, we
compute the fraction of spans that are labeled iden-

Task Method Validity #1 Validity #2 Validity #3
LLM 48.1 % 92.4% 88.8%

= IOTABBA '\ ask 88.5% 98.7% 65.2%
g LLM 87.2% 55.1% 98.0%
g IOIBABA '\ fask 98.4% 87.5% 93.7%
 reaterThay MM 98.8% 100% 100%
reaterthan - Mask 100% 100% 100%
LLM 99.99 96.7% 99.8%

IOTABBA | \ask 95.1% 88.1% 92.9%

" LLM 96.1% 62.6% 77.9%
7 IOIBABA Mask 982% 969% 95.4%
£ Winobiaes MM 98.5% 96.0% 77.6%
3 ‘ + Mask 96.5% 71.4% 95.3%
o LLM 76.6% 99.9% 93.5%
Winobias-IT '\ 58.7% 98.2% 93.5%

Table 7: In our main experiments, we run schema gener-
ation and application three times per method, and take
the run with the highest validity score. Here, we show
the validities for all three runs for each method. (Valid-
ity #1 corresponds to the run used in the main paper.)

tically to the human, and take this fraction as the
correctness score. We then average these fractions
across examples. We observe that a human tends to
agree with how the schema were applied, as indi-
cated by high correctness scores in Table 6.” Thus,
the schemas score high on intrinsic measures of
quality.

E LLM Prompts
E.1 Schema Generation

Here is an example prompt we use to generate the
schema:

You are a precise AI researcher, and
your goal is to understand how a
language model processes a dataset
by analyzing its behavior across
different segments of prompts.

To do this, you need to divide all
prompts in the dataset into spans,
where each span represents a
meaningful part of the sentence.

The aim is to split the prompts in the

dataset systematically, allowing you

to analyze the relationships
between various parts of the
sentence and support different types
of model analysis.

Task: #i#t#

Your task is to define a schema---a
structure that defines how to split
all the examples in the dataset into

meaningful spans.

"Note, however, that we use the run with the maximum
validity across 3 runs. We show scores across random trials in
Appendix D.2.

The schema defines how to divide all
examples into the same set of spans!
Even though the examples do not
have the exact same tokens, they
share a similar structure.

All parts of each prompt should be
assigned to a span, meaning the
schema must provide a complete
division of every prompt.

Input Format:

1. *xTokensx*: A list of tokens
representing the example. Your task
is to find a schema that defines how

to divide this list into meaningful
spans.

2. x*Mask*x: A list of pairs in the
format “[(token, value)] , where a
value of “1° indicates that the
token is important and should be
placed in its own span, separated
from other tokens.

Instructions:

1. Use syntactic and semantic rules to
create a schema that defines how to
divide all the examples in the
dataset into meaningful spans.

2. Use the Masks to create additional
spans for any token marked as

significant (“value = 1°). Each of
these tokens should be placed in its
own span.

xNotex: Apply this rule only if a
specific token or token role is
marked as important across many
examples.

3. If you think certain parts or tokens
are crucial for the model's
processing of the prompt, assign
them to a separate span to highlight

their importance.

4. The spans should provide a complete
division of the prompt, ensuring
that every token is assigned to a
span, and the spans should reflect
the chronological structure of the
prompt.

5. The examples may vary, so you must
define a schema that is not tailored
to any specific example but can be
applied consistently across all
examples.

Goal:

Given a set of examples, your goal is to
define a schema---a structure that
divides all examples into the same
set of sub-spans.

Return Format:

Return a JSON object describing the
schema.

Each key in the dictionary should
represent a span title (1-3 words),
and the corresponding value should
describe the tokens or segments
assigned to that span.

Provide a brief description of each span
's role based on syntax, semantics,
or another relevant aspect, but do
not reference the Mask in the
description.

Provide a variety of examples in the
descriptions to clarify the scope of
each span.

Assign a descriptive and unique span
title (1-3 words) to each span.
Avoid mentioning the Mask in the
title (e.g., "Significant Token").

Example format:

{

“Jjson

I

"title"”: "description and examples’

}
I will now provide you with 5 pairs
of Tokens and a Mask.

Follow the steps carefully, and return a
JSON file in the correct format.

**Example 0:=*xx

*xTokens : *x

*['Then', ',', ' Michael', ' and', '
Matthew', ' had', ' a', ' long', '
argument', ',', ' and', ' afterwards
', ' Michael', ' said', ' to'l"

**Mask : *%

“[('Then', @), (',', @), (' Michael', 1)
, (" and', @), (' Matthew', 1), ('
had', @), (' a', @), (' long', 0),

(' argument', @), (',', @), (' and',
0), (' afterwards', 1), (' Michael
.1, (' said', @), (' to', @)1

*xExample 1:%x%

*xTokens : *x*

*['Then', ',', ' Jennifer', ' and', '
John', ' had', ' a', ' long', '
argument', ',', ' and', ' afterwards
', ' Jennifer', ' said', ' to']l"

xMask : x

“[('Then', @), (',', 1), (' Jennifer',
1), (" and', 1), (' John', 1), ('
had', @), (' a', @), (' long', 0),

(' argument', @), (',', @), (' and',
0), (' afterwards', 1), (' Jennifer
Y, 1), (' said', @), (' to', 0)I°

xExample 2:xx

**xTokens : *x

“['Then', ',', ' Michael', ' and', '
William', ' had', ' a', ' long', '
argument', ',', ' and', ' afterwards
", ' Michael', ' said', ' to']"

**Mask :x*

“[('Then', @), (',', 1), (' Michael', 1)
, (" and', @), (' William', 1), ('
had', @), (' a', @), (' long', @),

(' argument', @), (',', @), (' and',
0), (' afterwards', 1), (' Michael
', 1), (' said', @), (' to', @)1

*xExample 3:x%

**xTokens : *x

*['Then', ',', ' Jessica', ' and', '
Elizabeth', ' went', ' to', ' the',
' office', '.', ' Jessica', gave ',
'‘a', ' drink', ' to']l"

**Mask : x*
“[('Then', @), (',', @), (' Jessica', 1)
, (" and', 1), (' Elizabeth', 1), ('
went', @), (' to', @), (' the', 0),
(' office', @), ('.', @), ('
Jessica', 1), (' gave', @), (' a',
@), (' drink', @), (' to', @)1

**Example 4:*x

xTokens :xx

*['Then', ',', ' Kimberly', ' and', '
Michelle', ' had', ' a', ' long', '
argument', '.', ' Afterwards', '
Kimberly', ' said', ' to']"

**Mask : *%

“[('Then', @), (',', @), (' Kimberly',
1), (" and', @), (' Michelle', 1),
(" had', @), (' a', @), (' long', @)
, (' argument', @), ('.', @), (
Afterwards', 0), (' Kimberly', 1),
(' said', @), (' to', 0)1°

Guidelines: #it#

1. Ensure the schema assigns each part
in the prompt to a span.

2. The final token in every prompt must
always be placed in its own span.

3. The final token is always placed in
the last span.

4. Any token marked with a value of ~1°
is considered important and should
be placed in its own span in the
schema.

5. Create spans that can be applied to
all the examples.

6. Ensure spans are relevant and
consistent across the entire dataset

An example of the models’ response:

Based on the given examples and
instructions, I've created a schema
that divides the prompts into
meaningful spans.

Here's the JSON object describing the

schema:
{

"Initial Time Marker": "Represents the
opening temporal indicator, e.g.,
'Then'",

"First Person”: "Contains the name of
the first person mentioned in the
prompt"”,

"Conjunction”: "Represents the
coordinating conjunction
connecting the two people,
typically 'and'",

"Second Person”: "Contains the name of

the second person mentioned in
the prompt”,

"Main Event": "Describes the primary
action or event involving both
people, e.g., 'had a long argument
', 'went to the office'”,

"Punctuation”: "Represents the
punctuation separating the main
event from the following action”,

"Time Transition”: "Indicates a shift
in time, typically 'afterwards' or

similar phrases”,

"Active Person”: "Contains the name of
the person performing the

subsequent action”,

"Secondary Action”: "Describes the
action taken by the active person
after the main event, e.g., 'said
|, lgavelﬂ’

"Final Preposition”: "The last word of

the prompt, typically a
preposition like 'to'"
}

This schema provides a consistent
structure that can be applied to all

the given examples and similar
prompts. It accounts for the
important tokens (marked with 1 in
the mask) by assigning them to
individual spans. The schema also
ensures that every part of the
prompt is assigned to a span, and
the final token is always placed in
its own span.

E.2 Schema Application

Given a schema, we call Claude-3.5-Sonnet to ap-
ply the schema on each example separately. Here
is an example call:

You are an assistant that splits tokens
into spans based on a given schema.
Schema: {
'Temporal Context': 'Words or
phrases that set the initial
time frame or sequence of events

'"Primary Subjects': "Names of the
main characters involved in the
first action, typically
connected by 'and'",

'

'Initial Action 'Describes the
primary action or state of the
subjects, including any relevant

location',

'Transition': 'Punctuation or words
that separate the initial
context from the subsequent
action',

"Active Subject': 'The name of the
character performing the
secondary action',

'Secondary Action': 'The verb phrase

describing the action performed
by the active subject',

'Object': 'The item or concept
involved in the secondary action
'"Final Preposition': "The last word
in the prompt, typically 'to'"
}
Tokens: [
'While', ' Jason', ' and', ' Crystal', '
were', ' commuting', ' to', ' the',
' hospital', ',', ' Jason', ' gave
', ' a', ' kiss', ' to'

]

Please split the tokens into the spans
defined by the schema.

Return the spans as a JSON object where
each key is a span name and the
value is the list of tokens in that
span.

Format:

“Tjson {"span title"”: []1} ~°°

Ensure that:

- All the spans are present.

- Every token is assigned to a span.
- No new spans are added.

- Punctuation marks should be

included in the spans. If no
specific span is assigned to
punctuation mark, it should be
grouped with the preceding token

- Ensure that the last token is
placed exclusively in the final
span.

- The spans are in the correct order

as in the schema.

- The tokens in each span are a
continuous segment of the full
prompt.

- The tokens are kept in the same
order as they appear in the
original prompt.

- Don't remove spaces from tokens
inside the list.

- If a span has no tokens in a
specific example, leave it empty
, but still include the span for

consistency across all examples

An example of a response from Claude:

Here's the JSON object with the tokens

split into spans according to the
given schema:
{
"Temporal Context”: ["While"],
"Primary Subjects”: [" Jason", " and”,
" Crystal”],

"Initial Action”: [" were”, "
commuting”, " to"”, " the", "
hospital”],

"Transition”: [","],

"Active Subject”: [" Jason"],

"Secondary Action”: [" gave"],

"Object”: [" a", " kiss"],

"Final Preposition”: [" to"]

}

We do not provide Claude with any few-shot
examples, as we aim to keep this process fully
automated. However, using human-crafted few-
shot examples could improve the correctness of the
application.

F Faithfulness Curves
F.1 Results Across Schema Generation Trials

As mentioned in §4.2, we run the entire pipeline
three times for each task to ensure at least 90% of
the examples are valid. In §6, we present the results
from the trials with the highest validation scores.
Here, we report results for all trials.

F.1.1 Greater-Than

Figures 8, 9, and 10 display the results for the
Greater-Than and 1OI tasks. Trends are highly
consistent across trials, and are all similar to what
we observe in the main paper. This is a trivial case

where each word could reasonably be assigned its
own span, however, so the following sections are
more representative of the variance of this method
on more realistic datasets.

F.1.2 Winobias

In Figure 11, we present the results for the Wino-
bias task. The soft faithfulness curves across all
schemas and trials initially exhibit a significant
drop, suggesting that the circuit assigns higher log-
its to the correct answer compared to the incorrect,
biased answer. To quantify this, the dotted lines in
the hard faithfulness curves represent the average
percentage of cases where the circuit generates the
correct answer. This observation is non-trivial, as
we specifically analyze examples where the model
predicts the biased (and wrong) answer. Indeed,
near the drop in the soft faithfulness curves, the
models often predict the correct answer at a signif-
icant rate. However, as the circuit size increases,
the trend reverses: the soft faithfulness curves in-
crease, correlating with a higher percentage of bi-
ased predictions. This effect becomes particularly
pronounced when token positions are differentiated.
One plausible explanation is that the circuit incor-
porates components that simultaneously influence
both the correct and biased answers, reflecting the
delicate balance between task-relevant and bias-
inducing factors. As component analysis lies out-
side the scope of this study, future research could
further investigate this phenomenon.

In general, the human schema achieve the best
top-prediction scores. The shape of the faithful-
ness curves makes it difficult to determine a best
method, but the human schema tends to produce
a curve that resembles the others, but left-shifted.
This suggests that it is picking up on important
components before the other methods.

F.1.3 Indirect Object Identification

In Figures 9 and 10, we show faithfulness curves
for GPT2-small and Llama-3-8B, respectively.
When viewing hard faithfulness, results do not dif-
fer significantly across templates, nor across trials
for GPT2-small. The difference between LLM,
LLM+Mask, and the human schema is smaller for
the third trial for the ABBA template. It is also low
for the second two trials for the BABA template.
When viewing soft faithfulness, similar trends are
present, but the schema-based approaches gener-
ally perform similarly to each other (with human
and LLM+mask’s margin from LLM being much

smaller).

The difference between schemas is smaller for
Llama-3-8B. While each schema-based method
outperforms non-positional circuits, there does not
appear to be a significant difference between LLM,
LLM+Mask, and human schema.

Hard Faithfulness

Soft Faithfulness

I
N]

o
)

o
IS

1.00
0.75
0.50
0.25
0.00
-0.25

-0.50

28 211 214 217

#Edges

25 28 211 214 217
#Edges

human

Greater-Than GPT2-small

~/

o S}
[o)] ©

Hard Faithfulness
o
S

o
N

211 214 217

#Edges

= —— M‘
/

0.75 4 /

0.50 I f

25 28

1.00

0.25 i 7
0.00

-0.25

Soft Faithfulness

—-0.50

25 28 211 214 217
#Edges

LLM+mask LLM

< o o Iy
IS o ©)

Hard Faithfulness

o
N)

1.00
0.75
0.50
0.25
0.00

Soft Faithfulness

-0.25

—0.50

//\

8 211 14
#Edges

=t =

/o /

25 28 211 214 217
#Edges

Non-positional

Figure 8: Each column shows results for a single trial.

I0I-ABBA GPT2-small

1.0 " 1.0 7 1.0 e
7] / V4
0n 0.8 / n 0.8 / n 0.8 f
w0 / wn / %]
4} 9} [o
< < < /)
20.6 20.6 20.6 J
= < K= [
= =} =
0.4 Lo.4 Loa [
ke kel kel
o o 2
© © ©
To2 To2 To.2
0.0 - 0.0 0.0 :
25 28 211 214 217 25 28 211 214 217 25 28 211 214 217
#Edges #Edges #Edges
1.0 e 1.0 1.0 o
> 4 /
0.8 /7 0.8 0.8 ¢ /
0 4 " " /
0 4 0 0 V.
2 o6 P g o6 2 o6 77
2 2 / 3 7/
§ 0.4 § 0.4 /r § 0.4
i / / fitd \ / find /
g 02 A f’,/ e 0.2 \FR\ // / £ 02 \ Al /
| Y / | ¥ b / o Ay /
Y 0o / /) / Y 0.0 o , Y 0.0 ‘ /
/ \\/\{,./ NN .r-'\dr/ \ /\——+/
-0.2 -0.2 -0.2
25 28 211 214 217 25 28 211 214 217 25 28 211 214 217
#Edges #Edges #Edges
I0I-BABA GPT2-small
1.0 —7" 1.0 e 1.0 e
o 0.8 @ 0.8 / @ 0.8
[[i/ [}
£ £ / <
206 206 206 f
< e <
= = = il
£o.4 Lo4 Lo4 /
ke o el
< < <
© © ©
To2 To.2 / To0.2 /
0.0 0.0 = 0.0
25 28 211 214 217 27 210 213 216 219
#Edges #Edges
1.25 .
1.0 i: = A:,zr/:?‘*\._
1.00 - 4 /
o f @ 08 ‘ / o
@ 0.75 f f 2 / o
<) / < 06 / k=
2 050 / / £ / 2
= / / = 0.4 /f =
E 025 / L “ &
& pr's / £ 0.2 ~ f &
o | I o = / o
& 0.00 \ ! 92 0.0 @
J
E /) & /
-0.25 Y -0.2 '\v/ -0.25 N
26 29 212 215 218 27 210 213 216 219 27 210 213 216 219
#Edges #Edges #Edges
human LLM+mask LLM Non-positional

Figure 9:

Each column shows results for a single trial.

I0I-ABBA Llama-3-8b

219
#Edges

215

® © ¥ o o

o o o o
ssaulnjylled pie

;v\:"//
2 23

211

® © T o o
o o o o o
ssauInyyied pieH

7/
223

219
#Edges

215

211

®@ © ¥ o o
o o o o o
ssauInyyied pieH

<
—

<
—

® © < o

o o o o
ssaulnjyled 4os

e} (e} < o
s S & o
mmwc_aﬁ_ﬁtom

® © < o

o [S) [S))
Ssau|njyileq Yos

sl

——

0.0

——

0.0

=

——

0.0

z
S
o
o
£
[aV"))
[
[
©
4E
5 %
o
o
S
o
o
g
o
o
2
25
(9]
[=2]
el
w
g
o
o
o
o
o
5
o
o
2
25
[
[*2]
kel
w
g
o
o
o
o~

I0I-BABA Llama-3-8b

1.0

/

* © st N

o o o o
ssaulnjuied pieH

[oe] o < o
s S o o
mmmc_ecu_ﬁvaz

\.

N/

/

.//
.‘./.

®@ o ¥ o
o o o o
ssauInyyled pieH

yd

*._/

74

e
<]

o
Q
o~
o
2
o~
%]
9]
o
kel
n W
N
-
b=
o~
<
3
o~
—
IS
o~
wn
2w
~ND
kel
|
3
n
5
o
~
S
o~
o
Q
o~
o
I
o~
wv
9]
Hg
~ g
3
<
5
o~
—
5
o~

S S =} =}
ssau|njyileq yos

00 6 4 2
s S oS o
ssauInyyIed oS

1.0

o ®© ©v ¥ o

) S [S) [S)
mmmc_er_u._mu_tom

o
Q
o~
o
]
o~
v
9]
o
ks}
o 0
P
-
b
o~
<
3
o~
—
~
o~
w
2 o
N D
ks}
w
3
n
3
o~
~
]
o~
o
<
o~
o
IS
o~
w
9]
Ug
~ g
3
<
5
o~
-
5
o~

LLM+mask LLM Non-positional

human

Figure 10: Each column shows results for a single trial.

1.0 1.0 > 1.0
B -
0.8 0.8 f 0.8
C c c
o §] o
o6 Go6 T0.6
kel el ©
o g [o
0.4 20.4 [0.4 /
Q J aQ | aQ
o S ; S |
0.2 f 0.2 1 0.2 [
SR | Fin
F e, /i 4 F
0.0 - : 0.0 - 0.0 [
211 215 219 223 210 214 218 222 211 215 219 223
#Edges #Edges #Edges
human LLM+mask LLM Non-positional
biased answer = ' correct answer
1
—_—r : 1.0 1.0
a 0 A | 0 T 0
g } v $ 0.5 ‘f:‘—"—_ev\; L= g 0.5
= £ £
= =
£-1 ‘ £ 00 £ 00
5 =} =
w i ~0.5 £ -0.5
& e &
Q-2 S S
v V1.0 N V1.0 Y
-3 -1.5 -1.5
211 215 219 223 210 214 218 222 211 215 219 223
#Edges #Edges #Edges
human LLM+mask LLM Non-positional
Winobias I1 Llama-3-8b
1.0 1.0 10———+——F+————— —
e 7
0.8 r/ 0.8 & 0.8 -
c c / c /
k) | o [o [
o6 { 0.6 | T0.6 [
S | S | 5 |
g [o [o [
204 [204 | 8- 0.4 f
o “‘ Q. | Q. |
S | S | S |
0.2 0.2 s 0.2 f
1
0.0 0.0 / 0.0 Y]
211 215 219 223 28 212 216 220 224 211 214 217 220 223
#Edges #Edges #Edges
human LLM+mask LLM Non-positional
biased answer = 1 correct answer
o 1.
' > /i ° 1.0 -t
B (7 4 1.0 I ¢
ﬁ \ s m ‘ / ” m 0 5 H—:';.t — 3 J 7
2o) ¢ 05 - v — < \ '
= \ e £ A\ ! £ 00 \ j{é
=4 2 0.0 \ \Jy/ > P
£ / 2 \ /W 2 j
-~ \
T -1 /) E=] 1 / 2-0.5 1 i
e I ®—0.5 1 ®
& \ _
5 £-10 §10
w 2 0 \ 0
] -15 -15
-2.0 -2.0
211 215 219 223 28 212 216 220 224 211 214 217 220 223
#Edges #Edges #Edges
human LLM+mask LLM ~ Non-positional

Figure 11: Winobias task results showing soft and hard faithfulness curves. Each column shows results for a single
trial. The soft faithfulness curves initially drop significantly, suggesting the circuit assigns higher logits to the
correct answer than to the incorrect, biased answer. The dotted lines in the hard faithfulness curves quantify this
by showing the average percentage of cases where the circuit generates the correct answer, despite focusing on
examples where the model predicts the biased answer. As the circuit size increases, the soft faithfulness curves rise,
correlating with an increased percentage of biased predictions. This effect is more pronounced when token positions

are differentiated.

	Introduction
	Background and Motivation
	Position-aware Edge Attribution Patching (PEAP)
	Method
	Preliminary Demonstration
	Aggregating Scores Across Examples

	Schemas for Variable-length Inputs
	Discovering Circuits at the Schema Level
	Automating Schema Generation and Application

	Experiments
	Tasks
	Circuit Evaluation

	Results
	Discussion and Conclusions
	Tasks Details
	IOI
	Greater-Than
	Winobias

	The Computation Graph
	Circuit Construction
	Schema: Further Details
	Saliency scores
	Schema Evaluation

	LLM Prompts
	Schema Generation
	Schema Application

	Faithfulness Curves
	Results Across Schema Generation Trials
	Greater-Than
	Winobias
	Indirect Object Identification

