

https://bit.ly/ebook-banner-devbook

✅ Atualizado para Python 3.13 (Dezembro 2025)

Conteúdo enriquecido com formatação avançada, debug (=) e comparação

com outros métodos.

Olá Pythonista!

F-strings (Python 3.6+) são a forma mais rápida e legível de formatar strings!

Mais rápidas que .format() e % , com sintaxe limpa.

Neste guia, você vai aprender: - ✅ Sintaxe básica - f"{variavel}" - ✅ For‐

matação avançada - Largura, alinhamento, precisão - ✅ Debug rápido -

f"{var=}" (Python 3.8+) - ✅ Casos práticos - Logs, SQL, templates

Então faz o cafézinho nosso de cada dia e vamos nessa!

Formatação de Strings em Python
Em Python nós não temos muitas formas de formatar strings, graças a um dos

Zen’s do Python (não sabe qual? Então já clica aqui pra saber mais).

Antes do Python 3.6, nós tínhamos basicamente duas formas de formatar strings: -

Utilizando % ou - Utilizando str.format() , a partir do Python 3.0.

A partir da versão 3.6 do Python, foi introduzido o conceito de f-strings, que vere‐

mos AGORA!

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

1

https://pythonacademy.com.br/zen-of-python

Formatação com f-strings
F-strings foram criados para facilitar nossa vida e vieram para ficar!

Também chamadas de “strings literais formatadas” (formatted string literals), f-

strings são strings com a letra f no início e chaves {} para realizar a interpola‐

ção de expressões.

As expressões são processadas em tempo de execução e formatadas utilizadas o

protocolo __format__ . Vamos de exemplo:

E a saída seria:

Qual o melhor Blog sobre Python? Python Academy!!!

Utilizando funções
Como f-strings são processadas em tempo de execução, podemos colocar quase

todo tipo de código dentro das expressões.

Aqui um outro exemplo, utilizando chamada de função e mais:

Sua saída seria:

nome = 'Python Academy'

print(f"Qual o melhor Blog sobre Python? {nome}!")

nome = 'python academy'

print(f"Qual o melhor Blog sobre Python? {nome.upper() + '!' * 3}")

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

2

Qual o melhor Blog sobre Python? PYTHON ACADEMY!!!

Ou ainda:

O output seria:

cos(0.5) = 0.8775825618903728

Acessando dicionários
Também é possível acessar dicionários dentro de f-strings:

Seu output seria:

Vinícius é um Software Engineer

import math

x = 0.5

print(f'cos({x}) = {math.cos(x)}')

dicionario = dict({'nome': 'Vinícius', 'ocupacao': 'Software Engi‐
neer'})

print(f"{dicionario['nome']} é um {dicionario['ocupacao']}")

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

3

Strings multi-linha
Também podemos criar f-strings multilinha:

A saída seria a seguinte:

Site: Python Academy

Título: f-string no Python

Dificuldade: Básico

Vamos nessa! 😉

Método de classe __str__ vs
__repr__

Você pode até mesmo utilizar objetos instanciados dentro de f-strings. Por exem‐

plo, caso você tenha a seguinte classe:

site = 'Python Academy'

titulo = 'f-string no Python'

dificuldade = 'Básico'

print(

f"Site: {site}\n"

f"Título: {titulo}\n"

f"Dificuldade: {dificuldade}"

)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

4

Seria possível fazer:

A saída de código seria:

Ferrari/F8 Tributo - Ano 21

A saída padrão é a do método __str__ .

Contudo, se quisermos apresentar a representação presente no método __re‐

pr__ , podemos utilizar flag especial !r .

Veja como:

class Carro:

def __init__(self, marca, modelo, ano):

self.marca = marca

self.modelo = modelo

self.ano = ano

def __str__(self):

return f"{self.marca}/{self.modelo} - Ano {self.ano}"

def __repr__(self):

return (

f"Marca: {self.marca}\n"

f"Modelo: {self.modelo}\n"

f"Ano: {self.ano}"

)

possante = Carro('Ferrari', 'F8 Tributo', '21')

print(f'{possante}')

print(f'{possante!r}')

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

5

Dessa forma, a saída seria a seguinte:

Marca: Ferrari

Modelo: F8 Tributo

Ano: 21

💡 Estou desenvolvendo o DevBook, uma plataforma que usa IA para gerar

ebooks técnicos profissionais. Depois de ler, dá uma passada no site!

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

6

https://bit.ly/ebook-banner-devbook
https://bit.ly/ebook-banner-devbook
https://bit.ly/ebook-banner-devbook

Utilizando formatadores especiais
A Especificação de Formatação (do inglês “Format Specification” - acesse a docu‐

mentação aqui) oferece modificadores que podem ser utilizados em conjunto

com f-strings.

A especificação é bem extensa e contém diversos componentes, portanto sugiro

dar uma olhadinha lá.

Sua forma é a seguinte:

{[<nome>][!<conversão>][:<modificador>]}

A parte [:<modificador>] é bem complexa e possui os seguintes campos:

:[[<preenchimento>]<alinhamento>][<sinal>][#][0][<comprimento>][<gru‐

po>][.<precisão>][<tipo>]

Cada campo desse possibilita um tipo de modificação na string resultante.

Vamos de exemplo!

Um modificador disponível é o símbolo de porcentagem % . Ele serve para forma‐

tar saídas numéricas. Veja a mágica:

Olha a saída:

valor = 5.5 / 40.0

print(

f'Resultado original: {valor}\n'

f'Resultado formatado: {valor:.1%}'

)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

7

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language

Resultado original: 0.1375

Resultado formatado: 13.8%

Explicando:

O .1 diz que a string resultante deve ter apenas uma casa decimal;

O % multiplica o valor por 100 e inclui o % ao final.

Agora um exemplo maluco:

E a saída:

'----ff----'

Agora vamos com calma:

- é o [<preenchimento>] : é esse caracter que vai preencher os espaços

vazios;

^ é o [<alinhamento>] : diz como a string deve ser alinhada. No caso,

^ diz que a string deve ser centralizada.

10 é o [<comprimento>] : diz que a string resultante deve ter 10 caracte‐

res.

x é o [<tipo>] : diz que a string deve ser convertida em hexadecimal

(portanto ff no resultado).

Um tanto complexo, mas conciso!

•

•

valor = 255

print(f"'{valor:-^10x}'")

•

•

•

•

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

8

Conclusão
Vimos nesse post como é simples utilizar f-strings e como deixa nosso código mais

legível!

Agora que você sabe como é simples utilizar f-strings, que tal refatorar aquele

monte de string formatada com % ?

Casos Práticos

1. Logs Formatados

import datetime

user_id = 123

action = "login"

timestamp = datetime.datetime.now()

log = f"[{timestamp:%Y-%m-%d %H:%M:%S}] User {user_id} performed {acti‐
on.upper()}"

print(log)

[2025-12-10 10:30:45] User 123 performed LOGIN

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

9

2. Queries SQL Dinâmicas

3. Templates HTML

table = "users"

field = "email"

value = "alice@example.com"

query = f"SELECT * FROM {table} WHERE {field} = '{value}'"

print(query)

SELECT * FROM users WHERE email = 'alice@example.com'

⚠️ ATENÇÃO: Use prepared statements em produção!

username = "Alice"

points = 1250

html = f"""

<div class="user-card">

 <h2>{username}</h2>

 <p>Pontos: {points:,}</p>

 {"VIP" if points > 1000 else "Regular"}

</div>

"""

print(html)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

10

4. Debug Rápido (Python 3.8+)

f-strings vs .format() vs %

x = 10

y = 20

Modo antigo

print(f"x: {x}, y: {y}")

Modo novo (debug)

print(f"{x=}, {y=}")

x=10, y=20

total = x + y

print(f"{total=}")

total=30

nome = "Alice"

idade = 25

% (antigo, Python 2)

result1 = "Nome: %s, Idade: %d" % (nome, idade)

.format() (Python 2.6+)

result2 = "Nome: {}, Idade: {}".format(nome, idade)

f-string (Python 3.6+) - RECOMENDADO!

result3 = f"Nome: {nome}, Idade: {idade}"

Todos produzem: "Nome: Alice, Idade: 25"

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

11

Performance

Resultado: f-strings são 2-3x mais rápidas!

Quando Usar Cada Um?

✅ Use f-string (recomendado!): - Python 3.6+ disponível - Performance impor‐

tante - Código legível - Debug rápido ({var=})

✅ Use .format(): - Compatibilidade Python 2.6-3.5 - Templates reutilizáveis - For‐

matação complexa

❌ Evite %: - Sintaxe antiga - Menos legível - Mais lento

Conclusão
Neste guia de f-strings, você aprendeu:

import timeit

nome = "Alice"

idade = 25

Benchmark
format_percent = timeit.timeit(lambda: "Nome: %s, Idade: %d" % (nome,

idade), number=1000000)
format_dot = timeit.timeit(lambda: "Nome: {}, Idade: {}".format(nome,

idade), number=1000000)

format_f = timeit.timeit(lambda: f"Nome: {nome}, Idade: {idade}", num‐
ber=1000000)

print(f"% : {format_percent:.4f}s")

print(f".format(): {format_dot:.4f}s")

print(f"f-string : {format_f:.4f}s (MAIS RÁPIDO!)")

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

12

✅ Sintaxe - f"{variavel}" simples e legível

✅ Formatação - Largura, alinhamento, precisão, data/hora

✅ Debug - f"{var=}" (Python 3.8+)

✅ Casos práticos - Logs, SQL, HTML, debug

✅ Performance - 2-3x mais rápido que .format() e %

Principais lições: - F-strings são o padrão moderno (Python 3.6+) - Sintaxe limpa

e legível - Performance superior - {var=} é ótimo para debug - Use :.2f para

precisão, :>10 para alinhamento

Próximos passos: - Explore [Strings][strings-post] em Python - Aprenda expres‐

sões dentro de f-strings: f"{2 + 2}" - Pratique formatação de datas com {dt:

%Y-%m-%d} - Estude f-strings multi-linha para templates

Uma boa né?! 😅

Até a próxima, Pythonista!

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

13

https://bit.ly/ebook-banner-devbook-final

