

https://bit.ly/ebook-banner-devbook

✅ Atualizado para Python 3.13 (Dezembro 2025)

Conteúdo enriquecido com casos práticos, operações de conjuntos e compara‐

ção set vs frozenset.

Olá Pythonista!

Sets são coleções não-ordenadas e sem duplicatas com lookups O(1). Perfeitos

para remover duplicatas, testes de membresía e operações matemáticas de con‐

juntos!

Neste guia, você vai aprender: - ✅ Criação e operações básicas - ✅ Operações

de conjuntos (união, interseção, diferença) - ✅ Casos de uso reais (remove du‐

plicatas, validação) - ✅ set vs frozenset - quando usar cada um

Sem mais delongas, vamos para o conteúdo!

Introdução
O Set é um tipo de dado bastante peculiar do Python que possui as seguintes

características:

Sets são desordenados

Não possuem elementos duplicados, ou seja, cada elemento é único.

Um set em si pode ser modificado, contudo os elementos contidos dentro

dele precisam ser de tipos imutáveis.

A sintaxe para utilizar sets é bem simples: eles são definidos utilizando-se chaves

{} . Veja um exemplo:

•

•

•

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

1

Para confirmar seu tipo:

A saída do código acima será:

<class 'set'>

Portanto, caso em algum momento você se depare com esse objeto, saiba que ele

é um Set !

Dados duplicados
Como dito na introdução os dados no Sets não podem ser duplicados.

Vamos ver um exemplo para confirmar:

Observe como os valores duplicados são ignorados:

{1, 2, 3}

{1, 2, 3, 4, 5, 6}

meu_set = {'python', 'academy'}

print(type(meu_set))

lista = [1, 1, 2, 2, 3, 3]

sem_duplicados = set(lista)

print(sem_duplicados)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

2

Adicionando itens
Após a criação de um Set , você não pode alterar seus itens.

Contudo você pode adicionar novos itens e para isso podemos utilizar o método

add() .

Vamos ver como:

A chamada ao método add() adiciona o elemento ‘Marcela’ ao set:

Para adicionar itens de outro conjunto ao set especificado, podemos utilizar o mé‐

todo update() .

Você pode utilizar esse método com qualquer tipo de objeto iterável (tuplas, listas,

dicionários etc.)

Veja como o set ids ficou após a chamada ao método update() :

convidados = {'João', 'Maria', 'Eduarda'}

convidados.add('Marcela')

print(convidados)

{'Eduarda', 'Maria', 'Marcela', 'João'}

ids = {10, 12, 13, 14}

novos_ids = {11, 13, 15}

ids.update(novos_ids)

print(ids)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

3

{10, 11, 12, 13, 14, 15}

Acessando itens
Sets não possibilitam acessar seus elementos através de índices (assim como Lis‐

tas) ou chaves (como os Dicionários).

Veja o que acontece caso tentemos realizar essa operação:

Saída:

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'set' object does not support indexing

Assim, podemos acessá-los de duas maneiras “brutas”: percorrendo o conjunto ou

verificando se o elemento desejado se encontra no set.

Podemos percorrer seus elementos com for , por exemplo:

Sendo impresso seu conteúdo:

set_1 = {1, 2, 3}

print(set_1[0])

este_set = {'João', 'Maria', 'Eduarda'}

for item in este_set:

print(item)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

4

João

Maria

Eduarda

Ou verificando se um elemento existe dentro dele:

Imprimindo True ou False , de acordo com o resultado da condição estabele‐

cida.

Poxa, poucas maneiras de acessar os elementos, hein? 😒

Calma, não entre em pânico! Podemos transformar o set em lista para ganharmos

as facilidades de manipulação das Listas:

Saída:

João

Maria

Eduarda

Caso você queria saber tudo sobre Listas, vale dar uma olhada no nosso post

completo sobre listas! 😉

print('João' in este_set)

lista = list(este_set)

print(lista[0])

print(lista[1])

print(lista[2])

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

5

https://pythonacademy.com.br/blog/listas-no-python
https://pythonacademy.com.br/blog/listas-no-python
https://pythonacademy.com.br/blog/listas-no-python

Removendo itens
Para remover itens de um set, você pode, inicialmente, utilizar dois métodos: o

remove() e discard() .

Veja como é simples remover elementos com remove() :

Para remover com discard() , faça:

Ambos terão o mesmo resultado:

{'pão', 'leite'}

Caso o item não exista, será gerado um erro do tipo TypeError !

Você também pode usar o método pop() , porém no caso do set ele não remo‐

verá o último item (pois o conjunto é desordenado):

sacola = {'queijo', 'pão', 'leite'}

sacola.remove('queijo')

sacola = {'queijo', 'pão', 'leite'}

sacola.discard('queijo')

compra = {'queijo', 'pão', 'leite'}

item = compra.pop()

print(f"Item removido: {item}")

print(compra)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

6

Ou seja, a saída pode ser um item completamente aleatório:

Item removido: pão

{'queijo', 'leite'}

Se você deseja esvaziar completamente o set , utilize o clear() :

O que fará com que o set compra fique vazio ({}).

Podemos deletá-lo completamente, utilizando a keyword del do Python, assim:

💡 Estou construindo o DevBook, uma plataforma que usa IA para criar ebo‐

oks técnicos — com código formatado e exportação em PDF. Te convido a co‐

nhecer!

compra = {'queijo', 'pão', 'leite'}

compra.clear()

compra = {'queijo', 'pão', 'leite'}

del compra

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

7

https://bit.ly/ebook-banner-devbook

Operações matemáticas com sets
Agora é hora de relembrar suas aulas de Matemática!

Muita das vezes você pode pensar que os sets são bem restritos, porém sua utiliza‐

ção para armazenar elementos distintos é incrívelmente útil.

Os Sets em Python nada mais são que Conjuntos Matemáticos. Neles, você tam‐

bém pode aplicar os conceitos de Interseção, União, Diferença e etc.

Interseção

O método intersection() retorna um novo conjunto contendo apenas os

itens presentes em ambos:

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

8

https://bit.ly/ebook-banner-devbook
https://bit.ly/ebook-banner-devbook

Resultando em:

{'Maça'}

{'Maça'}

Se você deseja já atualizar um dos sets com a interseção entre eles, use o método

intersection_update() :

Veja que sacola1 agora possui apenas a interseção entre os sets:

{'Maça'}

União

Você pode utilizar o método union() para retornar um conjunto de elementos

contendo elemento de ambos sets:

sacola1 = {'Banana', 'Maça', 'Abacate'}

sacola2 = {'Laranja', 'Pera', 'Maça'}

sacola = sacola1.intersection(sacola2)

print(sacola)

ou

print(sacola1 & sacola2)

sacola1 = {'Banana', 'Maça', 'Abacate'}

sacola2 = {'Laranja', 'Pera', 'Maça'}

sacola1.intersection_update(sacola2)

print(sacola1)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

9

Resultando na união dos sets em um novo conjunto:

{'x', 1, 2, 3, 'z', 'a'}

{'x', 1, 2, 3, 'z', 'a'}

Diferença

o método difference() retorna a diferença, ou seja os valores que existem no

set sacola1 , e não no set sacola2 :

Resultando apenas nos itens que estão contidos no set sacola1 :

{'Banana'}

{'Banana'}

set1 = {1, 2, 3}

set2 = {'z', 'x', 'a'}

print(set1.union(set2))

ou

print(set1 | set2)

sacola1 = {'Banana', 'Maça'}

sacola2 = {'Laranja', 'Pera', 'Maça'}

print(sacola1.difference(sacola2))

ou

print(sacola1 - sacola2)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

10

Diferença simétrica

O método symmetric_difference_update() manterá os elementos que não

estão presentes em ambos conjuntos:

Apenas os dados que não estão presentes em ambos os sets estarão:

{'Laranja', 'Banana', 'Pera'}

{'Laranja', 'Banana', 'Pera'}

Set Comprehensions ou
Compreensão de Sets
Existe uma forma muito Pythônica de se criar sets, através da técnica chamada Set

Comprehensions.

Ele é uma maneira muito concisa de se criar e manipular sets que a Linguagem nos

oferece!

Se você quiser saber tudo sobre esse assunto, acesse agora nosso post completo

sobre Set Comprehensions AGORA!

sacola1 = {'Banana', 'Maça'}

sacola2 = {'Laranja', 'Pera', 'Maça'}

print(sacola1.symmetric_difference(sacola2))

ou

print(sacola1 ^ sacola2)

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

11

https://pythonacademy.com.br/blog/set-comprehensions-no-python
https://pythonacademy.com.br/blog/set-comprehensions-no-python
https://pythonacademy.com.br/blog/set-comprehensions-no-python
https://pythonacademy.com.br/blog/set-comprehensions-no-python

Casos de Uso Reais

1. Remover Duplicatas de Lista

2. Validação de Permissões

Manter elementos únicos

emails = ['user@example.com', 'admin@test.com', 'user@example.com']

unique_emails = list(set(emails))

print(unique_emails) # ['admin@test.com', 'user@example.com']

Preservar ordem (Python 3.7+)

unique_ordered = list(dict.fromkeys(emails))

user_permissions = {'read', 'write', 'delete'}

required_permissions = {'read', 'write'}

Verificar se usuário tem todas as permissões

has_access = required_permissions.issubset(user_permissions)

print(has_access) # True

Permissões faltando

missing = required_permissions - user_permissions

if missing:

print(f"Faltam: {missing}")

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

12

3. Comparar Listas

4. Filtrar Elementos Comuns

old_users = {'alice', 'bob', 'charlie'}

new_users = {'bob', 'charlie', 'dave'}

Novos usuários

added = new_users - old_users

print(f"Adicionados: {added}") # {'dave'}

Usuários removidos

removed = old_users - new_users

print(f"Removidos: {removed}") # {'alice'}

Usuários que permaneceram

stayed = old_users & new_users

print(f"Permaneceram: {stayed}") # {'bob', 'charlie'}

Tags de 2 posts de blog

post1_tags = {'python', 'tutorial', 'web'}

post2_tags = {'python', 'data', 'tutorial'}

Tags em comum

common_tags = post1_tags & post2_tags

print(common_tags) # {'python', 'tutorial'}

Todas as tags

all_tags = post1_tags | post2_tags

print(all_tags) # {'python', 'tutorial', 'web', 'data'}

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

13

set vs frozenset

Tipo Mutável Hasheável Quando usar

set ✅ Sim ❌ Não Geral, modificações

frozenset ❌ Não ✅ Sim Chaves dict, elementos de set

Exemplo Prático

Conclusão
Neste guia completo sobre Sets, você aprendeu:

set: Mutável

tags = {'python', 'web'}

tags.add('tutorial') # ✅ Pode modificar

frozenset: Imutável

frozen_tags = frozenset(['python', 'web'])

frozen_tags.add('tutorial') # ❌ Erro!

Use frozenset como chave de dict

cache = {}

key = frozenset(['param1', 'param2'])

cache[key] = "resultado"

Use frozenset como elemento de set

set_of_sets = {frozenset([1, 2]), frozenset([3, 4])}

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

14

✅ Operações básicas - Criar, adicionar, remover

✅ Operações de conjuntos - União, interseção, diferença

✅ Casos práticos - Remover duplicatas, validação, comparações

✅ set vs frozenset - Mutável vs imutável

Principais lições: - Sets não têm duplicatas (automático!) - Lookups O(1) - tão

rápido quanto dict - Use | (união), & (interseção), - (diferença) - frozenset é

imutável e hasheável - Sets não são ordenados (ordem imprevisível)

Próximos passos: - Pratique set comprehensions - Explore métodos .issub‐

set() , .issuperset() - Aprenda .symmetric_difference() (XOR) - Estu‐

de frozenset para dados imutáveis

Nesse Post vimos do básico ao avançado sobre os Sets do Python!

Se ficou com alguma dúvida, fique à vontade para deixar um comentário no box

aqui embaixo! Será um prazer te responder! 😉

EBOOK GERADO POR
P R I M E I R O CA P Í T U L O 1 0 0% GRÁ T I SA C E S S E D E V BOOK . A I

15

https://pythonacademy.com.br/blog/set-comprehensions-no-python

https://bit.ly/ebook-banner-devbook-final

