Thanks to visit codestin.com
Credit goes to web.archive.org

Skip to content
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more
Python HTML C Shell Smarty Dockerfile
Branch: master
Clone or download

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
.github DOC: Fixing links to the contributing page (#33029) Apr 7, 2020
LICENSES copy license text from: tidyverse/haven (#32756) Mar 18, 2020
asv_bench REF: move bits of offsets to liboffsets, de-privatize (#33936) May 2, 2020
ci BLD: bump numpy min version to 1.15.4 (#33729) May 1, 2020
conda.recipe BLD: bump numpy min version to 1.15.4 (#33729) May 1, 2020
doc BUG: Fix Series.update ExtensionArray issue (#33984) May 5, 2020
flake8 BLD: Run flake8 check on Cython files in pre-commit (#30847) Feb 12, 2020
pandas CLN: remove unused out-of-bounds handling (#34006) May 5, 2020
scripts DOC: Fix heading capitalization in doc/source/whatsnew - part4 (#32550)… Apr 17, 2020
web Updated layout.html (#33688) Apr 22, 2020
.devcontainer.json ENH: Create DockerFile and devcontainer.json files to work with Docke… Jan 19, 2020
.gitattributes CI: use versioneer, for PEP440 version strings #9518 Jul 6, 2015
.gitignore BLD: Add pyproject.toml (#28374) Sep 13, 2019
.pep8speaks.yml Remove duplicate config .pep8speaks.yml (#26226) Apr 28, 2019
.pre-commit-config.yaml BLD: Run flake8 check on Cython files in pre-commit (#30847) Feb 12, 2020
.travis.yml DOC: Moved PANDAS_TESTING_MODE tip to .travis.yml (#30694) (#31008) Jan 18, 2020
AUTHORS.md Use https for links where available (#31145) Jan 24, 2020
Dockerfile ENH: Create DockerFile and devcontainer.json files to work with Docke… Jan 19, 2020
LICENSE Updated years in LICENSE (#31100) Jan 18, 2020
MANIFEST.in DEPR: msgpack (#30112) Dec 12, 2019
Makefile CLN: Simplify black command in Makefile (#29679) Nov 17, 2019
README.md Update citation webpage (#33311) Apr 10, 2020
RELEASE.md Use https for links where available (#31145) Jan 24, 2020
azure-pipelines.yml CI: Update pipelines config to trigger on PRs (#32706) Mar 14, 2020
codecov.yml Admin: Disable codecov comments and re-enable results in the checks (#… Jun 27, 2019
environment.yml BLD: bump numpy min version to 1.15.4 (#33729) May 1, 2020
pyproject.toml BLD: bump numpy min version to 1.15.4 (#33729) May 1, 2020
release_stats.sh add args to release_stats.sh Nov 20, 2015
requirements-dev.txt BLD: bump numpy min version to 1.15.4 (#33729) May 1, 2020
setup.cfg CLN/TYP: update setup.cfg (#33818) Apr 27, 2020
setup.py BLD: bump numpy min version to 1.15.4 (#33729) May 1, 2020
test.bat BLD Added --strict and -r sxX to test scripts (#18598) Dec 1, 2017
test.sh BLD Added --strict and -r sxX to test scripts (#18598) Dec 1, 2017
test_fast.bat CI: fix db usage in CI (#24529) Jan 1, 2019
test_fast.sh CI: fix db usage in CI (#24529) Jan 1, 2019
test_rebuild.sh TST: Use pytest Feb 10, 2017
versioneer.py Use https for links where available (#31145) Jan 24, 2020

README.md



pandas: powerful Python data analysis toolkit

PyPI Latest Release Conda Latest Release DOI Package Status License Travis Build Status Azure Build Status Coverage Downloads Gitter Powered by NumFOCUS

What is it?

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.

Main Features

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
  • Intuitive merging and joining data sets
  • Flexible reshaping and pivoting of data sets
  • Hierarchical labeling of axes (possible to have multiple labels per tick)
  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging.

Where to get it

The source code is currently hosted on GitHub at: https://github.com/pandas-dev/pandas

Binary installers for the latest released version are available at the Python package index and on conda.

# conda
conda install pandas
# or PyPI
pip install pandas

Dependencies

See the full installation instructions for minimum supported versions of required, recommended and optional dependencies.

Installation from sources

To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from pypi:

pip install cython

In the pandas directory (same one where you found this file after cloning the git repo), execute:

python setup.py install

or for installing in development mode:

python -m pip install -e . --no-build-isolation --no-use-pep517

If you have make, you can also use make develop to run the same command.

or alternatively

python setup.py develop

See the full instructions for installing from source.

License

BSD 3

Documentation

The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable

Background

Work on pandas started at AQR (a quantitative hedge fund) in 2008 and has been under active development since then.

Getting Help

For usage questions, the best place to go to is StackOverflow. Further, general questions and discussions can also take place on the pydata mailing list.

Discussion and Development

Most development discussion is taking place on github in this repo. Further, the pandas-dev mailing list can also be used for specialized discussions or design issues, and a Gitter channel is available for quick development related questions.

Contributing to pandas Open Source Helpers

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide. There is also an overview on GitHub.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. There are a number of issues listed under Docs and good first issue where you could start out.

You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to pandas on CodeTriage.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: Contributor Code of Conduct

You can’t perform that action at this time.