A simple stack with limited size

In preparation for writing a second iterator, we write a class that implements a stack of limited size.

import java.util. EmptyStackException;
import java.util.Iterator;
import java.util. NoSuchElementException;

/** An instance is a stack */

public class Stack<E> implements Iterable<E> {
private E[] b; // stack values are b[0..h-1],
private int h; // with b[h-1] at the top

/** Constructor: a stack of at most m values */
public Stack(int m) {

b= (E[]) new Object[m];
H

/** Push e onto the stack. if there is no room,
* Throw a RuntimeException("no space") */

public void push(E e) {

if (h == b.length)

throw new RuntimeException("no space");

b[h]=e¢;

h=h+1;
H

/** Pop and return the top stack value. Throw an
* EmptyStackException if the stack is empty. */
public E pop() {
if (h == 0) throw new EmptyStackException();
h=h-1;
return b[h];
H
/** = the size of the stack */
public boolean size() {
return h;

H
H

The class invariant indicates that the stack has h values, which are in b[0..h-1], with b[h-1] the top stack.

The parameter of the constructor is the maximum size m of the stack. Look at the way the array is created. An
Object array is created and then cast to E[]. That’s how you have to do it.

There’s the usual push operation on a stack; note the exception that is thrown if an attempt is made to push ele-
ment number h+1 on the stack. And there is the usual pop operation, with an exception if the stack is empty. Finally,
we write a method method that gives the size of the stack.

This is a barebones implementation of a stack. It has just the minimal stuff so that we can write an iterator as an
inner class. That’s the next video.

©David Gries, 2018

