
A	simple	stack	with	limited	size	

ÓDavid Gries, 2018

In preparation for writing a second iterator, we write a class that implements a stack of limited size.

 import java.util.EmptyStackException;
 import java.util.Iterator;
 import java.util.NoSuchElementException;

 /** An instance is a stack */
 public class Stack<E> implements Iterable<E> {
 private E[] b; // stack values are b[0..h-1],
 private int h; // with b[h-1] at the top

 /** Constructor: a stack of at most m values */
 public Stack(int m) {
 b= (E[]) new Object[m];
 }

 /** Push e onto the stack. if there is no room,
 * Throw a RuntimeException("no space") */
 public void push(E e) {
 if (h == b.length)
 throw new RuntimeException("no space");
 b[h]= e;
 h= h+1;
 }

 /** Pop and return the top stack value. Throw an
 * EmptyStackException if the stack is empty. */
 public E pop() {
 if (h == 0) throw new EmptyStackException();
 h= h - 1;
 return b[h];
 }
 /** = the size of the stack */
 public boolean size() {
 return h;
 }
 }

The class invariant indicates that the stack has h values, which are in b[0..h-1], with b[h-1] the top stack.

The parameter of the constructor is the maximum size m of the stack. Look at the way the array is created. An
Object array is created and then cast to E[]. That’s how you have to do it.

There’s the usual push operation on a stack; note the exception that is thrown if an attempt is made to push ele-
ment number h+1 on the stack. And there is the usual pop operation, with an exception if the stack is empty. Finally,
we write a method method that gives the size of the stack.

This is a barebones implementation of a stack. It has just the minimal stuff so that we can write an iterator as an
inner class. That’s the next video.

