Thanks to visit codestin.com
Credit goes to www.icpdf.com

5962-0051801QQX

更新时间:2025-05-02 13:03:32
品牌:ATMEL
描述:Microcontroller, 8-Bit, 30MHz, CMOS, CDIP40, 0.600 INCH, SIDE BRAZED, DIP-40

5962-0051801QQX 概述

Microcontroller, 8-Bit, 30MHz, CMOS, CDIP40, 0.600 INCH, SIDE BRAZED, DIP-40 微控制器

5962-0051801QQX 规格参数

生命周期:Transferred零件包装代码:DIP
包装说明:DIP,针数:40
Reach Compliance Code:unknownECCN代码:3A001.A.2.C
HTS代码:8542.31.00.01风险等级:5.2
Is Samacsys:N具有ADC:NO
地址总线宽度:16位大小:8
最大时钟频率:30 MHzDAC 通道:NO
DMA 通道:NO外部数据总线宽度:8
JESD-30 代码:R-CDIP-T40长度:50.93 mm
I/O 线路数量:32端子数量:40
最高工作温度:125 °C最低工作温度:-55 °C
PWM 通道:NO封装主体材料:CERAMIC, METAL-SEALED COFIRED
封装代码:DIP封装形状:RECTANGULAR
封装形式:IN-LINE认证状态:Qualified
筛选级别:MIL-PRF-38535 Class Q座面最大高度:4.83 mm
速度:30 MHz最大供电电压:5.5 V
最小供电电压:4.5 V标称供电电压:5 V
表面贴装:NO技术:CMOS
温度等级:MILITARY端子形式:THROUGH-HOLE
端子节距:2.54 mm端子位置:DUAL
宽度:15.24 mmuPs/uCs/外围集成电路类型:MICROCONTROLLER
Base Number Matches:1

5962-0051801QQX 数据手册

通过下载5962-0051801QQX数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Features  
8032 Pin and Instruction Compatible  
Four 8-bit I/O Ports  
Three 16-bit Timer/Counters  
256 bytes RAM  
Full-duplex UART  
Asynchronous Port Reset  
6 Sources, 2 Level Interrupt Structure  
64 Kbytes Program Memory Space  
64 Kbytes Data Memory Space  
Power Control Modes  
Rad. Tolerant  
8-bit ROMless  
Microcontroller  
Idle Mode  
Power-down Mode  
On-chip Oscillator  
Operating Frequency: 30 MHz  
Power Supply: 4.5V to 5.5V  
Temperature Range: Military (-55oC to 125oC)  
No Single Event Latch-up below a LET Threshold of 80 MeV/mg/cm2  
Tested up to a Total Dose of 30 krads (Si) according to MIL STD 883 Method 1019  
Packages: Side Brazed 40-pin, MQFPJ 44-pin  
Quality grades: QML Q and V with SMD 5962-00518 and ESCC with Specification  
9521002  
80C32E  
Description  
The 80C32E is a radiation tolerant ROMless version of the 80C52 single chip 8-bit  
microcontroller.  
The 80C32E retains all the features of the 80C32 with 256 bytes of internal RAM, a 6-  
source, 2-level interrupt system, an on-chip oscillator and three 16-bit timer/counters.  
The fully static design of the 80C32E reduces system power consumption by bringing  
the clock frequency down to any value, even DC, without loss of data.  
The 80C32E has 2 software-selectable modes of reduced activity for further reduction  
in power consumption. In the idle mode the CPU is frozen while the timers, the serial  
port and the interrupt system are still operating. In the power-down mode the RAM is  
saved and all other functions are inoperative.  
Rev. 4149N–AERO–04/07  
1
Block Diagram  
XTAL1  
XTAL2  
RAM  
256x8  
Parallel I/O Ports & Ext. Bus  
UART  
Port 0Port 1  
Port 3  
Port 2  
ALE  
C51  
CORE  
IB-bus  
PSEN  
CPU  
EA  
Timer 0  
Timer 1 Timer 2  
INT  
Ctrl  
RD  
WR  
Pin Configuration  
P1.0/T2  
40  
1
2
VCC  
39  
38  
P0.0/A0  
P0.1/A1  
P1.1/T2EX  
P1.2  
3
4
P1.3  
37 P0.2/A2  
P0.3/A3  
36  
P0.4/A4  
P1.4  
P1.5  
P1.6  
5
6
35  
6
5 4 3 2 1  
44 43 42 41 40  
P0.5/A5  
34  
7
8
P1.5  
P1.6  
39  
38  
7
8
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
P0.6/A6  
P0.7/A7  
33  
32  
31  
30  
P1.7  
RST  
9
P1.7  
37  
9
EA/VPP  
ALE  
P3.0/RxD 10  
RST  
10  
36  
35  
34  
33  
SB40  
P3.1/TxD  
11  
P3.0/RxD  
NIC*  
11  
12  
13  
PSEN  
12  
P3.2/INT0  
29  
28  
27  
26  
NIC*  
MQFPJ44  
P2.7/A15  
P2.6/A14  
P3.3/INT1 13  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
ALE  
14  
15  
16  
P3.4/T0  
P3.5/T1  
P3.6/WR  
14  
15  
16  
17  
32  
31  
30  
29  
PSEN  
P2.5/A13  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P2.4/A12  
P2.3/A11  
25  
24  
23  
22  
21  
17  
18  
19  
20  
P3.7/RD  
XTAL2  
P2.2/A10  
P2.1/A9  
P2.0/A8  
18 19 20 21 22 23 24 25 26 27 28  
XTAL1  
VSS  
Note:  
NIC: No Internal Connection  
2
80C32E  
4149N–AERO–04/07  
80C32E  
Pin Description  
Mnemonic  
Type Name and Function  
VSS  
I
I
Ground: 0V reference  
Power Supply: This is the power supply voltage for normal, idle and  
power-down operation  
VCC  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that  
have 1s written to them float and can be used as high impedance inputs.  
Port 0 pins must be polarized to Vcc or Vss in order to prevent any  
parasitic current consumption. Port 0 is also the multiplexed low-order  
address and data bus during access to external program and data  
memory. In this application, it uses strong internal pull-up when emitting  
1s.  
P0.0-P0.7  
I/O  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1  
pins that have 1s written to them are pulled high by the internal pull-ups  
and can be used as inputs. As inputs, Port 1 pins that are externally  
pulled low will source current because of the internal pull-ups.  
P1.0-P1.7  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2  
pins that have 1s written to them are pulled high by the internal pull-ups  
and can be used as inputs. As inputs, Port 2 pins that are externally  
pulled low will source current because of the internal pull-ups. Port 2  
emits the high-order address byte during fetches from external program  
memory and during accesses to external data memory that use 16-bit  
addresses (MOVX @DPTR).In this application, it uses strong internal  
pull-ups emitting 1s. During accesses to external data memory that use  
8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.  
P2.0-P2.7  
I/O  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3  
pins that have 1s written to them are pulled high by the internal pull-ups  
and can be used as inputs. As inputs, Port 3 pins that are externally  
pulled low will source current because of the internal pull-ups. Port 3 also  
serves the special features of the 80C51 family, as listed below.  
I
O
I
RXD (P3.0): Serial input port  
TXD (P3.1): Serial output port  
P3.0-P3.7  
INT0 (P3.2): External interrupt 0  
INT1 (P3.3): External interrupt 1  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
I
I
I
O
O
Reset: A high on this pin for two machine cycles while the oscillator is  
running, resets the device. An internal diffused resistor to VSS permits a  
power-on reset using only an external capacitor to VCC.  
RST  
I
3
4149N–AERO–04/07  
Mnemonic  
Type Name and Function  
Address Latch Enable: Output pulse for latching the low byte of the  
address during an access to external memory. In normal operation, ALE  
O (I) is emitted at a constant rate of 1/6 the oscillator frequency, and can be  
used for external timing or clocking. Note that one ALE pulse is skipped  
during each access to external data memory.  
ALE  
Program Store ENable: The read strobe to external program memory.  
When executing code from the external program memory, PSEN is  
PSEN  
EA  
O
I
activated twice each machine cycle, except that two PSEN activations  
are skipped during each access to external data memory. PSEN is not  
activated during fetches from internal program memory.  
External Access Enable: EA must be externally held low to enable the  
device to fetch code from external program memory locations.  
Crystal 1: Input to the inverting oscillator amplifier and input to the  
internal clock generator circuits.  
XTAL1  
XTAL2  
I
O
Crystal 2: Output from the inverting oscillator amplifier  
4
80C32E  
4149N–AERO–04/07  
80C32E  
Idle and Power-down Idle mode allows the interrupt, serial port and timer blocks to continue to operate while  
the clock of the CPU is gated off.  
Operation  
Power-down mode stops the oscillator.  
Table 1. PCON Register  
PCON – Power Control Register  
7
6
-
5
-
4
-
3
2
1
0
SMOD  
GF1  
GF0  
PD  
IDL  
Bit  
Bit  
Mnemonic Description  
Number  
Double Baud Rate bit  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
4
SMOD  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
General-purpose Flag  
Cleared by user for General-purpose usage.  
Set by user for General-purpose usage.  
3
2
1
0
GF1  
GF0  
PD  
General-purpose Flag  
Cleared by user for General-purpose usage.  
Set by user for General-purpose usage.  
Power-down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
Clear by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
IDL  
Reset Value = 000X 0000  
Not bit addressable  
5
4149N–AERO–04/07  
Idle Mode  
An instruction that sets PCON.0 causes that to be the last instruction executed before  
going into Idle mode. In Idle mode, the internal clock signal is gated off to the CPU, but  
not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its  
entirety: the Stack Pointer, Program Counter, Program Status Word, Accumulator, RAM  
and all other registers maintain their data during Idle. The port pins hold the logical  
states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.  
There are two ways to terminate the Idle. Activation of any enabled interrupt will cause  
PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be ser-  
viced, and following RETI the next instruction to be executed will be the one following  
the instruction that put the device into idle.  
The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred dur-  
ing normal operation or during an Idle. For example, an instruction that activates Idle  
can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt  
service routine can examine the flag bits.  
The other way of terminating the Idle mode is with a hardware reset. Since the clock  
oscillator is still running, the hardware reset needs to be held active for only two  
machine cycles (24 oscillator periods) to complete the reset.  
Power-down Mode  
To save maximum power, a power-down mode can be invoked by software.  
In power-down mode, the oscillator is stopped and the instruction that invoked power-  
down mode is the last instruction executed. The internal RAM and SFRs retain their  
value until the power-down mode is terminated. VCC can be lowered to save further  
power. Either a hardware reset or an external interrupt can cause an exit from power-  
down. To properly terminate power-down, the reset or external interrupt should not be  
executed before VCC is restored to its normal operating level and must be held active  
long enough for the oscillator to restart and stabilize.  
Only external interrupts INT0 and INT1 are useful to exit from power-down. For that,  
interrupt must be enabled and configured as level or edge sensitive interrupt input.  
Holding the pin low restarts the oscillator but bringing the pin high completes the exit as  
detailed in Figure 1. When both interrupts are enabled, the oscillator restarts as soon as  
one of the two inputs is held low and Power-down exit will be completed when the first  
input will be released. In this case the higher priority interrupt service routine is executed  
Once the interrupt is serviced, the next instruction to be executed after RETI will be the  
one following the instruction that put 80C32E into power-down mode.  
Figure 1. Power-down Exit Waveform  
INT0  
INT1  
XTAL1  
Active phase  
Power-down phase Oscillator restart phase  
Active phase  
Exit from power-down by reset redefines all the SFRs, exit from power-down by external  
interrupt does no affect the SFRs.  
6
80C32E  
4149N–AERO–04/07  
80C32E  
Exit from power-down by either reset or external interrupt does not affect the internal  
RAM content.  
Note:  
If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence  
is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and  
idle mode is not entered.  
Table 2. State of Ports During Idle and Power-down Modes  
Program  
Memory  
Mode  
ALE  
PSEN  
PORT0  
PORT1  
PORT2  
PORT3  
Idle  
External  
1
1
Floating  
Port Data  
Address  
Port Data  
Power-  
down  
External  
0
0
Floating  
Port Data  
Port Data  
Port Data  
7
4149N–AERO–04/07  
Hardware  
Description  
Refer to the C51 8-bit Microcontroller Hardware description manual for details on  
80C32E functionality.  
Electrical Characteristics  
Absolute Maximum Ratings(2)  
Notes: 1. Stresses at or above those listed under “ Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or any  
other conditions above those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions may affect device reliability.  
Ambient Temperature Under Bias. M = Military-55°C to 125°C  
Storage Temperature.................................... -65°C to + 150°C  
Voltage on VCC to VSS ..........................................-0.5V to + 7V  
Voltage on Any Pin to VSS..........................-0.5V to VCC + 0.5V  
2. This value is based on the maximum allowable  
die temperature and the thermal resistance of the  
package.  
Power Dissipation........................................................... 1 W(2)  
8
80C32E  
4149N–AERO–04/07  
80C32E  
DC Parameters  
Table 3. DC Parameters in Standard VoltageTA = -55°C to +125°C; VSS = 0V; VCC = 5V 10%; F = 0 to 30 MHz.  
Symbol  
VIL  
Parameter  
Min.  
-0.5  
Max  
0.2 VCC - 0.1  
VCC + 0.5  
VCC + 0.5  
0.45  
Unit Test Conditions  
Input Low Voltage  
V
V
V
V
V
VIH  
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
0.2 VCC + 1.4  
0.7 VCC  
VIH1  
VOL  
Output Low Voltage, ports 1, 2, 3(5)  
Output Low Voltage, port 0, ALE, PSEN(5)  
IOL = 1.6 mA(4)  
IOL = 3.2 mA(4)  
VOL1  
0.45  
2.4  
V
V
V
IOH = -60 µA  
IOH = -25 µA  
VOH  
Output High Voltage, ports 1, 2, 3  
0.75 VCC  
0.9 VCC  
I
OH = -10 µA  
IOH = -400 µA  
IOH = -150 µA  
2.4  
V
V
V
VOH1  
Output High Voltage, port 0, ALE, PSEN  
0.75 VCC  
0.9 VCC  
IOH = -40 µA  
RRST  
IIL  
RST Pull-down Resistor  
50  
200  
-75  
10  
kΩ  
µA  
µA  
µA  
Logical 0 Input Current ports 1, 2 and 3  
Input Leakage Current  
Vin = 0.45V  
ILI  
0.45 V < Vin < VCC  
Vin = 2.0V  
ITL  
Logical 1 to 0 Transition Current, ports 1, 2, 3  
-750  
Fc = 1 MHz  
= 25°C  
CIO  
IPD  
Capacitance of I/O Buffer  
Power-down Current (3)  
10  
75  
pF  
T
A
µA  
2.0V < VCC < 5.5V  
Power Supply Current (1)(2)(6)  
Freq = 1 MHz Icc Op  
Freq = 1 MHz Icc Idle  
Freq = 6 MHz Icc Op  
Freq = 6 MHz Icc Idle  
Freq >12 MHz Icc Op  
Freq >12 MHz Icc Idle  
V
CC = 5.5V  
1.8  
mA  
mA  
mA  
mA  
mA  
mA  
1
10  
ICC  
4
1.25F + 5  
0.36F + 2.7  
F in MHz  
Notes: 1. ICC under reset is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 6), VIL  
VSS + 0.5V,  
VIH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator is used.  
=
2. Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5V, VIH = VCC  
0.5V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 4).  
3. Power-down ICC is measured with all output pins disconnected; EA = VSS, PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Fig-  
-
ure 5).  
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1  
and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0  
transitions during bus operation. In the worst cases (capacitive loading 100 pF), the noise pulse on the ALE line may exceed  
0.45V with maxi VOL peak 0.6V. The use of a Schmitt Trigger is not necessary.  
5. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin: 10 mA  
Maximum IOL per 8-bit port:  
Port 0: 26 mA  
Ports 1, 2 and 3: 15 mA  
Maximum total IOL for all output pins: 71 mA  
9
4149N–AERO–04/07  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater  
than the listed test conditions.  
6. Operating ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5V,  
VIH = VCC - 0.5V; XTAL2 N.C.; EA = Port 0 = VCC; RST = VSS. The internal ROM runs the code 80 FE (label: SJMP label). ICC  
would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is  
the worst case.  
Figure 2. ICC Test Condition, Under Reset  
VCC  
ICC  
VCC  
VCC  
P0  
VCC  
RST  
EA  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
VSS  
All other pins are disconnected.  
Figure 3. Operating ICC Test Condition  
VCC  
ICC  
VCC  
P0  
VCC  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
RST  
EA  
(NC)  
CLOCK  
XTAL2  
XTAL1  
SIGNAL  
All other pins are disconnected.  
VSS  
Figure 4. ICC Test Condition, Idle Mode  
VCC  
ICC  
VCC  
Reset = Vss after a high pulse  
during at least 24 clock cycles  
VCC  
P0  
EA  
RST  
(NC)  
CLOCK  
SIGNAL  
XTAL2  
XTAL1  
VSS  
All other pins are disconnected.  
10  
80C32E  
4149N–AERO–04/07  
80C32E  
Figure 5. ICC Test Condition, Power-down Mode  
VCC  
ICC  
VCC  
VCC  
Reset = Vss after a high pulse  
P0  
during at least 24 clock cycles  
RST  
EA  
(NC)  
XTAL2  
XTAL1  
VSS  
All other pins are disconnected.  
Figure 6. Clock Signal Waveform for ICC Tests in Active and Idle Modes  
VCC-0.5V  
0.7VCC  
0.2VCC-0.1  
0.45V  
TCLCH  
TCHCL  
TCLCH = TCHCL = 5ns.  
11  
4149N–AERO–04/07  
AC Parameters  
Each timing symbol has 5 characters. The first character is always a “T” (stands for  
time). The other characters, depending on their positions, stand for the name of a signal  
or the logical status of that signal. The following is a list of all the characters and what  
they stand for.  
Example:  
TAVLL = Time for Address Valid to ALE Low.  
TLLPL = Time for ALE Low to PSEN Low.  
TA = -55°C to +125°C (Military temperature range); VSS = 0V; VCC = 5V 10%;  
Load capacitance for Port 0, ALE and PSEN = 100 pF; Load capacitance for all other  
outputs = 80 pF.  
Table 4. External Program Memory Characteristics (ns)  
30 MHz  
Symbol  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
Parameter  
Min Max  
ALE Pulse Width  
60  
15  
35  
100  
25  
80  
65  
0
Address Valid to ALE  
Address Hold After ALE  
ALE to Valid Instruction In  
ALE to PSEN  
TLLPL  
TPLPH  
TPLIV  
PSEN Pulse Width  
PSEN to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction Float After PSEN  
PSEN to Address Valid  
Address to Valid Instruction In  
PSEN Low to Address Float  
TPXIX  
TPXIZ  
TPXAV  
TAVIV  
30  
35  
130  
6
TPLAZ  
Figure 7. External Program Memory Read Cycle  
12 TCLCL  
TLHLL  
TLLIV  
TLLPL  
ALE  
PSEN  
TPLPH  
TPXAV  
TPXIZ  
TLLAX  
TAVLL  
TPLIV  
TPLAZ  
TPXIX  
INSTR IN  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
A0-A7  
INSTR IN  
TAVIV  
ADDRESS A8-A15  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15  
12  
80C32E  
4149N–AERO–04/07  
80C32E  
Table 5. External Data Memory Characteristics (ns)  
30 MHz  
min max  
180  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Parameter  
RD Pulse Width  
WR Pulse Width  
180  
RD to Valid Data In  
Data Hold After RD  
Data Float After RD  
ALE to Valid Data In  
Address to Valid Data In  
ALE to WR or RD  
135  
0
70  
235  
TAVDV  
TLLWL  
260  
90  
115  
20  
115  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
Address to WR or RD  
Data Valid to WR Transition  
Data set-up to WR High  
Data Hold After WR  
RD Low to Address Float  
RD or WR High to ALE high  
215  
20  
0
TWHLH  
20  
40  
Figure 8. External Data Memory Write Cycle  
TWHLH  
TLLDV  
ALE  
PSEN  
RD  
TLLWL  
TRLRH  
TRLDV  
TRHDZ  
TAVDV  
TLLAX  
TRHDX  
DATA IN  
PORT 0  
A0-A7  
TRLAZ  
TAVWL  
ADDRESS  
OR SFR-P2  
PORT 2  
ADDRESS A8-A15 OR SFR P2  
13  
4149N–AERO–04/07  
Figure 9. External Data Memory Read Cycle  
TWHLH  
ALE  
PSEN  
WR  
TLLWL  
TWLWH  
TQVWX  
TWHQX  
TLLAX  
A0-A7  
TQVWH  
DATA OUT  
PORT 0  
TAVWL  
ADDRESS  
OR SFR-P2  
PORT 2  
ADDRESS A8-A15 OR SFR P2  
Table 6. Serial Port Timing – Shift Register Mode (ns)  
30 MHz  
Symbol  
TXLXL  
Parameter  
Min Max  
Serial port clock cycle time  
400  
300  
50  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
Output data set-up to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
0
300  
Figure 10. Shift Register Timing Waveforms  
0
1
2
3
4
5
6
7
8
INSTRUCTION  
ALE  
TXLXL  
CLOCK  
TXHQX  
1
TQVXH  
0
2
3
4
5
6
7
OUTPUT DATA  
TXHDX  
SET TI  
VALID  
SET RI  
TXHDV  
WRITE to SBUF  
INPUT DATA  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
CLEAR RI  
14  
80C32E  
4149N–AERO–04/07  
80C32E  
Table 7. External Clock Drive Characteristics (XTAL1)  
Symbol  
TCLCL  
Parameter  
Oscillator Period  
High Time  
Low Time  
Min  
33.33  
5
Max  
Unit  
ns  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
ns  
5
ns  
5
5
ns  
Rise Time  
Fall Time  
ns  
Figure 11. External Clock Drive Waveforms  
VCC-0.5V  
0.45 V  
0.7VCC  
0.2VCC-0.1V  
TCHCL  
TCHCX  
TCLCH  
TCLCX  
TCLCL  
Figure 12. AC Testing Input/Output Waveforms  
VCC-0.5V  
0.45V  
0.2VCC+0.9  
0.2VCC-0.1  
INPUT/OUTPUT  
AC inputs during testing are driven at VCC - 0.5 for a logic “1” and 0.45V for a logic “0”.  
Timing measurement are made at VIH min for a logic “1” and VIL max for a logic “0”.  
Figure 13. Float Waveforms  
FLOAT  
VOH-0.1V  
VLOAD  
VLOAD+0.1V  
VLOAD-0.1V  
VOL+0.1V  
For timing purposes a port pin is no longer floating when a 100 mV change from load  
voltage occurs and begins to float when a 100 mV change from the loaded VOH/VOL level  
occurs. IOL/IOH  
20 mA.  
15  
4149N–AERO–04/07  
Figure 14. Clock Waveforms  
STATE1  
P1P2  
STATE2  
P1P2  
STATE3  
P1P2  
STATE4  
P1P2  
STATE4  
STATE5  
P1P2  
STATE6  
P1P2  
STATE5  
P1P2  
INTERNAL  
CLOCK  
P1P2  
XTAL2  
ALE  
THESE SIGNALS ARE NOT ACTIVATED DURING THE  
EXECUTION OF A MOVX INSTRUCTION  
EXTERNAL PROGRAM MEMORY FETCH  
PSEN  
PCL OUT  
PCL OUT  
PCL OUT  
DATA  
P0  
DATA  
SAMPLED  
FLOAT  
DATA  
SAMPLED  
FLOAT  
SAMPLED  
FLOAT  
INDICATES ADDRESS  
P2 (EXT)  
TRANSITIONS  
READ CYCLE  
RD  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P0  
P2  
DPL OR Rt OUT  
FLOAT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
WRITE CYCLE  
WR  
PCL OUT (EVEN IF  
MEMORY IS INTERNAL)  
P0  
DPL OR Rt OUT  
DATA OUT  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
P2  
PORT OPERATION  
OLD DATA  
P0 PINS SAMPLED  
NEW DATA  
P0 PINS SAMPLED  
MOV DEST P0  
P1, P2, P3 PINS SAMPLED  
RXD SAMPLED  
P1, P2, P3 PINS SAMPLED  
MOV DEST PORT (P1, P2,  
(INCLUDES INT0, INT1, TO, T1)  
RXD SAMPLED  
SERIAL PORT SHIFT CLOCK  
TXD (MODE 0)  
This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,  
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propaga-  
tion also varies from output to output and component. Typically though (TA=25°C fully loaded) RD and WR propagation  
delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC  
specifications.  
16  
80C32E  
4149N–AERO–04/07  
80C32E  
Ordering Information  
Table 8. Possible Order Entries  
Temperature  
Range  
Part Number  
Speed (MHz)  
Package  
Quality Flow  
MC-80C32E-30-E  
MJ-80C32E-30-E  
5962-0051801QQC  
5962-0051801QXC  
5962-0051801VQC  
5962-0051801VXC  
952100201  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
25°C  
25°C  
Side Brazed 40-pin (.6)  
MQFPJ 44-pin  
Engineering samples  
Engineering samples  
QML-Q  
-55°C to +125°C Side Brazed 40 pin (.6)  
-55°C to +125°C MQFPJ 44-pin  
-55°C to +125°C Side Brazed 40 pin (.6)  
-55°C to +125°C MQFPJ 44-pin  
-55°C to +125°C Side Brazed 40 pin (.6)  
-55°C to +125°C MQFPJ 44-pin  
-55°C to +125°C Die  
QML-Q  
QML-V  
QML-V  
ESCC  
952100202  
ESCC  
MM0-80C32E-30-E(1)  
MM0-80C32E-30-SV  
Engineering samples  
QML-V  
-55°C to +125°C Die  
Note:  
1. Please contact Atmel for availability.  
17  
4149N–AERO–04/07  
Package Drawings  
40-pin Side Braze (600 mils)  
18  
80C32E  
4149N–AERO–04/07  
80C32E  
44-pin Multilayer Quad Flat Pack  
19  
4149N–AERO–04/07  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
FAX 1(719) 540-1759  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Data-  
com  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
FAX 1(719) 540-1759  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
Web Site  
http://www.atmel.com  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise,to anyintellectu-  
alproperty right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF  
SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWAR-  
RANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICU-  
LARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL  
OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMA-  
TION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-  
AGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make  
changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein.  
Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended,  
authorized, or warranted for useas components in applications intended to support or sustainlife.  
©2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and Everywhere You Are® are the trademarks or regis-  
tered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4149N–AERO–04/07  
/xM  

5962-0051801QQX 相关器件

型号 制造商 描述 价格 文档
5962-0051801QXC AIMTEC Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801QXC ATMEL Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801QXX ATMEL Microcontroller, 8-Bit, 30MHz, CMOS, QFP-44 获取价格
5962-0051801V9A AIMTEC Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801V9X ATMEL Microcontroller, 8-Bit, 30MHz, CMOS, DIE 获取价格
5962-0051801VQC AIMTEC Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801VQC ATMEL Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801VXC AIMTEC Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801VXC ATMEL Rad. Tolerant 8-bit ROMless Microcontroller 获取价格
5962-0051801VXX ATMEL Microcontroller, 8-Bit, 30MHz, CMOS, QFP-44 获取价格

5962-0051801QQX 相关文章

  • MOSFET:原理、类型与应用电路揭秘
    2025-04-30
    52
  • 硅芯科技重磅发布三维堆叠芯片系统建模工具 3Sheng_Zenith
    2025-04-30
    40
  • 神经元全链可控发力,KD6610 系列车规通信芯片闪耀登场
    2025-04-30
    25
  • 聚焦 2025 IMW,下一代存储关键技术即将震撼亮相
    2025-04-30
    30
  • Hi,有什么可以帮您? 在线客服 或 微信扫码咨询