APACHE KAFKA
tutor-lalspoln

M P LY EASYLEARNI

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia _.l https://twitter.com/tutorialspoint

Apache Kafka

About the Tutorial

Apache Kafka was originated at LinkedIn and later became an open sourced Apache project in
2011, then First-class Apache project in 2012. Kafka is written in Scala and Java. Apache Kafka
is publish-subscribe based fault tolerant messaging system. It is fast, scalable and distributed
by design.

This tutorial will explore the principles of Kafka, installation, operations and then it will walk you
through with the deployment of Kafka cluster. Finally, we will conclude with real-time
applications and integration with Big Data Technologies.

Audience

This tutorial has been prepared for professionals aspiring to make a career in Big Data Analytics
using Apache Kafka messaging system. It will give you enough understanding on how to use
Kafka clusters.

Prerequisites

Before proceeding with this tutorial, you must have a good understanding of Java, Scala,
Distributed messaging system, and Linux environment.

Copyright and Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt.
Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any
contents or a part of contents of this e-book in any manner without written consent of the
publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd.
provides no guarantee regarding the accuracy, timeliness or completeness of our website or its
contents including this tutorial. If you discover any errors on our website or in this tutorial,
please notify us at contact@tutorialspoint.com

w Mtutorialspoint

EIMPLYEAEYLEARMING

Apache Kafka

Table of Contents
Yo TU R o T VLo T i
T E T =T T o= i
PrErEQUISITES .eceiiiiiiiieriiiiiiiiiiiittietiieiirree et e e se e sss s s e s s e e s ss s s e e e s se e sss s s e e e s se e s bsns s e e e s sesessssnnraeeeseessssans i
Copyright and DiSClaimercciiiiiiiiiiiiiiiiii ssssssssansnnnnnnnns i
JLIEE L1 C=e T 0 1= o i
1. KAFKA—=INTRODUCTION ..o s s e s s s s s s s e s s s s s s s s s e s e s e n e e e e n s 1
What is @ M@SSABING SYSTEM?cceeveeeeeeeeeeeeeemmmeeeeeeemmmssessnss 1
WAt iS KafKQ? ...ceeeiiiiiiiiiiineeiiiiiiiiineeteiiiissssnssessissssssssnssessssssssssssssessssssssssnsssessssssssssssnsesssssssssssnnsssssssssssssnnnnans 2
2. KAFKA —FUNDAMENTALS.o e e e e s e s e s eees 4
3. KAFKA — CLUSTER ARCHITECTUREctttttiitiiiiiiririretirerrsisreesieesieeeeeereereeeeeeeeereeeee..—.... 7
4, KAFKA = WORKFLOW.....cuitiiiiiiiiiiiic s s s e e s s e s s s s s s s s s ssssssssnsnsnsnsnsnen 9
Workflow of PUD-SUD IM@SSABING ..cevvvrrrreremenmmmmmmmeemmemmeeemmmmmeesmsemssssmssnss 9
Workflow of Queue Messaging / CONSUMET GrOUPccecccveereerreeeeeesseeeeessaneesessasessessasessssssessessassessssasessassasessass 10
[0 [0 o 1 7 2o o] (C=T=Y < =T 11
5. KAFKA — INSTALLATION STEPSottt eeeeae e e e s e e e seee st e e e s e s e seeessanneesesesesensnsnnnnnes 12
Step 1: Verifying Java INStallationeeeeeeeeeeeeeemeeeeieeseeseessssssssssssansnssnnsnnnnnnnnnns 12
Step 2: ZooKeeper Framework Installationcooiviereeeiiiiiiiiiicccccrrrrrrrerss e s s e e snesssse s s e s ennnnsssssssnnes 13
Step 3: Apache Kafka Installation...........eeseeeeeeeeesessesesssssssssssssnssnssnnsnnnnnnnnnns 15
R =T o E] oY oI o V=R T =T V=T TN 16
6. KAFKA — BASIC OPERATIONS......cittttttitittiititititittsietetsreeerete e—.————————..............—.—.—.—————————. 17
Single Node-Single Broker CoONfigurationeeeeeeeeeeeeeeeeeeeeeeeeeeeeneemeesmesesmesssesssnnnns 17
LISt OF TOPICS 1uuuiiiiiiiiiiiiiiiiiiiiisissssssssssss s s sss ssnssssssssnnsnns 18
Single Node-Multiple Brokers CoONfigurationeeeeeeeeeeeeeeeeeeeeeeneemeeemesmsmssnsnns 20

@ Mtutorialspoint

EIMPLYEAEYLEARMNING

10.

11.

Apache Kafka

Creating @ TOPIC coiiieeeeiiiiiiiiiienniiiiiiitennnsisistiitesssssssssssssesnsssssssssssssnsssssssssssssnsssssssssssssnnnsssssssssssnnnssssssssssannanssssss 21
BasiC TOPIC OPEratioNS......ccciiiiiiieeniiiiiiiiiennniiiisiiieemmssiisssiiisemmssssssssissnnssssssssssssnnnns 22
DEIEEING @ TOPIC ..uuuriieiiiiiiiiiiiiiiiississnssnssssssnsnnsnns 23
KAFKA — SIMPLE PRODUCER EXAMPLEoooiieieee et es e e s e 24
KafKaProduCer APlciiiiiiiiiiiiiiieniiieniienie e sssnessasessse s assssanessanessssesessesssansssanesssnessnsesonsasssanessanaen 24
o T Lol Y o RN 25
Configuration SEtHINGS......cciiiiiiiiiiiiiiiiiiiier e aan e s s s 25
Produc@rRECOIT APlccoueiiieiiiiieitiiceinntenne e e e s s s a s s s s s e s s s e s sa e s sa e s s a s s s s s e sane s sne s snnsssaneren 26
SimpleProducer apPliCatioNeeesseeasrerasassssssassssssssssnsnsnsssnnnnsnnnnnnnnnnnnns 27
Simple CoNSUMEr EXAMPIE........ceessessessssssesssssssssssssssssssssssnssnsssssssnnsnsnnnssnnnnnnnns 29
CoNSUMEIRECOIU APccoeeeirieirieinniieee s an e s s s a s sa s s s e s s s an e s sn e s an s s an e s anesennesasanes 30
CoNSUMEIRECOIUS APlccoueiiieiriiiiiitinte it s s e s e s s e e s s sa s s s s s s s s san e s sne s sansssanesannesennesannnes 31
Configuration SEtEINGS.....ccciiiiiiiiiiiiiiii e s e e e e e e e 31
SimpleConsumer APPIICAtIONeevveeeeeeeiieeeeeieieeeeeeeeeeeeeeeeeeessrssssessnsss 32
KAFKA — CONSUMER GROUP EXAMPLEcoiiiiiiiieiiiee et s st s e s 34
KAFKA — INTEGRATION WITH STORM ..c..niiiiiiiieieen et s st s e 37
T TE) B0 o o o RN 37
INtegration With SEOIM...... .o s e s e s e enna s e s s s s e e nnnssssssssasennnsssssssssesnnnnssssssssasnnnnns 37
50 10T T o U 39
SUDMILEING 10 TOPOIOBY ..ceeeeeeiiiiiiiiiiicceiittteeeescee et eereee s ssse e s eeennn s sesssseennsssssssssesennnsssssssseesnnnssssssssseennnnssssssnnnes 42
23T oL T o N 44
KAFKA — INTEGRATION WITH SPARK......uttiiitiiiiiiiiirinirciirc et sser e snes e 45
ABOUL SPATK c.ceeeeeeiiiieeeiieeiieeeeeteeeteeeeeeeeeessesssnnssnnnnnnnns 45
INtEZration WIth SPark ... ssssssssssnsnns 45
KAFKA — REAL-TIME APPLICATION (TWITTER)...ccueectirierieeriinienieeirenresieesieseessesseseaesesensesnsassenanes 50

iii

@ Mtutorialspoint

EIMPLYEAEYLEARMNING

12.

13.

Apache Kafka

TWiItter STreaming APleeiiiiiiieieiiiiiiiieeeeeieeitneesnsessssstsessnssssssssssssnnsssssssssssssnsssssssssssssnnsssssssssssannnnsssssssanes 50
KAFKA = TOOLS....etttttttttetererererererererererererererererereseserererererese... 55
SYSTEM TOOUS c.cceeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeessesesesssrssnsssnsssnnnnnnnnnnnnnnnnnne 55
L= 1 T0E= 1o T4 T e e) 55
KAFKA — APPLICATIONS ...ttt e e e e e e tttr e e e e e e e ee et ne e e e e eesese s snsseeeeeeesesennnnnsenaeananas 56

iv

w Mtutorialspoint

EIMPLYEAEYLEARMING

1. Kafka— Introduction

In Big Data, an enormous volume of data is used. Regarding data, we have two main
challenges. The first challenge is how to collect large volume of data and the second challenge
is to analyze the collected data. To overcome those challenges, you must need a messaging
system.

Kafka is designed for distributed high throughput systems. Kafka tends to work very well as
a replacement for a more traditional message broker. In comparison to other messaging
systems, Kafka has better throughput, built-in partitioning, replication and inherent fault-
tolerance, which makes it a good fit for large-scale message processing applications.

What is a Messaging System?

A Messaging System is responsible for transferring data from one application to another, so
the applications can focus on data, but not worry about how to share it. Distributed messaging
is based on the concept of reliable message queuing. Messages are queued asynchronously
between client applications and messaging system. Two types of messaging patterns are
available - one is point to point and the other is publish-subscribe (pub-sub) messaging
system. Most of the messaging patterns follow pub-sub.

Point to Point Messaging System

In a point-to-point system, messages are persisted in a queue. One or more consumers can
consume the messages in the queue, but a particular message can be consumed by a
maximum of one consumer only. Once a consumer reads a message in the queue, it
disappears from that queue. The typical example of this system is an Order Processing
System, where each order will be processed by one Order Processor, but Multiple Order
Processors can work as well at the same time. The following diagram depicts the structure.

' tutorialspoint

EIMPLYEAEYLEARMNINEG

Apache Kafka

Publish-Subscribe Messaging System

In the publish-subscribe system, messages are persisted in a topic. Unlike point-to-point
system, consumers can subscribe to one or more topic and consume all the messages in that
topic. In the Publish-Subscribe system, message producers are called publishers and message
consumers are called subscribers. A real-life example is Dish TV, which publishes different
channels like sports, movies, music, etc., and anyone can subscribe to their own set of
channels and get them whenever their subscribed channels are available.

. v Receiver
Sender-------- QE: -------- » Receiver
Message queue e Raceivar

What is Kafka?

Apache Kafka is a distributed publish-subscribe messaging system and a robust queue that
can handle a high volume of data and enables you to pass messages from one end-point to
another. Kafka is suitable for both offline and online message consumption. Kafka messages
are persisted on the disk and replicated within the cluster to prevent data loss. Kafka is built
on top of the ZooKeeper synchronization service. It integrates very well with Apache Storm
and Spark for real-time streaming data analysis.

Benefits

Following are a few benefits of Kafka:

e Reliability - Kafka is distributed, partitioned, replicated and fault tolerance.
e Scalability - Kafka messaging system scales easily without down time.

¢ Durability - Kafka uses “Distributed commit log” which means messages persists on
disk as fast as possible, hence it is durable.

e Performance - Kafka has high throughput for both publishing and subscribing
messages. It maintains stable performance even many TB of messages are stored.

w ' tutorialspoint

EIMPLYEAEYLEARMNINEG

Apache Kafka

Kafka is very fast and guarantees zero downtime and zero data loss.

Use Cases

Kafka can be used in many Use Cases. Some of them are listed below:

Metrics - Kafka is often used for operational monitoring data. This involves
aggregating statistics from distributed applications to produce centralized feeds of
operational data.

Log Aggregation Solution - Kafka can be used across an organization to collect logs
from multiple services and make them available in a standard format to multiple
consumers.

Stream Processing - Popular frameworks such as Storm and Spark Streaming read
data from a topic, processes it, and write processed data to a new topic where it
becomes available for users and applications. Kafka’ s strong durability is also very
useful in the context of stream processing.

Need for Kafka

Kafka is a unified platform for handling all the real-time data feeds. Kafka supports low latency
message delivery and gives guarantee for fault tolerance in the presence of machine failures.
It has the ability to handle a large nhumber of diverse consumers. Kafka is very fast, performs
2 million writes/sec. Kafka persists all data to the disk, which essentially means that all the
writes go to the page cache of the OS (RAM). This makes it very efficient to transfer data
from page cache to a network socket.

w ' tutorialspoint

EIMPLYEAEYLEARMNINEG

2. Kafka—Fundamentals

Before moving deep into the Kafka, you must aware of the main terminologies such as topics,
brokers, producers and consumers. The following diagram illustrates the main terminologies
and the table describes the diagram components in detail.

Toplcs Kafka Brokers
i Leader
P R T TEPEETES Partition 1 : : server 1 E Consumer group
lon ; : e o e :
e e -
---------------- EEEEE 2 -l
¥ 01 P " gonsumer 1
producer1 r:7 | ' Follower :
| Partition 2 5 Server 2 Reat data 5
wmn:htn A 0128 - r ________ teende] p2 ﬁ g + Consumer 2
: Partition 3 : i .» Consumer 3
. | - Server 3 I
_____________________ & 0 I = = = = = = = = = = EIalatat pa
old o NEW

__

In the above diagram, a topic is configured into three partitions. Partition 1 has two offset
factors 0 and 1. Partition 2 has four offset factors 0, 1, 2, and 3. Partition 3 has one offset
factor 0. The id of the replica is same as the id of the server that hosts it.

Assume, if the replication factor of the topic is set to 3, then Kafka will create 3 identical
replicas of each partition and place them in the cluster to make available for all its operations.
To balance a load in cluster, each broker stores one or more of those partitions. Multiple
producers and consumers can publish and retrieve messages at the same time.

' tutorialspoint

EIMPLYEAEYLEARMNINEG

Apache Kafka

Components

Topics

Partition

Description

A stream of messages belonging to a particular category is called a
topic. Data is stored in topics.

Topics are split into partitions. For each topic, Kafka keeps a
minimum of one partition. Each such partition contains messages in
an immutable ordered sequence. A partition is implemented as a set
of segment files of equal sizes.

Topics may have many partitions, so it can handle an arbitrary
amount of data.

Partition offset

Replicas of partition

Brokers

Each partitioned message has a unique sequence id called as

“offset”.

Replicas are nothing but “backups” of a partition. Replicas are never
read or write data. They are used to prevent data loss.

i) Brokers are simple system responsible for maintaining the
published data. Each broker may have zero or more partitions per
topic. Assume, if there are N partitions in a topic and N number of
brokers, each broker will have one partition.

ii) Assume if there are N partitions in a topic and more than N brokers
(n + m), the first N broker will have one partition and the next M
broker will not have any partition for that particular topic.

iii) Assume if there are N partitions in a topic and less than N brokers
(n-m), each broker will have one or more partition sharing among
them. This scenario is not recommended due to unequal load
distribution among the broker.

Kafka Cluster

Kafka’s having more than one broker are called as Kafka cluster. A
Kafka cluster can be expanded without downtime. These clusters are
used to manage the persistence and replication of message data.

w ' tutorialspoint

EIMPLYEAEYLEARMNINEG

Apache Kafka

Producers are the publisher of messages to one or more Kafka topics.
Producers send data to Kafka brokers. Every time a producer
publishes a message to a broker, the broker simply appends the
message to the last segment file. Actually, the message will be
appended to a partition. Producer can also send messages to a
partition of their choice.

Producers

Consumers read data from brokers. Consumers subscribes to one or
Consumers more topics and consume published messages by pulling data from
the brokers.

"Leader" is the node responsible for all reads and writes for the given

Leader partition. Every partition has one server acting as a leader.
Node which follows leader instructions are called as follower. If the
Follower leader fails, one of the follower will automatically become the new

leader. A follower acts as normal consumer, pulls messages and
updates its own data store.

10

w ' tutorialspoint

EIMPLYEAEYLEARMNINEG

3. Kafka—Cluster Architecture

Take a look at the following illustration. It shows the cluster diagram of Kafka.

broker id

Kafka ecosystem

| Kafka cluster |

i R ; Consumer Group

oo Lo

' 1 1 '

G L
Producer 1 i 1| _Broker1 |i | consumer1

' 1 '

push msg | E ! | pull msg

] ' ' :

Producer 2 . | _Broker2 |[{ < consumer2
] s -
. ' 1 1) .
\‘ : : : : "'
Producer 3 i 1| _Broker3 [i o consumer3
N ! 1 ' P
“\ E :-—--- —-——-—: E "'
- P
get kafka :~ .-~ update offset

1]

z s

.

11

' tutorialspoint

EIMPLYEAEYLEARMNINEG

Apache Kafka

End of ebook preview
If you liked what you saw...
Buy it from our store @ https://store.tutorialspoint.com

12

@' tutorialspoint

EIMPLYEAEYLEARMNINEG

