Jasmine

tuto t

= iVl | i -

3 | - ol 1 IN o

r

5

A

P

J

l =

{

U

www.tutorialspoint.com

n https://www.facebook.com/tutorialspointindia j https://twitter.com/tutorialspoint

Jasmine

About the Tutorial

Jasmine is one of the most popular tools for a JavaScript developer to deal with hectic
testing process. It is an open source technology. It is a simple API to test different
components of JavaScript.

This tutorial discusses the basic functionalities of Jasmine.js along with relevant examples
for easy understanding.

Audience

This tutorial has been prepared for beginners to help them understand the basic concepts
of Jasmine testing process.

Prerequisites

This is a very basic tutorial and it should be useful to any reader with a reasonable
knowledge of basic computer programming.

Copyright & Disclaimer

Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

MPLYEAEYLEARMINEG

I@j Mtutorialspoint

Jasmine

Table of Contents
ADOUL The TULOFIAl ...ceeeeeiiiiiiiiieeiiicintttereereeeereeereaeereeeseeessassssseessesssnnsssssssssessnnsssssssssesssnnssssssssssnsnnnnssnnns i
AUGIENCE «.eeeeeriiiiiieeeeeiieeeeteeeeeeeieeeteteesassssssesseessnnsssssssssesssnsssssssssessssnssssssssesssnnsssssssssesssnnnsssssssssnnnnnnssnnns i
=T =T [T =N i
CopYright & DiSCIAIMETuuiiiiiiiiiiiiiiiiiiiiiiiiiissns i
TaDIE Of CONEENLS ..ccuuiiieeeiiiiieiirireiirteeeiereeeeiereeeeieresesseresnsseresssseresnsseresnssssessssesessssesensssesesnssesensssesannssesenns ii
1. JASMINE = OVERVIEW ... ittt et st e e s e st e s e st e s e st s s e neaa e senanaas 1
WhY USE JASIMINE?cciiiicciiccccciisssssssiesissssssessss ssnsssssssssnnsnnnnnns 1
HOW 10 USE JaASMINE? ... iieeeiiiieenierteenerreensertenssereenssessenssesssnssesssnssessenssesssnssssssnssssssnssssssnssssssnnsssssnsssssannnes 1
2. JASMINE = ENVIRONMENT SETUP... ottt ssvs e e san e s e 2
3. JASMINE = WRITING TEST & EXECUTION ...uuuiiiiiiiiiiiiee ettt 5
4, JASMINE — BDD ARCHITECTUREcuuuiiiitei ittt eertes e ee st e ente s e e e sbe s e sesan e eens 10
5. JASMINE — BUILDING BLOCKS OF TEST....ceuuiiiiiieiiiiiiee et ceerteseeeste s e eeste s e sesvnesesenanenens 12
SUILE BIOCK...cceeeneeiiieiiieieeneeeereeeeteneeeeereeeenanssseeeseeeesnnsssessssenssnnssssssssessssnssssssssssssnnnsssssssssssnnnnsssssssssnnnnnns 12
NESTEA SUITES BIOCK ... ceeeeeeeeeiiieeeiereeennieeeeteeeeeenseeeeeeeeesassssesseessnnssssssessssssnnssssssssssssnnssssssssssssnnnssssssssanns 13
[0 LT] ¢ T3 2] (o o (RS 15
LI =1 [Yol RS 15
EXPECE BIOCK ..eeeeeeeiiiiiiiieiiecceiinrieeneseeesseeeenanssssseseseennnssssssssssennnssssssssssesnnnsssssssssesnnnsssssssssssnnnnsssssnsanes 16
6. JASMINE = MATCHERS ... et se st s s e sb s s e saaas s sesenans 17
L1 o T Y, F=]] 4 L= RS 17
(011 do] 1 TV = 1 £ 4 T=1 PP 17

MPLYEAEYLEARMINEG

@j Mtutorialspoint

Jasmine

JASMINE = SKIP BLOCKccetttitiiieeeieeeeeeriiiiie e e e e eeeertriieeeeeeesesessnnneeseeessasssnnnnsessessensssnnnnnnns 19
SKIPPING SPEC ceuvriiicicciccisrrrsrsssssssssssssssssssss s ssnssnnnnnne 19
SKIPPING SUILE ...ueieicccicicciccicssrsrssssssssssssssssssss s s ssnsssnnnnnns 20
JASMINE = EQUALITY CHECKuoeiiieeeieeiicieeee ettt eeeeeeeesee e e s e e e sesensnnesesesesesensnnnnns 22
TOEQUAN() ceerneeeeeieiiiicrineeeeieiisicsssnnneeseesssessssnnsesssssssssssnnsesssssssssssnnneesesssssssssnnsesssssssssssnnsesssssssssssnnnsensssans 22
NOL.LOEQUAI() cueveenereeriiiiiiiinneeeieiiiiesssnneeesssssesssnnnnessesssssssnnnnesssssssssssnnnesssssssssssnnnesssssssssssnnsassssssssssnnnnnans 23
TOBE()eeeeeeeerrrnnnreeieieieessnneeenessssssssnneesssssssssssnnsesssssssssssnnsssssssssssssnnseesssssssssssnnsesssssssssssnnsesssssssssssnnnsenssssns 23
L To 8 o] -1 | N 25
JASMINE = BOOLEAN CHECKuuiiiiiieieiiiiiiee e eeeeetrieee e e e e eeeevttee e e e e e e seasnseeeeseeeesesnsnnnnns 26
o) 1] 40140) Y/ | PRt 26
100 =1 1LV I OTRPRPRt 27
JASMINE = SEQUENTIAL CHECK......ciieieeiticeee e eeeeeeeetecee e e eeetcee s s e eeseeesnee e e s esesesensnnnans 29
TOCONTAIN()eeeeeeereeereriiiiiiireireeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeeseessssessessssssesssssessessssesessesssssessessssssssssssanns 29
TOBECIOSETO() ceeeeeeerrrrrrrrrrrrerreereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeeseesessessssssesssssesssssssssessssssssessssessessssssannes 30
TOMAALCR() eeeeiiiiiiiiiiiiiiiiiiieerere e e e e e e e e e e e e e e s e eeeeeeeeeeeeeeeeeseesssssesseeseseeeseseseseeseeeeesensenennnane 31
JASMINE = NULL CHECKcevvitiiieeeeeeeeetiiiiie e e eeeeevtirre s e e eeeseeesssassesesesseassnnnnsesesessssssnnnnnnns 32
o) 1Yo [{4 T=Te [PO ROt 32
o) 11V LT L= T Y=o [Ut 32
100 =1 1T [ROt 34
JASMINE = INEQUALITY CHECK ... e eeeeeiiiiiieeeeeeeeeevtiee s e e e eeeevtaee s e sesesessnsnssesesesesensnnnnns 35
TOBEGIrEAtEITRAN() . cieieiiiiiiiiiiiiiiiiiiiieeetertereeteeeee e e e ee e e e e e e e eeeeeeeeeeeeeeeeesseesessessesssessssssssesseseessssensnnnens 35
BT 1T =TTy I 4T T T Ot 36
JASMINE = NOT A NUMBER CHECKuuuuuuuruuuunnnnnnnrnnnrunnnnnnrarnnnnnnnranerssansnsnansnanananananananans 37

iii

EIMPLYEAESEYLEARMINEG

@j Mtutorialspoint

Jasmine

JASMINE = EXCEPTION CHECK......cciiieeeeitiiieieeeeeeeetnieeee e e e e eeseatanseeeeeeeesessnsnnseseessensnsnnnnns 38
T 1T LI AN | TRt 39
JASMINE = BEFOREEACH() «vvvveeieirriiiieitiie ettt eeave e s eeaarae e e enraeeesnnnnee s 41
JASMINE — AFTEREACH() ... ettt ettt e e e bae s e e e e s e s s aarse s e e s e s e naas 42
JASMINE = SPUES ..ottt e e e e e e se et st e e s e s e sreessaa e seseseeesnnnnnnnns 43
SPYON() cerreereeiiiiiiirsrnneereiieeiesssnnneesesssssssssnssesesssssssssnssesssssssssssnssesssssssssssnnsesssssssssssnnnesssssssssssnnnsessssssssnnn 43
CrEALESPY() . euerrrrrrrrrrrrssnsssssnnns 44

iv

MPLYEAEYLEARMNINLEG

@j Mtutorialspoint

1. Jasmine — Overview

Jasmine is an open-source JavaScript framework, capable of testing any kind of JavaScript
application. Jasmine follows Behavior Driven Development (BDD) procedure to ensure that
each line of JavaScript statement is properly unit tested. By following BDD procedure, Jasmine
provides a small syntax to test the smallest unit of the entire application instead of testing it
as a whole.

Why Use Jasmine?

Following are the advantages of using Jasmine over other available JavaScript testing
frameworks:

¢ Jasmine does not depend on any other JavaScript framework.
e Jasmine does not require any DOM.

e All the syntax used in Jasmine framework is clean and obvious.
e Jasmine is heavily influenced by Rspec,]S Spec, and Jspec.

e Jasmine is an open-source framework and easily available in different versions like
stand-alone, ruby gem, Node.js, etc.

How to Use Jasmine?

Jasmine is very easy to implement in any kind of development methodology. All you need to
download is the standalone library files from the official website_http://jasmine.github.io/ and
implement the same in your application.

The detailed environment setup will be described in the next chapter named “Environment
setup”. Once you successfully download and unzip the zip file, then you will find the following
sub-folders inside that zip file.

Copyr <!DOE

<htal
a cog <ne
lib spec src MIT.LICENSE SpecRunner.html

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

http://jasmine.github.io/
http://jasmine.github.io/

2. Jasmine — Environment Setup

In this chapter, we will discuss the step-by-step procedure of how to set up a Jasmine-based
BDD testing application.

Step 1: Go to the official website of jasmine_http://jasmine.github.io/

’ @ Jasmine: Behavior-L x

=
L
1

4 € [jasmine.github.io ;
—— -_— =

N

Jasmine

Behavior-Driven JavaScript
Documentation:
13
2.0
21

Do
[\

le2]
(= Ll e
B

Jasmine on GitHub

Step 2: Click on any of the version link. It is preferable to use the most recent version that
is “Edge”. You will be redirected to the homepage of the selected version.

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

http://jasmine.github.io/
http://jasmine.github.io/

Jasmine

@ [jasmine.github.io | @

Jasmine Powered by P_k v.i"rA LLABS

Jump To: ajax.js bootjs custom bootjs custom equalityjs custom matcher.js custom reporterjs focused specsjs introductionjs node.js
python eggpy ruby gemrb upgradingjs

introduction.js

Jasmine is a behavior-driven development framework for
testing JavaScript code. It does not depend on any other
JavaScript frameworks. It does not require a DOM. And it has a
clean, obvious syntax so that you can easily write tests. This
guide is running against Jasmine version 2.4.1.

Standalone Distribution

The releases page has links to download the standalone
distribution, which contains everything you need to start
running Jasmine. After downloading a particular version and
unzipping, opening SpecRunner.html will run the included specs.
You'll note that both the source files and their respective specs
are linked in the <head> of the SpecRunner.html . To start using
Jasmine, replace the source /spec files with your own.

Suites: descrive Your Tests

A test suite begins with a call to the global Jasmine function

Step 3: Go to the Download section of the homepage and click on the standalone release
page.

' introduction.js x
[€ [jasmine.github.io,

Downloads

» The Standalone Release (available on the releases page) is
for simple, browser page, or console projects

« The Jasmine Ruby Gem is for Rails, Ruby, or Ruby-friendly
development

» Other Environments are supported as well

Support

» Mailing list at Google Groups - a great first stop to ask
questions, propose features, or discuss pull requests

 Report Issues at Github

« The Backlog lives at Pivotal Tracker

» Follow @JasmineBDD on Twitter

Thanks

Running documentation inspired by @mjackson and the 2012
Fluent Summit.

EIMPLYEAEYLEARMNINEG

) ' tutorialspoint

Jasmine

Step 4: Once you are redirected to github release page, download the Zip file from there.

[EinEreauIORIS Y © Releases jasmine/)- x

@ GitHub, Inc. [US] | https://github.com/jasm

O Personal Opensource Business Explore Pricing Blog Support | This repository Sign in

jasmine / jasmine @ Watch 478 Star 10891 ¥Fork 1710

<> Code Issues 67 Pull requests 17 Wiki Pulse Graphs

2.4.1

S vaal 8 slackersoft released this on Dec 4, 2015 - 51 commits to master since this release
-0- a95c2ct

This release revert a breaking change with the ordering of artereacn calls.

Please see the release notes

Downloads
[T jasmine-standalone-2.4.1.zip 457 KB
[©) source code (zip)

[source code (tar.gz)

Step 5: Unzip the downloaded jasmine-standalone-2.4.1 folder. You will see the following
folder structure.

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

jasmine-standalone-2.4.1.zip

E._ ® open - fi§ ~AddFiles [Extract

Back @ Location: | [!
Name + Sjze Type mModified
|l lib 140.8 kB Folder
|l sPec 1.8kB Folder
5rC 594 bytes Folder
MIT.LICENSE 1.1 kB unknown 03 December 2015,...
SpecRunner.html 703 bytes HTML docu... 03 December 2015,...

5 objects (145.0 kB)

Step 6: Now Create a web application project in your favorite IDE and add this downloaded
library files into the application. Here, we have used netbeans IDE. Following is the Directory

structure of our application after adding Jasmine framework.

Projects x| Services | Files =

» @ Site Root
v & Unit Tests
v @ jasmine-standalone-2.4.1
» @ lib
» @ spec
» @ src
6] SpecRunner.html

) ' tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

Our environment setup is done. Now our application is ready to be tested by Jasmine
framework.

10

w tutorialspoint

EIMPLYEAEYLEARMNINEG

3. Jasmine — Writing Test & Execution

In this chapter, we will create a hello world app which will test our “helloworld.js” file.
Before developing the hello world app, go back to the previous chapter and make sure that
your environment is ready to be tested using Jasmine.

Step 1: Create a Web application in your IDE

Here we are using NetBeans 8.1 to develop our hello world app in Jasmine. In NetBeans, go
to File -> New Project ->HtmI5/]S application and create a project. After creating the project,
the project directory should look like the following screenshot. We named our project as
Jasmine_Demo.

Projects x| Services | Files [=]
v @ Site Root
[@] index.html
T Unit Tests

Step 2: Include the Jasmine lib file into the application

After creating the demo project all you need to do is include the unzip folder of Jasmine library
in the Unit Tests folder of the created application. After adding all the library files to our
application folder, the structure of our project will look like as shown in the following
screenshot.

11

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

Projects x| Services | Files =]
v @ Jasmine_Demo
v 3 SiteRoot
[@ index.html
v & Unit Tests
¥ d jasmine-standalone-2.4.1

* 3 lib
¥ & jasmine-2.4.1
[& boot.js

[# console.js
[& jasmine-htmljs
Ty jasmine.css
[# jasmine.js
[£ jasmine_favicon.png
v & spec
& PlayerSpecjs
& SpecHelperjs
v A sre
= Player.s
l# Song.js
[MIT.LICENSE
[@ SpecRunner.html

Files given under spec and src folders are demo files provided by the Jasmine team. Delete
these files as we are going to create our own test file and test case. While deleting those
JavaScript file, we need to delete the reference of those files inside our output html file that
is SpecRunner.html.

Following is the screenshot of SpecRunner.html file where the reference of different JavaScript
files inside spec and src will be deleted.

12

w tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

i

2
3
4
=
6
7
=1

= <html=>
5 <head=

<meta charset=
<title=Jasmine

<link rel=
<link rel=

Source History I

Spec Runner v2.4.1l</title>

<script src="11

<script src
<script src

type="image/png" href="1il
href="1 ine 4

Jjsteefscript>
t =</script=
=</script=

\

<script src="src/Player.js"=</script>
<script src="src/Song.js"=</script=
<script src="spec/SpecHelper.js"><fscript>
<script src="spe r s"=</script>

21

22 </head=

23

24 B <body>

25 | </body>

26 L </html=>

27

(M

Step 3: Create a JavaScript file

In this step, we will create a JavaScript file named helloworld.js under src folder. This is the
file which we will test through Jasmine. After creating a JavaScript file append the following

set of code inside the file.

/ *

* This is the JavaScript file that need to be tested through jasmine

* Below is the helloworld function that will return 'Hello World'

*

*/

var helloworld = function(){
return 'Hello World';

}s

Step 4: Create a test case

In this step, we will create another JavaScript file which will contain the test case for the
above-mentioned JavaScript file. Go ahead and create a JavaScript file under “Spec” folder
and name it as “"HelloWorldsSpec.js”. Add the following line of code into this js file.

/ *

* This is the file which will call our java script file that need to be tested. *

Each describe block is equivalent to one test case

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

13

Jasmine

*
*/
describe("Hello World", function(){
it("should Return Hello world",function(){
expect(helloworld()).toEqual('Hello World');
1)
})s

Step 5: Add reference to the output file

We successfully created our own file to be tested and the corresponding test case. We kept it
under two different folders. In this step, we will modify “SpecRunner.html” to include the

reference of these two newly created file.

<!DOCTYPE html>

<html>
<head>

<meta charset="utf-8">

<title>Jasmine Spec Runner v2.4.1</title>

<link rel="shortcut icon" type="image/png" href="1ib/jasmine-
2.4.1/jasmine_favicon.png">
<link rel="stylesheet" href="1lib/jasmine-2.4.1/jasmine.css">

<script src="lib/jasmine-2.4.1/jasmine.js"></script>

<script src="1lib/jasmine-2.4.1/jasmine-html.js"></script>
<script src="lib/jasmine-2.4.1/boot.js"></script>

<!--Lines to be deleted

<script src="src/Player.js"></script>

<script src="src/Song.js"></script>

<script src="spec/SpecHelper.js"></script>

<script src="spec/PlayerSpec.js"></script>-->

MPLYEAEYLEARMNINLEG

@j Mtutorialspoint

14

Jasmine

<!--adding the reference of our newly created file --->
<script src="src/helloworld.js"></script>

<script src="spec/HelloWorldsSpec.js"></script>
</head>

<body>

</body>

</html>

Step 6: Execute by running SpecRunner.htmi

This is the final step of our application development. Run SpecRunner.html in any of your
favorite browser. The following screenshot will appear as a result. The green screen indicates
success, whereas red indicates failure in test case.

1 spec, @ failures finished in ©.862s

Hello World
should Return Hello world

Step 7: Understand the failure case

Till now we have seen the success test case of the hello world application. Now let us see
what if something goes wrong and the test fails. To implement a failure case we need to write
a failure test case. To do the same, we are going to modify the helloworld.js file using the
following code.

var helloworld = function (){

return 5

}s
// we are not returning any string whereas in the spec file we are expecting a //
string as “Hello World”

The above code is definitely going to fail because our spec file is not getting the expected
string as an output of the helloworld(). The following screenshot of the specRunner.html
file depicts that there is an error with its red indicator.

15

w tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

@ Jasmine 241

1 spec, 1 failure finished in B.819s
Spec List | Failures
1d should Return Hello world

Expected "' to egual 'Hello World".
Error: Expected '’ to equal ‘Hello World'.

at stack (file:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/jasmine.js:1577:17)

at buildExpectationResult (file:///home/soumak/NetBeansProjects/Jasmine_test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/jasmine.js:1547:14)
:638:18)
at Spec.addExpectationResult (file:///home/soumak/NetBeansProjects/Jasnine test/test/jasmine-standalene-2.4.1/1ib/jasmine-2.4.1/jasnine.js:330:34)
at Expectation.addExpectationResult (file:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/jasmine.js:588:21)
at Expectation.toEqual (file:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/jasmine.js:1501:12)

at Spec.expectationResultFactory (file:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/asmine.j

at Object.<anonymous> (file:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalene-2.4.1/spec/HelloWorldsSpec. js:10:30)

at attemptSync (file:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalone-2.4.1/lib/jasmine-2.4.1/jasmine.j5:1886:24)

at QueueRunner.run (file:///home/soumak/NetBeansProjects/Jasmine_test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/jasmine.js:1874:9)

at QueueRunner.execute (File:///home/soumak/NetBeansProjects/Jasmine test/test/jasmine-standalone-2.4.1/1ib/jasmine-2.4.1/jasnine. js:1859:18)

16

utorialspoint

EIMPLYEAEYLEARMNINEG

4. Jasmine — BDD Architecture

Jasmine follows the Behavioral Driven Development (BDD) framework. Before learning the
working principle of Jasmine, let us know what is the BDD framework.

The following flowchart depicts the different phases of BDD framework.

Stant

l

Write a
failing
test

l

Write
code to
make it

pass

Refactor

Cant think l
of any
more tests Stop

Step 1: Start

In this phase, we will make our environment ready for Jasmine application.

Step 2: Write a failing test

In this step, we will write our first ever test case. It is obvious that this test is going to fail
because there is no such file or function to be tested.

17

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

Step 3: Write a code to make it pass

In this phase, we will prepare our JavaScript file or function that needs to be tested. This
phase is crucial as we need to make sure that all the test cases we had prepared in the early
stage will be successful.

Step 4: Refactor

Refactor is a very important phase of BDD model where we need to prepare as many test
cases as we can for that particular application or function.

Step 5: Stop

If everything is going well then your application must be ready and up. So we can consider
this step as an end of our BDD application.

Example

We have now gathered some knowledge about the working principle of BDD framework. Let
us see how Jasmine follows this BDD framework in the line of JavaScript testing.

As the screenshot depicts we need to test Abc.js using Jasmine framework.
SpecRunner.html is the output file that will take Spec.js(Test case file), Abc.js(file to
be tested), LIB as an input and run all the test cases present in the spec file and render the
result into the browser.

Lib: These are the inbuilt JavaScript files that will be helpful to test different functions and
other JavaScript files used in our project.

Spec.js(Test case file): This is the JavaScript file that contains all the test cases which is
required to test any JavaScript function or file. In the BDD methodology, we are going to write
the test first, hence this is the file that needs to be updated first. Definitely this is going to be

18

@ tutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

fail as there is no such file or function present in our project that can be tested. This file can
be refactored unlimited times until all the functionalities are tested.

Abc.js(File to be tested): This is the file that contains your functionalities which will be unit
tested using Spec.js and Lib file.

SpecRunner.html: SpecRunner.html is a normal html file which will render the output of the
unit test with the help of embedded JavaScript codes in it.

19

@j Mtutorialspoint

EIMPLYEAEYLEARMNINEG

Jasmine

End of ebook preview
If you liked what you saw...

Buy it from our store @ https://store.tutorialspoint.com

20

w tutorialspoint

EIMPLYEAEYLEARMNINEG

