
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Program for Mobius Function in C++
Given a number n; the task is to find the Mobius function of the number n.
What is Mobius Function?
A Mobius function is number theory function which is defined by
$$\mu(n)\equiv\begin{cases}0\1\(-1)^{k}\end{cases}$$
n= 0 If n has one or more than one repeated factors
n= 1 If n=1
n= (-1)k If n is product of k distinct prime numbers
Example
Input: N = 17 Output: -1 Explanation: Prime factors: 17, k = 1, (-1)^k ?(-1)^1 = -1 Input: N = 6 Output: 1 Explanation: prime factors: 2 and 3, k = 2 (-1)^k ?(-1)^2 = 1 Input: N = 25 Output: 0 Explanation: Prime factor is 5 which occur twice so the answer is 0
Approach we will be using to solve the given problem −
- Take an input N.
- Iterate i from 1 to less than N check the divisible number of N and check if it is a prime or not.
- If the both conditions satisfy we will check if the square of the number also divides N then the return 0.
- Else we increment the count of prime factors, if the count number is even then return 1 else if it’s odd return -1.
- Print the result.
Algorithm
Start Step 1→ In function bool isPrime(int n) Declare i If n < 2 then, Return false Loop For i = 2 and i * i <= n and i++ If n % i == 0 Return false End If Return true Step 2→ In function int mobius(int N) Declare i and p = 0 If N == 1 then, Return 1 End if Loop For i = 1 and i <= N and i++ If N % i == 0 && isPrime(i) If (N % (i * i) == 0) Return 0 Else Increment p by 1 End if End if Return (p % 2 != 0)? -1 : 1 Step 3→ In function int main() Declare and set N = 17 Print the results form mobius(N) Stop
Example
#include<iostream> using namespace std; // Function to check if n is prime or not bool isPrime(int n) { int i; if (n < 2) return false; for ( i = 2; i * i <= n; i++) if (n % i == 0) return false; return true; } int mobius(int N) { int i; int p = 0; //if n is 1 if (N == 1) return 1; // For a prime factor i check if i^2 is also // a factor. for ( i = 1; i <= N; i++) { if (N % i == 0 && isPrime(i)) { // Check if N is divisible by i^2 if (N % (i * i) == 0) return 0; else // i occurs only once, increase p p++; } } // All prime factors are contained only once // Return 1 if p is even else -1 return (p % 2 != 0)? -1 : 1; } // Driver code int main() { int N = 17; cout << mobius(N) << endl; }
Output
N = -1
Advertisements