
- Python - Home
- Python - Overview
- Python - History
- Python - Features
- Python vs C++
- Python - Hello World Program
- Python - Application Areas
- Python - Interpreter
- Python - Environment Setup
- Python - Virtual Environment
- Python - Basic Syntax
- Python - Variables
- Python - Data Types
- Python - Type Casting
- Python - Unicode System
- Python - Literals
- Python - Operators
- Python - Arithmetic Operators
- Python - Comparison Operators
- Python - Assignment Operators
- Python - Logical Operators
- Python - Bitwise Operators
- Python - Membership Operators
- Python - Identity Operators
- Python - Operator Precedence
- Python - Comments
- Python - User Input
- Python - Numbers
- Python - Booleans
- Python - Control Flow
- Python - Decision Making
- Python - If Statement
- Python - If else
- Python - Nested If
- Python - Match-Case Statement
- Python - Loops
- Python - for Loops
- Python - for-else Loops
- Python - While Loops
- Python - break Statement
- Python - continue Statement
- Python - pass Statement
- Python - Nested Loops
- Python Functions & Modules
- Python - Functions
- Python - Default Arguments
- Python - Keyword Arguments
- Python - Keyword-Only Arguments
- Python - Positional Arguments
- Python - Positional-Only Arguments
- Python - Arbitrary Arguments
- Python - Variables Scope
- Python - Function Annotations
- Python - Modules
- Python - Built in Functions
- Python Strings
- Python - Strings
- Python - Slicing Strings
- Python - Modify Strings
- Python - String Concatenation
- Python - String Formatting
- Python - Escape Characters
- Python - String Methods
- Python - String Exercises
- Python Lists
- Python - Lists
- Python - Access List Items
- Python - Change List Items
- Python - Add List Items
- Python - Remove List Items
- Python - Loop Lists
- Python - List Comprehension
- Python - Sort Lists
- Python - Copy Lists
- Python - Join Lists
- Python - List Methods
- Python - List Exercises
- Python Tuples
- Python - Tuples
- Python - Access Tuple Items
- Python - Update Tuples
- Python - Unpack Tuples
- Python - Loop Tuples
- Python - Join Tuples
- Python - Tuple Methods
- Python - Tuple Exercises
- Python Sets
- Python - Sets
- Python - Access Set Items
- Python - Add Set Items
- Python - Remove Set Items
- Python - Loop Sets
- Python - Join Sets
- Python - Copy Sets
- Python - Set Operators
- Python - Set Methods
- Python - Set Exercises
- Python Dictionaries
- Python - Dictionaries
- Python - Access Dictionary Items
- Python - Change Dictionary Items
- Python - Add Dictionary Items
- Python - Remove Dictionary Items
- Python - Dictionary View Objects
- Python - Loop Dictionaries
- Python - Copy Dictionaries
- Python - Nested Dictionaries
- Python - Dictionary Methods
- Python - Dictionary Exercises
- Python Arrays
- Python - Arrays
- Python - Access Array Items
- Python - Add Array Items
- Python - Remove Array Items
- Python - Loop Arrays
- Python - Copy Arrays
- Python - Reverse Arrays
- Python - Sort Arrays
- Python - Join Arrays
- Python - Array Methods
- Python - Array Exercises
- Python File Handling
- Python - File Handling
- Python - Write to File
- Python - Read Files
- Python - Renaming and Deleting Files
- Python - Directories
- Python - File Methods
- Python - OS File/Directory Methods
- Python - OS Path Methods
- Object Oriented Programming
- Python - OOPs Concepts
- Python - Classes & Objects
- Python - Class Attributes
- Python - Class Methods
- Python - Static Methods
- Python - Constructors
- Python - Access Modifiers
- Python - Inheritance
- Python - Polymorphism
- Python - Method Overriding
- Python - Method Overloading
- Python - Dynamic Binding
- Python - Dynamic Typing
- Python - Abstraction
- Python - Encapsulation
- Python - Interfaces
- Python - Packages
- Python - Inner Classes
- Python - Anonymous Class and Objects
- Python - Singleton Class
- Python - Wrapper Classes
- Python - Enums
- Python - Reflection
- Python Errors & Exceptions
- Python - Syntax Errors
- Python - Exceptions
- Python - try-except Block
- Python - try-finally Block
- Python - Raising Exceptions
- Python - Exception Chaining
- Python - Nested try Block
- Python - User-defined Exception
- Python - Logging
- Python - Assertions
- Python - Built-in Exceptions
- Python Multithreading
- Python - Multithreading
- Python - Thread Life Cycle
- Python - Creating a Thread
- Python - Starting a Thread
- Python - Joining Threads
- Python - Naming Thread
- Python - Thread Scheduling
- Python - Thread Pools
- Python - Main Thread
- Python - Thread Priority
- Python - Daemon Threads
- Python - Synchronizing Threads
- Python Synchronization
- Python - Inter-thread Communication
- Python - Thread Deadlock
- Python - Interrupting a Thread
- Python Networking
- Python - Networking
- Python - Socket Programming
- Python - URL Processing
- Python - Generics
- Python Libraries
- NumPy Tutorial
- Pandas Tutorial
- SciPy Tutorial
- Matplotlib Tutorial
- Django Tutorial
- OpenCV Tutorial
- Python Miscellenous
- Python - Date & Time
- Python - Maths
- Python - Iterators
- Python - Generators
- Python - Closures
- Python - Decorators
- Python - Recursion
- Python - Reg Expressions
- Python - PIP
- Python - Database Access
- Python - Weak References
- Python - Serialization
- Python - Templating
- Python - Output Formatting
- Python - Performance Measurement
- Python - Data Compression
- Python - CGI Programming
- Python - XML Processing
- Python - GUI Programming
- Python - Command-Line Arguments
- Python - Docstrings
- Python - JSON
- Python - Sending Email
- Python - Further Extensions
- Python - Tools/Utilities
- Python - GUIs
- Python Advanced Concepts
- Python - Abstract Base Classes
- Python - Custom Exceptions
- Python - Higher Order Functions
- Python - Object Internals
- Python - Memory Management
- Python - Metaclasses
- Python - Metaprogramming with Metaclasses
- Python - Mocking and Stubbing
- Python - Monkey Patching
- Python - Signal Handling
- Python - Type Hints
- Python - Automation Tutorial
- Python - Humanize Package
- Python - Context Managers
- Python - Coroutines
- Python - Descriptors
- Python - Diagnosing and Fixing Memory Leaks
- Python - Immutable Data Structures
- Python Useful Resources
- Python - Questions & Answers
- Python - Interview Questions & Answers
- Python - Online Quiz
- Python - Quick Guide
- Python - Reference
- Python - Cheatsheet
- Python - Projects
- Python - Useful Resources
- Python - Discussion
- Python Compiler
- NumPy Compiler
- Matplotlib Compiler
- SciPy Compiler
Python random.vonmisesvariate() Method
The random.vonmisesvariate() method in Python generates random numbers that follows the von Mises distribution, also known as the circular normal distribution or Tikhonov distribution. This distribution is used in probability theory and directional statistics to model data on a circular domain, such as angles. Parameters such as mu and kappa define the distribution's characteristics, where mu is the mean angle expressed in radians, which should be between 0 and 2, and kappa, the concentration parameter, must be greater than or equal to zero.
Note − This function is not accessible directly, so we need to import the random module and then we need to call this function using random static object.
Syntax
Following is the syntax of vonmisesvariate() method −
random.vonmisesvariate(mu, kappa)
Parameters
The Python random.vonmisesvariate() method takes two parameters −
mu: This is the mean angle, expressed in radians, which should be between 0 and 2.
1sigma: This is the concentration parameter, which must be greater than or equal to zero. It measures how concentrated the distribution is around the mean angle. When kappa is zero, the distribution becomes uniform over the range 0 to 2.
Return Value
This random.vonmisesvariate() method returns a random number that follows the von Mises distribution (circular normal distribution).
Example 1
Let's see a basic example of using the random.vonmisesvariate() method for generating a random number from a von Mises distribution with a mean angle of (180 degrees) and a concentration parameter of 1.
import random import math # mean angle in radians mu = math.pi # concentration parameter kappa = 1 # Generate a von Mises distributed random number random_angle = random.vonmisesvariate(mu, kappa) print('A random number from von Mises distribution:',random_angle)
Following is the output −
A random number from von Mises distribution: 1.5637865003055311
Note: The Output generated will vary each time you run the program due to its random nature.
Example 2
This example generates a list of 10 random numbers that follows the von Mises distribution using the random.vonmisesvariate() method.
import random # mean angle in radians mu = 0 # concentration parameter kappa = 3 # list to store generated wave directions result = [] # Generate a list of random numbers from the von Mises distribution for _ in range(10): direction = random.vonmisesvariate(mu, kappa) result.append(direction) print("List of random numbers from von Mises distribution:", result)
While executing the above code you will get the similar output like below −
List of random numbers from von Mises distribution: [5.888313245257218, 0.12280876945454619, 0.3877094476451274, 5.807284393939756, 0.4416696367838093, 6.165324081139434, 5.783168359038133, 6.05815219609358, 5.889178104771408, 5.946514998727608]
Example 3
Here is another example that generates and visualizes von Mises distributions with different concentration parameters (kappa) using the random.vonmisesvariate() method.
import random import math import matplotlib.pyplot as plt # mean angle in radians mu = math.pi / 2 def plot_vonmises(mu, kappa, label, color): # Generate von Mises-distributed data data = [random.vonmisesvariate(mu, kappa) for _ in range(10000)] # Plot histogram of the generated data plt.hist(data, bins=100, density=True, alpha=0.5, color=color, label=r'(mu=$\pi/2$, k={})'.format(kappa)) # Create a figure for the plots fig = plt.figure(figsize=(7, 4)) # Plotting for each set of parameters plot_vonmises(mu, 0, '0, 0', 'blue') plot_vonmises(mu, 0.5, '0, 0.5', 'green') plot_vonmises(mu, 1, '0, 1', 'yellow') plot_vonmises(mu, 2, '0, 2', 'red') plot_vonmises(mu, 8, '0, 8', 'pink') # Adding labels and title plt.title('von Mises Distributions with Different Concentration Parameters') plt.legend() # Show plot plt.show()
The output of the above code is as follows −
