Thanks to visit codestin.com
Credit goes to GitHub.com

Skip to content

Yet Another Experiment Tracking Library. Local, minimalist, micro experiment tracking for Machine Learning/Deep Learning workflows. No accounts, no setups. 3 lines to track.

License

Notifications You must be signed in to change notification settings

DavidLandup0/microtrax

Repository files navigation

microtrax

Yet Another Experiment Tracking Library

Local, minimalist, micro experiment tracking for Machine Learning/Deep Learning workflows.


Free. Fully local. Lightweight.

No accounts, no setups. 3 lines to track.

microtrax attempts to be a modern, minimalist library for experiment tracking. Inspired by TensorBoard.

Quickstart

$ pip install microtrax
import microtrax as mtx

epochs = 10
mtx.init('./logbook_dir') #, optionally also track_resources=True)

for i in range(epochs):
    mtx.log({
        "step": i,
        "loss": epochs-i
    })

mtx.finish()

Then serve the dashboard:

$ mtx serve -f ./logbook_dir

This automatically starts both the FastAPI backend and React frontend!

image

It's called a quickstart as if there's anything else you can do with it. Actually, that's pretty much it.

Design Philosophy

  • Free forever.
  • Simplicity > feature-richness.
  • Research-experience first.
  • Framework agnostic - no specialized adapters for different libraries nor ecosystem favoritism. Log whatever.
  • Lightweight footprint. No hogging the CPU or memory.
  • Easily extendable (standard stack + simple to add new components/routes)
  • No setups, no accounts, no enterprise versions.

Learning microtrax in 10 seconds

  • Experiment: whatever happens between mtx.init() and mtx.finish(), housing a series of mtx.log()s.
  • Logbook: Collection of experiments in a log directory.
  • Dashboard: Where your visualizations go. You can select which experiments to visualize and overlay from the logbook.

No need to learn anything else to use microtrax.

CLI Usage

After installation, you can use the mtx command:

# Start the dashboard 
mtx serve -f ./logbook_dir -p 8080

# Start with Docker Compose
mtx serve -f ./logbook_dir --docker

# List all experiments in a directory
mtx list -f ./logbook_dir

# Serve with custom host/port
mtx serve -f ./logbook_dir --host 0.0.0.0 -p 8080

Commands:

  • mtx serve - Start the interactive dashboard web server
  • mtx list - List all experiments in the specified directory

Options:

  • -f, --logdir - Directory containing experiments (default: ~/.microtrax)
  • -p, --port - Port to run dashboard on (default: 8080)
  • --host - Host to bind to (default: localhost)
  • --docker - Run using Docker Compose instead of local servers

microtrax - Bird's Eye View

From a bird's eye view, microtrax has four main components:

  • Core: Core operations like mtx.init(), mtx.log() and mtx.finish(), as well as handling of I/O
  • CLI: Runner for the CLI commands like mtx list and mtx serve
  • Backend: FastAPI server + routers for exposing a logdir's logs
  • Frontend: React frontend for visualizing data provided by the server via Plotly

Why React + FastAPI and not something "simpler"?

Because this is a hackable, extendable, simple format. We want to make it as easy as possible to extend and tweak the library. Proprietary formats, uncommon libs or "simplifying" by obscurity go against the core principles of the library.

  • Need a new widget -> Add a single React component in /frontend/src/components
  • Need a new server endpoint -> Add a single endpoint in FastAPI's routers in /backend/routers

A highly standard stack ensures that the widest number of users can easily and comfortably understand and extend the library as needed.


  ┌─────────────────────────────────────────────────────────────────────────────┐
  │                               microtrax                                     │
  └─────────────────────────────────────────────────────────────────────────────┘

  ┌─────────────────┐      ┌───────────────────┐    ┌─────────────────────────────┐
  │   User Code     │      │   File System     │    │        Dashboard            │
  │                 │      │                   │    │                             │
  │  mtx.init()     │─────▶│  ~/.microtrax/    │◀───│ ┌─────────────────────────┐ │
  │  mtx.log({...}) │      │    experiments/   │    │ │    React Frontend       │ │
  │  mtx.finish()   │      │    resources/     │    │ │    (Port 8080)          │ │
  │                 │      │                   │    │ │  - Plot visualizations  │ │
  └─────────────────┘      │  exp_id.jsonl     │    │ │  - Experiment browser   │ │
                           │  (w/ base64 imgs) │    │ │  - Settings panel       │ │
  ┌───────────────────┐    │  resources.jsonl  │    │ └─────────────────────────┘ │
  │   Core Module     │    │                   │    │             │               │
  │                   │───▶│                   │    │           HTTP              │
  │ • Experiment      │    └───────────────────┘    │             │               │
  │ • ResourceTracker │                             │ ┌─────────────────────────┐ │
  │ • I/O Utils       │   ┌──────────────────┐      │ │   FastAPI Backend       │ │
  │ • Image Processing│   │       CLI        │──────│ │   (Port 8080)           │ │
  └───────────────────┘   │                  │      │ │                         │ │
                          │  mtx serve       │      │ │  /api/experiments       │ │
                          │  mtx list        │      │ │  /api/plots             │ │
                          └──────────────────┘      │ │  /api/images            │ │
                                                    │ │  /api/plot-options      │ │
                                                    │ └─────────────────────────┘ │
                                                    └─────────────────────────────┘

  Data Flow:
  User Code ─> JSONL -> File System -> Backend -> JSON -> Frontend -> User

Frontend Serving

The frontend is served as static files on the same port as the backend (localhost:8080). You can separately build the frontend for hot reloads during development of new features if you're customizing the library.

Docker Compose

You can also run the microtrax dashboard through Docker Compose for containerized deployment.

Setup

  1. Configure your experiment log directory in .env:
# Directory where experiment logs are stored
MICROTRAX_LOGDIR=./my_experiments
  1. Run the stack:
docker-compose up

This will start:

  • Backend API and frontend served on port 8080

Configuration

The MICROTRAX_LOGDIR environment variable specifies where your experiment logs are stored on the host machine. This directory is mounted into the backend container at /data.

Default: ~/.microtrax if not specified

Access

The frontend handles routing and proxies /api/* requests to the backend automatically.

Contributing

We welcome contributions to microtrax! It's community-first, so any and every issue and idea will be considered. This guide will help you get started if you'd like to propose a change.

Getting Started

  1. Fork and clone the repository
$ git clone https://github.com/yourusername/microtrax.git
$ cd microtrax
  1. Set up development environment
# Install Python dependencies
$ pip install microtrax
$ pip install pytest ruff

# Install and build frontend
$ cd microtrax/frontend
$ npm install
$ npm run build
  1. Run tests
# Python tests
pytest
# Format code
make format

Development Workflow

Backend Changes

  • Location: /microtrax/backend/
  • For routers: /backend/routers/
  • For endpoints: /backend/routers/router_name.py
  • For business logic: /backend/services/
  • For data models: /backend/domain/schemas.py

Frontend Changes

  • Location: /microtrax/frontend/src/
  • For new components: /frontend/src/components/

Core Changes

  • Location: /microtrax/core.py, /microtrax/io_utils.py
  • Experiment tracking logic
  • File I/O operations
  • Image processing

Code Standards

  • Python: Follow PEP 8, use type hints, run ruff for linting

Submitting Changes

  1. Create a feature branch
git checkout -b feature/your-feature-name
  1. Make your changes
  2. Test
  3. Submit a pull request

Questions?

  • Check existing issues on GitHub
  • Start a discussion for feature ideas

Citation

If you happen to use microtrax for your research, and publish your results - we'd appreciate a citation~

@misc{landup2025microtrax,
  title={microtrax},
  author={David Landup},
  year={2025},
  howpublished={\url{https://github.com/DavidLandup0/microtrax/}},
}

About

Yet Another Experiment Tracking Library. Local, minimalist, micro experiment tracking for Machine Learning/Deep Learning workflows. No accounts, no setups. 3 lines to track.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published