Thanks to visit codestin.com
Credit goes to Github.com

Skip to content

MILANIUSZ/I-VEP

Repository files navigation

I‑VEP: Imperceptible Visual Evoked Potentials

Authors: Milán András Fodor, Ivan Volosyak
Paper: “Towards Visual‑Fatigue‑Free BCI with Imperceptible Visual Evoked Potentials (I‑VEP)” (SMC 2025)

This repository contains all code, data‑processing scripts, and instructions to reproduce the two main pipelines in our I‑VEP study:

  1. Nested CV + Optuna + CNN: I-cVEP_ResNet-CNN_NCV.py
    Runs a 4‑fold outer nested cross‑validation over all CSVs, using Optuna to tune:
  • filter band centers & bandwidths
  • window length & label shift
  • CNN architecture (kernel size, filters, dropout, etc.)
  • learning rate, weight decay, batch size, early stopping
    Outputs per‑fold .h5 models, .json hyperparameters, and a summary results.csv.
  1. Leave‑One‑Trial‑Out SVC baseline: I-cVEP_SVC_decodability_check.py Implements a subject‑agnostic SVM (offline) baseline with causal Hilbert‑based features:
  • Trial segmentation based on m-sequnce labels
  • Band‑power (env + harmonics), low‑freq, and flip‑potential features
  • Leave‑One‑Trial‑Out cross‑validation
    Prints per‑file LOTO and overall bit‑accuracy, with an optional verbose mode.

If you use this code, please cite: Fodor, M. A., & Volosyak, I. (2025). Towards Visual‑Fatigue‑Free BCI with Imperceptible Visual Evoked Potentials (I‑VEP). In Proceedings of IEEE SMC 2025. DOI: tba