Authors: Milán András Fodor, Ivan Volosyak
Paper: “Towards Visual‑Fatigue‑Free BCI with Imperceptible Visual Evoked Potentials (I‑VEP)” (SMC 2025)
This repository contains all code, data‑processing scripts, and instructions to reproduce the two main pipelines in our I‑VEP study:
- Nested CV + Optuna + CNN:
I-cVEP_ResNet-CNN_NCV.py
Runs a 4‑fold outer nested cross‑validation over all CSVs, using Optuna to tune:
- filter band centers & bandwidths
- window length & label shift
- CNN architecture (kernel size, filters, dropout, etc.)
- learning rate, weight decay, batch size, early stopping
Outputs per‑fold.h5models,.jsonhyperparameters, and a summaryresults.csv.
- Leave‑One‑Trial‑Out SVC baseline:
I-cVEP_SVC_decodability_check.pyImplements a subject‑agnostic SVM (offline) baseline with causal Hilbert‑based features:
- Trial segmentation based on m-sequnce labels
- Band‑power (env + harmonics), low‑freq, and flip‑potential features
- Leave‑One‑Trial‑Out cross‑validation
Prints per‑file LOTO and overall bit‑accuracy, with an optional verbose mode.
If you use this code, please cite: Fodor, M. A., & Volosyak, I. (2025). Towards Visual‑Fatigue‑Free BCI with Imperceptible Visual Evoked Potentials (I‑VEP). In Proceedings of IEEE SMC 2025. DOI: tba