Simple tooling for marking deprecated functions or classes and re-routing to their successors.
Summary: pyDeprecate is a lightweight Python library for managing function and class deprecations with zero dependencies. It provides automatic call forwarding to replacement functions, argument mapping between old and new APIs, and configurable warning controls to prevent log spam. Perfect for library maintainers evolving APIs while maintaining backward compatibility.
- 📖 Overview
- ✨ Features
- 💾 Installation
- 🚀 Quick Start
- 📚 Use-cases and Applications
- 🔇 Understanding the void() Helper
- 🔍 Audit
- 🧪 Testing Deprecated Code
- 🔧 Troubleshooting
- 🤝 Contributing
The common use-case is moving your functions across a codebase or outsourcing some functionalities to new packages. For most of these cases, you want to maintain some compatibility, so you cannot simply remove the past function. You also want to warn users for some time that the functionality they have been using has moved and is now deprecated in favor of another function (which should be used instead) and will soon be removed completely.
Another good aspect is not overwhelming users with too many warnings, so per function/class, this warning is raised only N times in the preferred stream (warning, logger, etc.).
⚠️ Deprecation warnings are shown once per function by default (prevents log spam)- 🔄 Arguments are automatically mapped to the target function
- 🚫 The deprecated function body is never executed when using
target - ⚡ Minimal runtime overhead with zero dependencies (Python standard library only)
- 🛠️ Supports deprecating functions, methods, and classes
- 📝 Optionally, docstrings can be updated automatically to reflect deprecation
- 🔍 Preserves original function signature, annotations and metadata for introspection
- ⚙️ Configurable warning message template and output stream (logging, warnings, custom callable)
- 🎯 Fine‑grained control: per‑argument deprecation/mapping and conditional
skip_ifbehavior - 🧪 Includes testing helpers (e.g.,
no_warning_call) for deterministic tests - 🔗 Compatible with methods, class constructors and cross‑module moves
💬 How does pyDeprecate compare to other Python deprecation solutions?
While pyDeprecate focuses on comprehensive forwarding and argument mapping, other tools might fit different needs:
warnings.warn(stdlib): The standard library's built-in function, perfect for simple cases requiring no dependencies.deprecation(Lib): A widely used library by Brian Curtin, excellent for version-based deprecations.Deprecated(wrapt): A robust decorator-based library by Laurent Laporte withwraptintegration.
Key Advantages & Feature Breakdown
- Simple Warnings: Emits standard Python warnings, compatible with default error handling tools.
- Auto-Forward Calls: Automatically redirects calls to the new function, ensuring the deprecated code is never executed.
- Argument Mapping: Seamlessly translates old API arguments to new ones, handling complex renames and restructuring.
- Argument Deprecation: Warns when specific arguments are used, even if the function itself isn't deprecated.
- Docstring Updates: Automatically appends deprecation notices to the function's docstring.
- Version Tracking: Clearly specifies
deprecated_inandremove_inversions for better lifecycle management. - Prevent Log Spam: Prevents log spam by showing warnings only once per function (or N times) by default.
- Zero Extra Depend.: Lightweight and easy to install, relying solely on the Python standard library.
- Custom Streams: Route warnings to
logging, standardwarnings, or any custom callable to fit your monitoring stack. - Testing Helpers: Built-in tools like
no_warning_call()ensure your deprecations are testable and deterministic.
| Feature | pyDeprecate |
warnings.warn (stdlib) |
deprecation (Lib) |
Deprecated (wrapt) |
|---|---|---|---|---|
| Simple Warnings | ✅ | ✅ | ✅ | ✅ |
| Auto-Forward Calls | ✅ | ❌ | ❌ | ❌ |
| Argument Mapping | ✅ | ❌ | ❌ | ❌ |
| Argument Deprecation | ✅ | ✍️ | ❌ | ❌ |
| Docstring Updates | ✅ | ❌ | ✅ | ✅ |
| Version Tracking | ✅ | ✍️ | ✅ | ✅ |
| Prevent Log Spam | ✅ | ✍️ | ❌ | ❌ |
| Zero Extra Depend. | ✅ | ✅ | ❌ | ❌ |
| Custom Streams | ✅ | ✅ | ❌ | ❌ |
| Testing Helpers | ✅ | ❌ | ❌ | ❌ |
✍️ = possible but requires manual implementation
Note
This comparison is compiled to the best of our knowledge and we're happy to make any justified corrections. If you spot an inaccuracy, please open an issue or submit a PR.
Simple installation from PyPI:
pip install pyDeprecateOther installations
Simply install with pip from source:
pip install https://github.com/Borda/pyDeprecate/archive/main.zipHere's the simplest way to get started with deprecating a function:
from deprecate import deprecated
# Your new function
def new_sum(a: int = 0, b: int = 3) -> int:
return a + b
# Mark the old one as deprecated and forward calls automatically
@deprecated(target=new_sum, deprecated_in="1.0", remove_in="2.0")
def old_sum(a: int, b: int = 5) -> int:
pass # Implementation not needed - calls are forwarded to new_sum
# Using the old function works but shows a warning
result = old_sum(1, 2) # Returns 3
# Warning: The `old_sum` was deprecated since v1.0 in favor of `__main__.new_sum`.
# It will be removed in v2.0.That's it! All calls to old_sum() are automatically forwarded to new_sum() with a deprecation warning.
The functionality is kept simple and all defaults should be reasonable, but you can still do extra customization such as:
- 💬 define user warning message and preferred stream
- 🔀 extended argument mapping to target function/method
- 🎯 define deprecation logic for self arguments
- 📊 specify warning count per:
- called function (for func deprecation)
- used arguments (for argument deprecation)
- ⚙️ define conditional skip (e.g. depending on some package version)
In particular the target values (cases):
- None - raise only warning message (ignore all argument mapping)
- True - deprecate some argument of itself (argument mapping should be specified)
- Callable - forward call to new methods (optionally also argument mapping or extras)
It is very straightforward: you forward your function call to a new function and all arguments are mapped:
def base_sum(a: int = 0, b: int = 3) -> int:
"""My new function anywhere in the codebase or even other package."""
return a + b
# ---------------------------
from deprecate import deprecated
@deprecated(target=base_sum, deprecated_in="0.1", remove_in="0.5")
def depr_sum(a: int, b: int = 5) -> int:
"""
My deprecated function which now has an empty body
as all calls are routed to the new function.
"""
pass # or you can just place docstring as one above
# calling this function will raise a deprecation warning:
# The `depr_sum` was deprecated since v0.1 in favor of `__main__.base_sum`.
# It will be removed in v0.5.
print(depr_sum(1, 2))Output: print(depr_sum(1, 2))
3
Another more complex example is using argument mapping is:
Example: mapping deprecated args to sklearn.metrics.accuracy_score
import logging
from sklearn.metrics import accuracy_score
from deprecate import deprecated, void
@deprecated(
# use standard sklearn accuracy implementation
target=accuracy_score,
# custom warning stream
stream=logging.warning,
# number of warnings per lifetime (with -1 for always)
num_warns=5,
# custom message template
template_mgs="`%(source_name)s` was deprecated, use `%(target_path)s`",
# as target args are different, define mapping from source to target func
args_mapping={"preds": "y_pred", "target": "y_true", "blabla": None},
)
def depr_accuracy(preds: list, target: list, blabla: float) -> float:
"""My deprecated function which is mapping to sklearn accuracy."""
# to stop complain your IDE about unused argument you can use void/empty function
return void(preds, target, blabla)
# calling this function will raise a deprecation warning:
# WARNING:root:`depr_accuracy` was deprecated, use `sklearn.metrics.accuracy_score`
print(depr_accuracy([1, 0, 1, 2], [0, 1, 1, 2], 1.23))sample output:
0.5
Base use-case with no forwarding and just raising a warning:
from deprecate import deprecated
@deprecated(target=None, deprecated_in="0.1", remove_in="0.5")
def my_sum(a: int, b: int = 5) -> int:
"""My deprecated function which still has to have implementation."""
return a + b
# calling this function will raise a deprecation warning:
# The `my_sum` was deprecated since v0.1. It will be removed in v0.5.
print(my_sum(1, 2))Output: print(my_sum(1, 2))
3
Note
When using target=None, the deprecated function's implementation must be preserved and will be executed. The deprecation decorator only adds a warning without forwarding.
We also support deprecation and argument mapping for the function itself:
from deprecate import deprecated
@deprecated(
# define as deprecation some self argument - mapping
target=True,
args_mapping={"coef": "new_coef"},
# common version info
deprecated_in="0.2",
remove_in="0.4",
)
def any_pow(base: float, coef: float = 0, new_coef: float = 0) -> float:
"""My function with deprecated argument `coef` mapped to `new_coef`."""
return base**new_coef
# calling this function will raise a deprecation warning:
# The `any_pow` uses deprecated arguments: `coef` -> `new_coef`.
# They were deprecated since v0.2 and will be removed in v0.4.
print(any_pow(2, 3))Output: print(any_pow(2, 3))
8
Eventually you can set multiple deprecation levels via chaining deprecation arguments as each could be deprecated in another version:
Example: chaining two argument deprecations across different versions
from deprecate import deprecated
@deprecated(
True,
deprecated_in="0.3",
remove_in="0.6",
args_mapping=dict(c1="nc1"),
template_mgs="Depr: v%(deprecated_in)s rm v%(remove_in)s for args: %(argument_map)s.",
)
@deprecated(
True,
deprecated_in="0.4",
remove_in="0.7",
args_mapping=dict(nc1="nc2"),
template_mgs="Depr: v%(deprecated_in)s rm v%(remove_in)s for args: %(argument_map)s.",
)
def any_pow(base, c1: float = 0, nc1: float = 0, nc2: float = 2) -> float:
return base**nc2
# calling this function will raise deprecation warnings:
# FutureWarning('Depr: v0.3 rm v0.6 for args: `c1` -> `nc1`.')
# FutureWarning('Depr: v0.4 rm v0.7 for args: `nc1` -> `nc2`.')
print(any_pow(2, 3))code output:
8
Conditional skip of which can be used for mapping between different target functions depending on additional input such as package version
Example: skip_if based on a runtime condition
from deprecate import deprecated
FAKE_VERSION = 1
def version_greater_1():
return FAKE_VERSION > 1
@deprecated(True, "0.3", "0.6", args_mapping=dict(c1="nc1"), skip_if=version_greater_1)
def skip_pow(base, c1: float = 1, nc1: float = 1) -> float:
return base ** (c1 - nc1)
# calling this function will raise a deprecation warning
print(skip_pow(2, 3))
# change the fake versions
FAKE_VERSION = 2
# will not raise any warning
print(skip_pow(2, 3))Output: skip_pow before and after version change
0.25
4
This can be beneficial with multiple deprecation levels shown above...
This case can be quite complex as you may deprecate just some methods, here we show full class deprecation:
Example: forwarding __init__ to a successor class
class NewCls:
"""My new class anywhere in the codebase or other package."""
def __init__(self, c: float, d: str = "abc"):
self.my_c = c
self.my_d = d
# ---------------------------
from deprecate import deprecated, void
class PastCls(NewCls):
"""
The deprecated class should be inherited from the successor class
to hold all methods and properties.
"""
@deprecated(target=NewCls, deprecated_in="0.2", remove_in="0.4")
def __init__(self, c: int, d: str = "efg"):
"""
You place the decorator around __init__ as you want
to warn user just at the time of creating object.
"""
void(c, d)
# calling this function will raise a deprecation warning:
# The `PastCls` was deprecated since v0.2 in favor of `__main__.NewCls`.
# It will be removed in v0.4.
inst = PastCls(7)
print(inst.my_c) # returns: 7
print(inst.my_d) # returns: "efg"Output: PastCls instance attributes
7
efg
You can automatically append deprecation information to your function's docstring:
Example: update_docstring=True appends a Sphinx deprecation notice
def new_function(x: int) -> int:
"""New implementation of the function."""
return x * 2
# ---------------------------
from deprecate import deprecated
@deprecated(
target=new_function,
deprecated_in="1.0",
remove_in="2.0",
update_docstring=True, # Enable automatic docstring updates
)
def old_function(x: int) -> int:
"""Old implementation that will be removed.
Args:
x: Input value
Returns:
Result of computation
"""
pass
# The docstring now includes deprecation information
print(old_function.__doc__)
# Output includes:
# .. deprecated:: 1.0
# Will be removed in 2.0.
# Use `__main__.new_function` instead.This is particularly useful for generating API documentation with tools like Sphinx, where the deprecation notice will appear in the generated docs.
When using @deprecated with a target function, the deprecated function's body is never executed—all calls are automatically forwarded. However, your IDE might complain about "unused parameters". The void() helper function silences these warnings:
def new_add(a: int, b: int) -> int:
return a + b
# ---------------------------
from deprecate import deprecated, void
@deprecated(target=new_add, deprecated_in="1.0", remove_in="2.0")
def old_add(a: int, b: int) -> int:
return void(a, b) # Tells IDE: "Yes, I know these parameters aren't used"
# This line is never reached - call is forwarded to new_add
# Alternative: You can also use pass or just a docstring
@deprecated(target=new_add, deprecated_in="1.0", remove_in="2.0")
def old_add_v2(a: int, b: int) -> int:
"""Just a docstring works too."""
pass # This also worksTip
void() is purely for IDE convenience and has no runtime effect. It simply returns None after accepting any arguments.
Deprecations are only as good as the hygiene around them. The deprecate.audit module provides utilities for verifying that deprecated wrappers are correctly configured, that removal deadlines are actually enforced, and that chains of deprecated-to-deprecated calls don't silently pile up. These tools are designed to run in CI pipelines and test suites, catching problems before they reach users.
During development, you may want to verify that your deprecated wrappers are configured correctly. pyDeprecate provides two utilities for this: validate_deprecated_callable() for inspecting a single function, and find_deprecated_callables() for scanning an entire package.
The DeprecatedCallableInfo dataclass contains:
module: Module name where the function is defined (empty for direct validation)function: Function namedeprecated_info: The__deprecated__attribute dict from the decoratorinvalid_args: List of args_mapping keys that don't exist in the function signatureempty_mapping: True if args_mapping is None or empty (no argument remapping)identity_mapping: List of args where key equals value (e.g.,{'arg': 'arg'}- no effect)self_reference: True if target points to the same function (self-reference)no_effect: True if wrapper has zero impact (self-reference, empty mapping, or all identity)
Validating a Single Function
The validate_deprecated_callable() utility extracts the configuration from the function's __deprecated__ attribute and returns a DeprecatedCallableInfo dataclass that helps you identify configurations that would make your deprecation wrapper have zero impact:
from deprecate import validate_deprecated_callable, deprecated, DeprecatedCallableInfo
# Define your deprecated function
@deprecated(target=True, args_mapping={"old_arg": "new_arg"}, deprecated_in="1.0")
def my_func(old_arg: int = 0, new_arg: int = 0) -> int:
return new_arg
# Validate the configuration - automatically extracts `args_mapping` and target from the decorator
result = validate_deprecated_callable(my_func)
# DeprecatedCallableInfo(
# function='my_func',
# invalid_args=[],
# empty_mapping=False,
# identity_mapping=[],
# self_reference=False,
# no_effect=False
# )
# Example: Function with invalid args_mapping
@deprecated(target=True, args_mapping={"nonexistent": "new_arg"}, deprecated_in="1.0")
def bad_func(real_arg: int = 0) -> int:
return real_arg
result = validate_deprecated_callable(bad_func)
# result.invalid_args == ['nonexistent']
print(result)
# Example: Function with empty mapping (no effect)
@deprecated(target=True, args_mapping={}, deprecated_in="1.0")
def empty_func(arg: int = 0) -> int:
return arg
result = validate_deprecated_callable(empty_func)
# result.empty_mapping == True, result.no_effect == True
print(result)
# Quick check if wrapper has any effect
if result.no_effect:
print("Warning: This wrapper configuration has zero impact!")Scanning a Package for Deprecated Wrappers
The find_deprecated_callables() utility scans an entire package or module and returns a list of DeprecatedCallableInfo dataclasses:
from deprecate import find_deprecated_callables
# For testing purposes, we use the test module; normally you would import your own package
from tests import collection_deprecate as my_package
# Scan an entire package for deprecated wrappers
results = find_deprecated_callables(my_package)
# Or scan using a string module path
results = find_deprecated_callables("tests.collection_deprecate")
# Check results - each item is a DeprecatedCallableInfo dataclass
for r in results:
print(f"{r.module}.{r.function}: no_effect={r.no_effect}")
if r.no_effect:
print(f" Warning: This wrapper has zero impact!")
print(f" invalid_args: {r.invalid_args}, identity_mapping: {r.identity_mapping}")
# Filter to only ineffective wrappers
ineffective = [r for r in results if r.no_effect]
if ineffective:
print(f"Found {len(ineffective)} deprecated wrappers with zero impact!")Generating Reports by Issue Type
Group validation results by issue type for better reporting:
from deprecate import find_deprecated_callables
# For testing purposes, we use the test module; normally you would import your own package
from tests import collection_deprecate as my_package
results = find_deprecated_callables(my_package)
# Group by issue type (using dataclass attribute access)
wrong_args = [r for r in results if r.invalid_args]
identity_mappings = [r for r in results if r.identity_mapping]
self_refs = [r for r in results if r.self_reference]
print(f"=== Deprecation Validation Report ===")
print(f"Wrong arguments: {len(wrong_args)}")
print(f"Identity mappings: {len(identity_mappings)}")
print(f"Self-references: {len(self_refs)}")CI/pytest Integration
Use in pytest to validate your package's deprecation wrappers:
import warnings
import pytest
from deprecate import find_deprecated_callables
# For testing purposes, we use the test module; normally you would import your own package
from tests import collection_deprecate as my_package
def test_deprecated_wrappers_are_valid():
"""Validate all deprecated wrappers have proper configuration."""
results = find_deprecated_callables(my_package)
# Collect issues — wrong arg names are errors, identity mappings are worth a warning
wrong_args = [r for r in results if r.invalid_args]
identity_mappings = [r for r in results if r.identity_mapping]
# Raise errors for wrong arguments (critical issues)
if wrong_args:
for r in wrong_args:
print(f"ERROR: {r.module}.{r.function} has invalid args: {r.invalid_args}")
pytest.fail(f"Found {len(wrong_args)} deprecated wrappers with invalid arguments")
# Warn for identity mappings (less severe)
for r in identity_mappings:
pytest.warns(UserWarning, match=f"{r.function} has identity mapping")When you deprecate code with a remove_in version, you're making a commitment to remove that code when that version is reached. However, it's easy to forget to actually remove the code—leading to "zombie code" that lingers past its scheduled removal.
pyDeprecate provides enforcement utilities to detect and prevent zombie code in your CI/CD pipeline:
The validate_deprecation_expiry() utility scans an entire module or package for expired deprecations:
Example: scanning a package for expired removal deadlines
from deprecate import validate_deprecation_expiry
# For testing purposes, we use the test module; normally you would import your own package
from tests import collection_deprecate as my_package
# Scan your package for expired deprecations - using early-version that won't have expirations
expired = validate_deprecation_expiry(my_package, "0.2")
print(f"Found {len(expired)} expired") # Returns a list of error messages (empty list = no expired)
# Example with expired deprecations found (using later-version)
expired = validate_deprecation_expiry(my_package, "0.5")
print(f"Found {len(expired)} expired")
# Auto-detect version from package metadata (mocked for demo)
from unittest.mock import patch
with patch("importlib.metadata.version", return_value="0.3"):
expired = validate_deprecation_expiry(my_package) # Automatically detects version
print(f"Found {len(expired)} expired")
# Control recursion
expired = validate_deprecation_expiry(my_package, "0.1", recursive=False) # Only scan top-level module
print(f"Found {len(expired)} expired")Output: expired count per scanned version
Found 12 expired
Found 20 expired
Found 14 expired
Found 0 expired
CI/pytest Integration for Expiry Enforcement
Integrate expiry checks into your test suite to catch zombie code automatically:
import pytest
from deprecate import validate_deprecation_expiry
# For testing purposes, we use the test module; normally you would import your own package
from tests import collection_deprecate as my_package
def test_no_zombie_deprecations():
"""Ensure all deprecated code is removed when it reaches its deadline."""
# Use your package's actual version - for this example we use a test version
current_version = "0.5" # Replace with: from mypackage import __version__
expired = validate_deprecation_expiry(my_package, current_version)
if expired:
error_msg = "Found deprecated code past its removal deadline:\n"
for msg in expired:
error_msg += f" - {msg}\n"
pytest.fail(error_msg)
# Alternative: Use a fixture to run on every test session
# For testing purposes, we use the test module; normally you would import your own package
@pytest.fixture(scope="session", autouse=True)
def enforce_deprecation_deadlines():
"""Automatically check for zombie code before running any tests."""
from tests import collection_deprecate as my_package
current_version = "0.5" # Replace with: from mypackage import __version__
expired = validate_deprecation_expiry(my_package, current_version)
if expired:
raise AssertionError(
f"Cannot run tests: {len(expired)} deprecated callables past removal deadline. "
f"Remove these functions first: {expired}"
)Tip
- Callables without
remove_inare skipped (warnings-only deprecations are allowed) - Invalid version formats in
remove_inare silently skipped - PEP 440 versioning is used for comparison (e.g., "2.0.0" > "1.9.5")
- Pre-release versions are handled correctly (e.g., "1.5.0a1" < "1.5.0")
When refactoring code, it's easy to create "lazy" deprecated wrappers that call other deprecated functions instead of calling the new target directly. This creates deprecation chains that defeat the purpose of deprecation.
The validate_deprecation_chains() utility scans a module or package for deprecated functions whose target is itself a deprecated callable. Such chains are wasteful: the outer wrapper should point directly to the final (non-deprecated) implementation. Detection is purely metadata-based — no source-code inspection.
Example: Detecting Both Chain Types
from deprecate import deprecated, validate_deprecated_callable, void
def new_power(base: float, exponent: float = 2) -> float:
return base**exponent
# deprecated forwarder — targets new_power directly
@deprecated(target=new_power, deprecated_in="1.0", remove_in="2.0")
def power_v2(base: float, exponent: float = 2) -> float:
void(base, exponent)
# self-deprecation — renames old arg "exp" -> "exponent" within the same function
@deprecated(True, deprecated_in="1.0", remove_in="2.0", args_mapping={"exp": "exponent"})
def legacy_power(base: float, exp: float = 2, exponent: float = 2) -> float:
return base**exponent
# BAD: targets power_v2 (another deprecated forwarder) — ChainType.TARGET
# SOLUTION: point directly to new_power
@deprecated(target=power_v2, deprecated_in="1.5", remove_in="2.5")
def caller_target_chain(base: float, exponent: float = 2) -> float: # ❌
return void(base, exponent)
# BAD: targets legacy_power (target=True with arg renaming) — ChainType.STACKED
# Mappings chain: "power" -> "exp" -> "exponent" — must be composed.
# SOLUTION: target=new_power, args_mapping={"power": "exponent"}
@deprecated(target=legacy_power, deprecated_in="1.5", remove_in="2.5", args_mapping={"power": "exp"})
def caller_stacked_chain(base: float, power: float = 2) -> float: # ❌
return void(base, power)
# GOOD: targets final implementation directly with composed mapping
@deprecated(target=new_power, deprecated_in="1.5", remove_in="2.5", args_mapping={"power": "exponent"})
def caller_direct(base: float, power: float = 2) -> float: # ✅
return void(base, power)
for func in (caller_target_chain, caller_stacked_chain, caller_direct):
info = validate_deprecated_callable(func)
print(f"{func.__name__}: {info.chain_type}")Output: chain types
caller_target_chain: ChainType.TARGET
caller_stacked_chain: ChainType.STACKED
caller_direct: None
CI/pytest Integration for Chain Detection
Integrate chain detection into your test suite to prevent deprecated-to-deprecated forwarding:
import pytest
from deprecate import validate_deprecation_chains
# normally you would import your own package
from tests import collection_chains as my_package
def test_no_deprecation_chains():
"""Ensure no deprecated function targets another deprecated function."""
issues = validate_deprecation_chains(my_package)
if issues:
lines = [
f" - {i.function}: target '{getattr(i.deprecated_info['target'], '__name__', repr(i.deprecated_info['target']))}' is deprecated"
for i in issues
]
pytest.fail("Found deprecation chains:\n" + "\n".join(lines))
# Alternative: session-scoped auto-use fixture
@pytest.fixture(scope="session", autouse=True)
def enforce_no_deprecation_chains():
from tests import collection_chains as my_package
issues = validate_deprecation_chains(my_package)
if issues:
raise AssertionError(f"Found {len(issues)} deprecation chain(s). Fix before running tests.")Tip
- The function scans all deprecated functions found by
find_deprecated_callables() - Returns
list[DeprecatedCallableInfo]— each entry haschain_typeset to aChainTypeenum value ChainType.TARGET— target is a deprecated callable that forwards to another function; fix by pointing directly to the final targetChainType.STACKED— arg mappings chain through multiple hops and must be composed; two sub-cases:- Callable target is itself
@deprecated(True, args_mapping=...)(self-renaming) — mappings compose across hops - Stacked
@deprecated(True, args_mapping=...)on the same function — merge into one decorator with combinedargs_mapping
- Callable target is itself
- Use
recursive=Falseto scan only the top-level module
pyDeprecate provides utilities to help you test deprecated code properly:
from deprecate import deprecated, no_warning_call, void
import pytest
def new_func(x: int) -> int:
return x * 2
@deprecated(target=new_func, deprecated_in="1.0", remove_in="2.0")
def old_func(x: int) -> int:
pass
@deprecated(target=new_func, deprecated_in="1.0", remove_in="2.0")
def old_func2(x: int) -> int:
return void(x)
def test_deprecated_function_shows_warning():
"""Verify the deprecation warning is shown."""
with pytest.warns(FutureWarning, match="old_func.*deprecated"):
result = old_func(42)
assert result == 84
def test_new_function_no_warning():
"""Verify new function doesn't trigger warnings."""
with no_warning_call(FutureWarning):
result = new_func(42)
assert result == 84
def test_no_warning_after_first_call():
"""By default, warnings are shown only once per function."""
# First call shows warning
with pytest.warns(FutureWarning):
old_func2(1)
# Subsequent calls don't show warning (by default num_warns=1)
with no_warning_call(FutureWarning):
old_func2(2)
# call the tests for CI demonstration/validation
test_deprecated_function_shows_warning()
test_new_function_no_warning()
test_no_warning_after_first_call()Advanced: Control warning frequency
# Minimal replacement implementation used in examples
def new_func(x: int) -> int:
return x * 2
# ---------------------------
from deprecate import deprecated
# Show warning every time (useful for critical deprecations)
@deprecated(target=new_func, deprecated_in="1.0", remove_in="2.0", num_warns=-1)
def old_func_always_warn(x: int) -> int:
pass
# Show warning N times total
@deprecated(target=new_func, deprecated_in="1.0", remove_in="2.0", num_warns=5)
def old_func_warn_n_times(x: int) -> int:
passProblem: TypeError: Failed mapping of 'my_func', arguments missing in target source: ['old_arg']
Cause: Your deprecated function has arguments that the target function doesn't accept.
Solutions
-
Skip the argument (if it's no longer needed):
# define a target that ignores the extra arg def new_func(required_arg: int, **kwargs) -> int: return required_arg * 2 # --------------------------- from deprecate import deprecated # None means skip this argument @deprecated(target=new_func, args_mapping={"old_arg": None}) def old_func(old_arg: int, new_arg: int) -> int: pass
-
Rename the argument (if target uses different name):
def new_func(new_name: int) -> int: return new_name * 2 # --------------------------- from deprecate import deprecated # Map old to new @deprecated(target=new_func, args_mapping={"old_name": "new_name"}) def old_func(old_name: int) -> int: pass
-
Use target=True for self-deprecation (deprecate argument of same function):
from deprecate import deprecated # Deprecate within same function @deprecated(target=True, args_mapping={"old_arg": "new_arg"}) def my_func(old_arg: int = 0, new_arg: int = 0) -> int: return new_arg * 2
Problem: TypeError: User function 'should_ship' shall return bool, but got: <type>
Cause: When using skip_if with a callable, the function must return a boolean value.
Solution
# Minimal replacement function for examples
def new_func() -> str:
return "Hi!"
# ---------------------------
from deprecate import deprecated
# Correct: function returns bool
def should_skip() -> bool:
return False # replace with your condition
@deprecated(target=new_func, skip_if=should_skip)
def old_func1():
pass
# Also correct: use a lambda
@deprecated(target=new_func, skip_if=lambda: False)
def old_func2():
passProblem: You don't see the deprecation warning.
Cause: By default, warnings are shown only once per function (num_warns=1) to prevent log spam.
For per-argument deprecation (when using args_mapping with target=True), each deprecated argument
has its own warning counter, meaning warnings for different arguments are tracked independently.
Solutions
# Minimal replacement function for examples
def new_func(x: int) -> int:
return x * 2
# ---------------------------
from deprecate import deprecated
# Show warning every time
@deprecated(target=new_func, num_warns=-1) # -1 means unlimited
def old_func_always_warn():
pass
# Show warning N times total
@deprecated(target=new_func, num_warns=5) # Show 5 times
def old_func_warn_n_times():
passIf you're moving functions to a different module or package, show the pattern rather than importing a non-existent package in the docs.
The warning will correctly show the full path for real imports when used in your package.
Have you faced this issue in the past or are you facing it now? Do you have good ideas for improvement? All contributions are welcome!
Please read our Contributing Guide for details on how to contribute, and our Code of Conduct for community guidelines.