Thanks to visit codestin.com
Credit goes to Github.com

Skip to content

alhazar43/deep-mirt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep MIRT DKVMN

This repo hosts multiple knowledge tracing/IRT prototypes. The active work is in mirt-dkvmn/, which implements a multi-dimensional DKVMN with a GPCM head and synthetic MIRT data generation.

Environment

Use the vrec-env conda environment for all runs:

source ~/anaconda3/etc/profile.d/conda.sh
conda activate vrec-env

Most scripts expect PYTHONPATH=mirt-dkvmn/src.

Quick Start

Generate a synthetic dataset (example: 5000 students, 1000 items, 5 categories, 3 traits):

PYTHONPATH=mirt-dkvmn/src python mirt-dkvmn/scripts/data_gen.py \
  --name synthetic_5000_1000_5_d3 --n_traits 3 --min_seq 120 --max_seq 150 \
  --output_dir mirt-dkvmn/data

Train with a config:

PYTHONPATH=mirt-dkvmn/src python mirt-dkvmn/scripts/train.py \
  --config mirt-dkvmn/configs/large_d3_opt3.yaml

Plot recovery/metrics:

PYTHONPATH=mirt-dkvmn/src python mirt-dkvmn/scripts/plot_recovery.py \
  --config mirt-dkvmn/configs/large_d3_opt3.yaml \
  --checkpoint mirt-dkvmn/artifacts/large_d3_opt3/last.pt \
  --output mirt-dkvmn/artifacts/large_d3_opt3/recovery_plots

python mirt-dkvmn/scripts/plot_metrics.py \
  --metrics mirt-dkvmn/artifacts/large_d3_opt3/metrics.csv \
  --output mirt-dkvmn/artifacts/large_d3_opt3/metric_plots

Repository Layout

  • mirt-dkvmn/: Current MIRT-DKVMN implementation, configs, data tools, plots.
  • deep-gpcm/: Reference implementation and legacy scripts.
  • dkvmn-ori/, dkvmn-torch/, akt/, deep-1pl/: Legacy or comparative baselines.
  • updated_plan.tex: Math/architecture notes for the MIRT-DKVMN design.

Data and Artifacts

  • Synthetic datasets live under mirt-dkvmn/data/ and follow synthetic_<students>_<items>_<cats>_d<traits>.
  • Training artifacts (metrics, checkpoints, plots) go in mirt-dkvmn/artifacts/.
  • Older datasets and results are archived in mirt-dkvmn/archive/.

Notes

  • GPU usage is controlled by base.device in each config; training falls back to CPU if CUDA is unavailable.
  • Dataset regeneration should match the current GPCM formulation to keep recovery plots meaningful.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •