Thanks to visit codestin.com
Credit goes to Github.com

Skip to content

btraven00/pca_scwf_paper

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Benchmarking large-scale single-cell RNA-seq analysis

This repository contains the scripts and resources used in our paper
"Benchmarking large-scale single-cell RNA-seq analysis".
It provides all materials necessary to reproduce the benchmarking results presented in the manuscript.


Reproducibility and environment setup

To ensure full reproducibility, we recommend recreating the computational environments used in our analyses.

  • R environment
    All R analyses were run within a pre-built container, available here.

  • Python environment
    For Python-based methods, we used a conda environment.
    The corresponding spca.yml file can be found here. To create it:

conda env create -f spca.yml
conda activate spca

Repository Structure

├── pca/
│ ├── preprocessing/ # Scripts for data preprocessing prior to PCA
│ ├── run_pca_time/ # Code for all 28 PCA implementations benchmarked
│ ├── run_pca_mem/
│ └── README.md # Additional details on PCA benchmarking
│
├── scwf/
│ ├── 1.3M/ # Workflow scripts grouped by input dataset
│ ├── BE1/
│ ├── cb/
│ ├── sc_mix/
│ └── README.md
│
└── envs/ # Container and conda environment definitions
└── paper_figure/ #Code to reproduce paper figure

Dataset

The datasets used in this benchmark are publicly available:


Citation

If you use this repository, please cite our paper:

Billato et al. (2025). Benchmarking large-scale single-cell RNA-seq analysis.
[Journal / preprint link to be added]


Session Info

Click here for Session Info
sessionInfo()
# R version 4.4.2 (2024-10-31)
# Platform: x86_64-pc-linux-gnu
# Running under: Ubuntu 24.04.1 LTS
# 
# Matrix products: default
# BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
# LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
# 
# locale:
#  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
#  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
# [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
# 
# time zone: Etc/UTC
# tzcode source: system (glibc)
# 
# attached base packages:
# [1] stats4    stats     graphics  grDevices utils     datasets  methods  
# [8] base     
# 
# other attached packages:
#  [1] tidyr_1.3.1                 patchwork_1.3.0            
#  [3] Seurat_5.2.1                SeuratObject_5.0.2         
#  [5] sp_2.2-0                    dplyr_1.1.4                
#  [7] scrapper_1.0.3              bluster_1.16.0             
#  [9] mclust_6.1.1                AnnotationDbi_1.68.0       
# [11] SingleCellMultiModal_1.18.0 MultiAssayExperiment_1.32.0
# [13] TENxBrainData_1.26.0        RSpectra_0.16-2            
# [15] rARPACK_0.11-0              DelayedMatrixStats_1.28.1  
# [17] BiocParallel_1.40.0         scran_1.34.0               
# [19] scater_1.34.0               scuttle_1.16.0             
# [21] ggplot2_3.5.1               mbkmeans_1.22.0            
# [23] HDF5Array_1.34.0            rhdf5_2.50.2               
# [25] DelayedArray_0.32.0         SparseArray_1.6.2          
# [27] S4Arrays_1.6.0              abind_1.4-8                
# [29] Matrix_1.7-2                here_1.0.1                 
# [31] BiocSingular_1.22.0         zellkonverter_1.16.0       
# [33] SingleCellExperiment_1.28.1 SummarizedExperiment_1.36.0
# [35] Biobase_2.66.0              GenomicRanges_1.58.0       
# [37] GenomeInfoDb_1.42.3         IRanges_2.40.1             
# [39] S4Vectors_0.44.0            BiocGenerics_0.52.0        
# [41] MatrixGenerics_1.18.1       matrixStats_1.5.0          
# 
# loaded via a namespace (and not attached):
#   [1] spatstat.sparse_3.1-0    httr_1.4.7               RColorBrewer_1.1-3      
#   [4] doParallel_1.0.17        tools_4.4.2              sctransform_0.4.1       
#   [7] R6_2.6.1                 lazyeval_0.2.2           uwot_0.2.3              
#  [10] rhdf5filters_1.18.0      withr_3.0.2              gridExtra_2.3           
#  [13] progressr_0.15.1         cli_3.6.4                spatstat.explore_3.3-4  
#  [16] fastDummies_1.7.5        spatstat.data_3.1-4      ggridges_0.5.6          
#  [19] pbapply_1.7-2            parallelly_1.42.0        limma_3.62.2            
#  [22] RSQLite_2.3.9            generics_0.1.3           ica_1.0-3               
#  [25] spatstat.random_3.3-2    ggbeeswarm_0.7.2         lifecycle_1.0.4         
#  [28] yaml_2.3.10              edgeR_4.4.2              BiocFileCache_2.14.0    
#  [31] Rtsne_0.17               grid_4.4.2               blob_1.2.4              
#  [34] promises_1.3.2           dqrng_0.4.1              ExperimentHub_2.14.0    
#  [37] crayon_1.5.3             dir.expiry_1.14.0        miniUI_0.1.1.1          
#  [40] lattice_0.22-6           beachmat_2.22.0          cowplot_1.1.3           
#  [43] KEGGREST_1.46.0          magick_2.8.5             pillar_1.10.1           
#  [46] metapod_1.14.0           rjson_0.2.23             future.apply_1.11.3     
#  [49] codetools_0.2-20         glue_1.8.0               spatstat.univar_3.1-1   
#  [52] data.table_1.17.0        vctrs_0.6.5              png_0.1-8               
#  [55] spam_2.11-1              gtable_0.3.6             cachem_1.1.0            
#  [58] mime_0.12                survival_3.8-3           iterators_1.0.14        
#  [61] statmod_1.5.0            gmp_0.7-5                fitdistrplus_1.2-2      
#  [64] ROCR_1.0-11              nlme_3.1-167             bit64_4.6.0-1           
#  [67] filelock_1.0.3           RcppAnnoy_0.0.22         rprojroot_2.0.4         
#  [70] irlba_2.3.5.1            vipor_0.4.7              KernSmooth_2.23-26      
#  [73] colorspace_2.1-1         DBI_1.2.3                tidyselect_1.2.1        
#  [76] bit_4.5.0.1              compiler_4.4.2           curl_6.2.1              
#  [79] BiocNeighbors_2.0.1      basilisk.utils_1.18.0    plotly_4.10.4           
#  [82] scales_1.3.0             lmtest_0.9-40            rappdirs_0.3.3          
#  [85] stringr_1.5.1            SpatialExperiment_1.16.0 digest_0.6.37           
#  [88] goftest_1.2-3            spatstat.utils_3.1-2     benchmarkmeData_1.0.4   
#  [91] basilisk_1.18.0          XVector_0.46.0           htmltools_0.5.8.1       
#  [94] pkgconfig_2.0.3          sparseMatrixStats_1.18.0 dbplyr_2.5.0            
#  [97] fastmap_1.2.0            rlang_1.1.5              htmlwidgets_1.6.4       
# [100] UCSC.utils_1.2.0         shiny_1.10.0             farver_2.1.2            
# [103] zoo_1.8-13               jsonlite_1.9.0           magrittr_2.0.3          
# [106] GenomeInfoDbData_1.2.13  dotCall64_1.2            Rhdf5lib_1.28.0         
# [109] munsell_0.5.1            Rcpp_1.0.14              viridis_0.6.5           
# [112] reticulate_1.41.0        stringi_1.8.4            ClusterR_1.3.3          
# [115] zlibbioc_1.52.0          MASS_7.3-64              AnnotationHub_3.14.0    
# [118] plyr_1.8.9               parallel_4.4.2           listenv_0.9.1           
# [121] ggrepel_0.9.6            deldir_2.0-4             Biostrings_2.74.1       
# [124] splines_4.4.2            tensor_1.5               locfit_1.5-9.11         
# [127] igraph_2.1.4             spatstat.geom_3.3-5      RcppHNSW_0.6.0          
# [130] reshape2_1.4.4           ScaledMatrix_1.14.0      BiocVersion_3.20.0      
# [133] BiocManager_1.30.25      foreach_1.5.2            httpuv_1.6.15           
# [136] RANN_2.6.2               purrr_1.0.4              polyclip_1.10-7         
# [139] future_1.34.0            benchmarkme_1.0.8        scattermore_1.2         
# [142] rsvd_1.0.5               xtable_1.8-4             later_1.4.1             
# [145] viridisLite_0.4.2        tibble_3.2.1             memoise_2.0.1           
# [148] beeswarm_0.4.0           cluster_2.1.8            globals_0.16.3 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 78.5%
  • Python 21.5%