Thanks to visit codestin.com
Credit goes to Github.com

Skip to content

Detect known and unknown objects in the open world(具有区分已知与未知能力的全新检测器))

Notifications You must be signed in to change notification settings

buxihuo/OW-YOLO

Repository files navigation

015

快速开始

1. 安装

同yolov5

2. 推理

推理示例
$ python detect.py --source data/images --weights m-obj365.pt --unknownconf 0.45 --conf 0.25 
$ python detect.py --source data/images --weights s-coco.pt --unknownconf 0.25 --conf 0.25
'''
参数解读
unknownconf: 当网络预测的“不知道”分数大于此阈值时预测为不知道,否则输出已知分类。
1)与已知类精度关系:当已知类精度越高时,“不知道”在已知类上发生的情况将越少,预测未知类时可以设定更低的unknownconf而不影响已知类性能。
2)与训练集大小关系:训练集越丰富,预测未知类的能力越强
注:可根据需求调节此参数,需要注意的是由于资源问题,在objects365数据集下训练的模型m-obj365.pt仅在小模型下训练了30轮,精度较低,建议采用较高阈值。
其他参数:
1)非极大值抑制:默认类内NMS(非极大值抑制)iou阈值为0.45,参数为iou;同时进行类间NMS,iou阈值为0.75,后续将提供参数接口。
2)不知道的物体类名:可在detect文件中修改,后续将提供接口。             
'''
视频展示
  1. demo1
  2. demo2

3. 预训练模型

s-coco.pt
m-obj365.pt

coco数据集性能

Model size
(pixels)
mAPval
0.5:0.95
mAPval
0.5
yolov8-n 640 37.3 52.6
OW-yolov8-n 640 37.9 (only known 38) 53.7 (only known 53.9)
OW-yolov8-n-la 640
la : label attention

4. 后续功能

图像分类、实例分割

About

Detect known and unknown objects in the open world(具有区分已知与未知能力的全新检测器))

Topics

Resources

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published