Tags: byuflowlab/ImplicitAD.jl
Tags
[Diff since v0.3.1](v0.3.1...v1.0.0) - no breaking changes. mainly just moving to 1.0.0 to make semver easier. - add a pytorch example - minor doc, CI, compat, updates **Merged pull requests:** - Remove the unused parametric types present after PR 13. (#14) (@juddmehr) - Add user defined matrix multiplication function (#16) (@jmaack24) - Update eigenvalues.jl (#17) (@BTV25) - Allow ForwardDiff version 1 in [compat] (#19) (@fredrikekre) **Closed issues:** - Keep getting error with provide_rule (#18)
## ImplicitAD v0.3.0 [Diff since v0.2.2](v0.2.2...v0.3.0) **Closed issues:** - Differences with ImplicitDifferentiation.jl? (#4) - Alternative method for providing partial derivatives? (#7) - Partial derivative matrix cannot be safely re-used. (#9) **Merged pull requests:** - Avoid overwriting cached variables before the reverse pass (#10) (@taylormcd) - add explicit_unsteady and implicit_unsteady (#11) (@taylormcd) - Faster unsteady (#12) (@andrewning)
## ImplicitAD v0.2.2 [Diff since v0.2.1](v0.2.1...v0.2.2) **Merged pull requests:** - relax compatibility requirements (#6) (@taylormcd)